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Abstract

State-of-the-art models of lexical semantic
change detection suffer from noise stemming
from vector space alignment. We have empiri-
cally tested the Temporal Referencing method
for lexical semantic change and show that, by
avoiding alignment, it is less affected by this
noise. We show that, trained on a diachronic
corpus, the skip-gram with negative sampling
architecture with temporal referencing outper-
forms alignment models on a synthetic task as
well as a manual testset. We introduce a prin-
cipled way to simulate lexical semantic change
and systematically control for possible biases.

1 Introduction

These past years have seen the rise of computa-
tional methods to detect, track, qualify, and quan-
tify how a word’s sense — or senses — change over
time. These tasks are critical challenges that are
relevant to a range of NLP fields, including the
study of historical semantic change. The success-
ful outcome of semantic change detection is rel-
evant to any diachronic textual analysis, includ-
ing machine translation or normalization of his-
torical texts (Tjong Kim Sang et al., 2017), the de-
tection of cultural semantic shifts (Kutuzov et al.,
2017) or applications in digital humanities (Tah-
masebi and Risse, 2017a). However, currently, the
best-performing models (Hamilton et al., 2016b;
Kulkarni et al., 2015; Schlechtweg et al., 2019)
require a complex alignment procedure and have
been shown to suffer from biases (Dubossarsky
etal., 2017). This exposes them to various sources
of noise influencing their predictions; a fact which
has long gone unnoticed because of the lack of
standard evaluation procedures in the field.

We examine the modeling approach of Tempo-
ral Referencing (TR) which avoids post hoc align-

*The order has been randomly determined and all authors
contributed equally to this work.
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ment and is applicable to any vector space learning
technique. We show that it (i) is less affected by
noise and (ii) clearly outperforms state-of-the-art
alignment models on a synthetic change detection
task. The task is based on data from a synchronic
corpus into which we artificially inject lexical se-
mantic change (LSC) in a controlled and semanti-
cally principled way. We further evaluate the mod-
els on a manual testset of diachronic LSC and ex-
amine their properties.

In this paper, we focus on skip-gram with neg-
ative sampling (SGNS) models (Mikolov et al.,
2013) and PPMI (Levy et al., 2015) and make use
of TR to share context information across time pe-
riods, while learning individual embeddings for a
target word in each time period. We evaluate mod-
els in two ways: on the one hand, through the com-
parison of model performance between semanti-
cally changing and stable words. This is achieved
through the synthetic introduction (and removal)
of polysemy, mimicking Schiitze (1998); Kulkarni
et al. (2015); Rosenfeld and Erk (2018). We differ
from previous work by creating those changes in
a more structured way, and for many time points.
The second type of evaluation put forward is a
study built on a smaller number of words manu-
ally classified as changed or stable.

Our contributions are the following:

e Noise Reduction: We avoid post hoc align-
ment by TR and show that it outperforms
other models and is robust to noise.

e LSC Simulation: We propose a systematic
and principled method of injecting semantic
change in a controlled fashion.

e Evaluation: We evaluate (i) by testing for
noise reduction in a control condition, (ii) on
large and controlled artificial data and (iii) on
a manually annotated LSC testset.

o Framework: The above comprises a frame-
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work to test any model of semantic change
for their levels of noise and sensitivity in de-
tecting simulated semantic change.

2 Related Work

Models of LSC Detection Computational ap-
proaches to semantic change detection can be di-
vided in different families: count-based semantic
spaces (Sagi et al., 2009; Gulordava and Baroni,
2011) and more recently based on neural embed-
dings (Kim et al., 2014; Basile et al., 2016; Kulka-
rni et al., 2015; Hamilton et al., 2016b); graph-
based models (Tahmasebi and Risse, 2017a; Mitra
et al., 2014, 2015); and finally topic-based (Lau
et al., 2012; Wang et al., 2015; Frermann and La-
pata, 2016; Hengchen, 2017; Perrone et al., 2019).
Recently, we have seen dynamic embeddings with
the main aim to circumvent alignment, and share
data across time points, thus reducing data volume
requirements. Using different base embeddings,
SGNS (Bamler and Mandt, 2017), PPMI (Yao
et al., 2018), and Bernoulli embeddings (Rudolph
and Blei, 2018), the results show that sharing data
is beneficial regardless of the method.! Tempo-
ral Referencing has been applied first in the field
of term extraction Ferrari et al. (2017) and re-
cently been tested for diachronic LSC detection
(Schlechtweg et al., 2019).

Evaluation Due to a lack of proper evalua-
tion methods and datasets, all papers above have
performed different, non-comparable evaluations.
Previous evaluation procedures mainly tackle a
few words: case studies of individual words (Wi-
jaya and Yeniterzi, 2011; Jatowt and Duh, 2014;
Hamilton et al., 2016a), or a comparison between a
few changing and semantically stable words (Lau
et al., 2012; Schlechtweg et al., 2017). Other
works focus on the post hoc evaluation of their re-
spective models (Kulkarni et al., 2015; Eger and
Mehler, 2016). Importantly, Dubossarsky et al.
(2017) proposed to use a control condition to mit-
igate the absent of validated evaluation methods
and datasets.

Control Condition Evaluating empirical results
often demands comparing these under a control
condition in order to maintain that these are indeed

"For an extensive survey of computational approaches to
lexical semantic change, we refer the readers to Tahmasebi
et al. (2018), and to Kutuzov et al. (2018) for a specialized
focus on diachronic word embeddings.
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valid and are not the result of unwanted confound-
ing factors. A control condition directly follows
from a specific research hypothesis, and therefore
must resemble the original condition in any as-
pect, except the variable of interest that is being
hypothesized about. For example, Dubossarsky
et al. (2017) attested that a shuffled diachronic cor-
pus is a proper control condition to test models for
semantic change, under the hypothesis that such
models indeed capture semantic change and not
something else. They concluded that any degree
of semantic change that is reported by a model on
the shuffled corpus may only be related to noise,
instead of a true semantic change. Similarly, we
propose to test the noise levels associated with dif-
ferent semantic change models using a shuffled
historical corpus, and evaluate their true degree
of semantic change by comparing their results to
the original historical corpus. Importantly, there
are many ways to create control conditions, and
the synthetic lexical semantic change proposed in
Section 4 contains another type of control condi-
tion, that is based on artificially induced semantic
change.

3 Models

Embeddings A common method in LSC detec-
tion is to learn low-dimensional semantic vec-
tor spaces (embeddings) for specific time periods
and then align spaces for consecutive time periods
with an orthogonal mapping which minimizes the
distances between the time-specific vectors for all
words (Hamilton et al., 2016b). Given two consec-
utive time periods a, b, and corresponding text cor-
pora C,, C},, we learn two vector spaces A, B. Or-
thogonal Procrustes analysis can then be applied to
find the optimal mapping matrix W* such that the
sum of squared Euclidean distances between B’s
mapping BW and A is minimized:

W* = arg mmi/n |BW — Al

The optimal solution for this problem is given by
an application of Singular Value Decomposition
(Artetxe et al., 2017).> The degree of LSC of a
word w is then measured with the cosine distance
(Salton and McGill, 1983) between w’s vectors
in A and BW* (B’s mapping). This approach

2W is constrained to be orthogonal. A and B are first
length-normalized and mean-centered and their rows are re-
duced to the intersection of the vocabulary of C, and C} for
finding the mapping.



has been found to outperform other LSC detec-
tion methods in various studies (Hamilton et al.,
2016b; Kulkarni et al., 2015). It has the advan-
tage of not assuming that words keep the same
meaning over time. A presumable downside of
this approach is expected noise from the align-
ment, i.e., it may not be possible to align all words
to each other that have similar meanings, because
the spaces were learned independently.

PPMI Another method to learn time-specific se-
mantic vector space representations A, B is to
store count-based co-occurrence information for
each word in a high-dimensional sparse matrix and
then apply Positive Pointwise Mutual Information
(PPMI) weighting (Levy et al., 2015). In such
a matrix each column stores the co-occurrence
statistics with a specific context word. This has the
advantage that A and B can be aligned straight-
forwardly, because many context words occur as
columns in both A and B and can hence be
mapped onto each other. Mapping A and B to a
common coordinate axis then corresponds to in-
tersecting their columns (Hamilton et al., 2016b).
This has the advantage of avoiding the complex
alignment procedure for embeddings, but also
loses their performance advantages (Baroni et al.,
2014; Levy et al., 2015).

Temporal Referencing Temporal Referencing
(TR) is an alternative to learning individual word
representations for different time periods, which
avoids alignment using a procedure radically sim-
pler than proposed for dynamic embeddings. TR
is potentially applicable to every vector space
learning method. We treat all time-specific cor-
pora Cy, Ch, ..., C}, as one corpus C and learn
word representations on the full corpus. However,
we first replace each target word w € C} with a
time-specific token w;.?> This temporal referenc-
ing of w is only performed when it is a target word,
when the word is considered a context word, it re-
mains unchanged. Following this procedure, we
learn one single space that contains a vector for
each target-time pair w;, which may be compared
directly without the need for alignment. Besides
the considerable advantages of avoiding alignment
and being applicable to count-based and embed-
ding methods, it presumably lowers data require-
ments (because context words are collapsed, and

3In our case, ¢ is a decade. E.g., in the corpus for

1920 we replace each occurrence of computer with the string
computerig20.

thus shared, across corpora). Accordingly, we as-
sume TR to produce smoother change values. As
various other models, TR relies on the assumption
that the semantics of the context words stays rela-
tively stable over time.

4 Synthetic Lexical Semantic Change

We aim to simulate semantic change under con-
trolled settings, while keeping the corpus as natu-
ral as possible.* We call this procedure sense in-
Jjection. We increase the semantic material of a
recipient word w” in subsequent subcorpora by in-
jecting contexts from a donor word w?. The con-
text of the recipient word (illustrated as Sense 1
in Figure 1) stays as it is in the corpus. The first
subcorpus contains only contexts from the recip-
ient w” and all the contexts of the donor w? are
removed. In the next time period we add 25% of
the contexts of w?, with donor word replaced by
the recipient word. In each subsequent corpus, an
additional 25% of the donor word are injected un-
til the last time periods contain equal amounts of
contexts from the donor and recipient. As a result,
seen from the recipient w”, the last time periods
have double the amount of contexts as in the first
time period |w” (t,) + w(t,)| = 2 * |w" (t1)].

Note that due to the polysemous nature of words
(each is usually associated with more than one
sense), we preferred to add the donor words’ con-
texts instead of simply replacing the existing con-
texts of the recipient words with the contexts of the
donor words. This is because the former involves a
single source of synthetic lexical semantic change,
while the latter involves two sources (the removal
of contexts associated with different senses of a
recipient word, as well as the added contexts as-
sociated with the senses of a donor word). As a
result, this procedure yields less noisy examples
of synthetic lexical semantic change.

We differ between cases where recipient and
donor are related (e.g. maker — creator, Fig. 1a)
and unrelated (e.g. shoulders — horde, Fig. 1b),
following e.g., Pilehvar and Navigli (2013). This
procedure is aimed to give us insight into how
much novel semantic material is needed for our
methods to detect semantic change. Our hypothe-
sis is that cases where the donor word is unrelated
to the recipient word should be simpler to detect
compared to those that are in close relation. It is

“Hence, the target words’ frequencies were not matched,
but rather stayed natural.
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Figure 1: Increase in semantic material for a word by
means of sense injection. I.: new injected sense is re-
lated to the existing sense. II.: new injected sense is
unrelated.

linguistically motivated to choose semantically re-
lated words to simulate sense change; those are the
most difficult cases of sense change, and a likely
procedure of semantic change introducing poly-
semy (Blank, 1997).

Finally, to simulate the same increase in fre-
quency, we repeat the sense injection for a set of
control words. In this case recipient and donor
word are the same w” = w?. This creates the
same increased frequency of the recipient word
|w” ()| = 2 * |w"(t1)| as the above, but with-
out any added semantic information because the
control word keeps its original contexts.

S Experimental setup

5.1 Corpora

For Experiment 1 (Sec. 6.1) we used COHA
(Davies, 2002), of which we restrict ourselves to
decadal bins spanning from 1920 to 1970 so as to
have a comparable number of tokens for each time
slice. For Experiment 2 (Sec. 6.2) we used COCA
(Davies, 2008), of which we remove the spoken
and academic genres in order to maintain a more
similar usage context of words. As a control set-
ting, we created shuffled versions of the same cor-
pora with the same periods, and straightforwardly
followed Dubossarsky et al. (2017).

5.2 Synthetic semantic change

For related words, we used the Noun-Noun pairs
in SimLex-999 (Hill et al., 2015) as a starting
point. However, even semantically unrelated pairs
in SimLex were deemed somewhat related by our
annotators, and therefore we kept only 10 of those.
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We created the rest of the list of unrelated words
as follows: we randomly sampled 300 lowercased
nouns from our corpus, which we assembled into
150 pairs. We then asked three annotators to in-
dependently go through the list of generated pairs
and determine whether they were semantically re-
lated or not. All 150 pairs were deemed seman-
tically unrelated by at least 2 annotators. Only
5 pairs had a disagreement but were qualified as
border line cases by the disagreeing annotator, and
kept. This procedure yielded 356 word pairs in to-
tal, of which 196 were related and 160 were not
related.

5.3 Model training

We tested two models in our experiments: (i) low-
dimensional embeddings learned with SGNS and
(i1) high-dimensional sparse PPMI vectors. Each
of these were tested with their respective align-
ment method (AL) and with Temporal Referenc-
ing (TR) as described in Section 3, leaving us with
four models to compare:

SGNSaL  SGNSTr
PPMIn;,  PPMITr

In order to avoid that replaced target words co-
occur with other target words in TR we used the
implementation of Levy et al. (2015), allowing
us to train SGNS and PPMI on extracted word-
context pairs instead of the corpus directly. For
this, we iterated over corpus C} such that for
each token w and for each of its context words
c within a symmetric window we extracted the
word-context pair: (w¢,c) if w is a target word and
(w,c) otherwise.

In this way, we guarantee a target word is
never replaced and treated as context of any other
word. For TR, SGNS and PPMI were then trained
on these extracted pairs. For AL, we extracted
only regular word-context pairs (w,c) and trained
SGNS and PPMI on these. LSC is measured for all
four models via cosine distance.’ (See Appendix
A for preprocessing and hyper-parameter details.)

6 Evaluation

To test our methods we performed three main
experiments, comparing the performances of TR
to the existing state-of-the-art diachronic model

5The filtering was carried out on the basis of the output of
NLTK (Bird et al., 2009)’s pos_tag() function.

®Find a full implementation of the pipeline at https: //
github.com/Garrafao/TemporalReferencing.
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alignment. In the first experiment, we compare the
models’ performance under control conditions that
address complementary (potential) weaknesses.
The second experiment tests different synthetic
change types and assesses whether better models
improve detection of lexical semantic change, in
a controlled setting. Finally, we test our methods
on a manually created testset on a genuine corpus,
and manually inspect the results.

6.1 Experiment 1: Model comparison

In this experiment, we trained each model on two
corpora, one genuine diachronic corpus with nat-
ural semantic change, and one shuffled where the
diachronic change is distributed equally across all
time periods (see Sec. 5.1). We study the average
change of cosine distance as a proxy for semantic
change. Following Dubossarsky et al. (2017) we
consider the average cosine distance (acd) trained
on the genuine corpus to correspond to true se-
mantic change + noise. In contrast, the average co-
sine distance on the shuffled corpus corresponds to
pure noise. Therefore, the difference between the
two equals to true signal, or in other words, true
lexical semantic change.

Importantly, we are interested in investigating,
and hopefully mitigating, possible sources of the
noise that might be found in some of the mod-
els. Specifically, we hypothesize that the align-
ment procedure adds considerable noise to the
acd, and plan to test how TR can alleviate some
of that noise. Moreover, TR is assumed to con-
tribute not only by circumventing the alignment,
but also by producing more stable context vectors
due to the increased amount of data on which they
are trained.” Therefore, we first tease-apart these
factors using the following comparisons between
the different models.

1. For all models, we consider the difference
in average cosine distance between gen-
uine and shuffled conditions (acdgenuine —
acdspyf fled) as being inversely proportional
to the amount of noise that the original model
unknowingly captures. Hence, the larger the
difference, the less noisier (and better) the
model is. We consider this to be an approxi-
mation of the true semantic change.

"We differ between stable vectors that do not change
despite the randomness involved in training between multi-
ple runs, and accurate vectors give a good representation of
meaning. Note that when we use the term stable word we
mean stable in meaning over time.
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2. Focusing on the differences between the two
PPMI models allows us to test the indepen-
dent contribution of TR in providing more
accurate context vectors because the inter-
section of the PPMI vectors are inherently
aligned.

3. Focusing on the SGNS models conflates the
potential benefits from more accurate context
vectors with the disadvantage of Procrustes
alignment (which is necessary for SGNSar
but not for SGNSTR).

4. The difference between the last two would al-
low us to evaluate the independent contribu-
tion of these two sources on the (presumably)
less noisy SGNStr model scores.

Results (experiment 1) We start analyzing the
true semantic change for each of the models
(PPMI 41, to PPMItgr and SGNSAp, to SGNSTR)
over the corpus. In Figure 2, we can see that tem-
poral referencing introduces less noise throughout
the 5 decadal comparisons. For both PPMI and
SGNS, the true semantic change increases for the
TR models compared to the aligned.

True semantic change
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Figure 2: Comparison of aligned embedding spaces
and temporal referencing using both the genuine and
the shuffled corpora. High difference in cosine distance
indicate less noise captured by the model.

Importantly, Table 1 shows that for the PPMI
models, Temporal Referencing has a much smaller
improvement over the aligned model (.005) com-
pared to the SGNS models (.026) (all reported
differences are statistically significant, t-test p <
.01). Temporal Referencing influences the PPMI
models only by creating more stable context vec-
tors. In contrast, for the SGNS models the intro-
duction of Temporal Referencing circumvents the
use of alignment in addition to creating more sta-
ble context vectors. Therefore, the results support
our hypothesis that TR has two complementing



factors that improve prior models; firstly, it avoids
the need for alignment altogether (and the noise
that usually comes with it), and secondly, it pro-
duces more stable context vectors due to the in-
creased volume of data when using the full corpus.

Table 1: Difference in average cosine distance between
genuine and shuffled conditions (true semantic change)
for each method, collapsed over the 5 time bins (1920-
1970) in COHA.

Align TR A
SGNS 0.033 0.059 0.026
PPMI 0.028 0.033 0.005

Smoothness of Temporal Referencing We fur-
ther analyzed the nature of the progression of
the cumulative semantic change that words ex-
hibit over time. Under the assumption that words
change their meaning in a systematic way, it fol-
lows that words’ semantic change would increase
over the years. Therefore, an ecologically valid
model of semantic change should show that the
words change more as the time interval for com-
parison increases, for the vocabulary as a whole.
In contrast, if a model captures stochastic fluctua-
tions in the words’ vectors instead of true semantic
change, then such a shift in the distribution will be
less prominent.

We plot the distribution of the words’ cosine
distances with increasing time intervals (relative
to 1920) for both SGNS models in Figure 3.
Both models show a gradual transition from left
(smaller change scores) to right (larger change
scores). This corroborates our basic assumption
that words change more as the time interval for
comparison increases. Crucially, Temporal Refer-
encing shows a more constant cumulative progres-
sion of cosine distances over time in contrast to
alignment where decadal cosine distance distribu-
tions seem to be more volatile. We follow Bamler
and Mandt (2017) in interpreting these results as
attesting for the relatively high noise factor in the
SGNS AL over the SGNStR.

Overall, the different analyses converge to the
same conclusion: Temporal Referencing is a bet-
ter model for capturing a word’s semantic infor-
mation from diachronic text because it introduces
less noise. Next, we will investigate if a less noisy
model is also better at detecting semantic change.
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Figure 3: Smoothed histograms of word distances for
the two SGNS models. For the TR model, we see a
more constant cumulative shift which is reflected by
the overlap between the distributions as well as by dif-
ferences in their means (dashed vertical lines).

6.2 Experiment 2: Synthetic semantic change

This experiment aims to see how well our meth-
ods can find different synthetic change types. In
order to minimize natural semantic change in the
dataset, we made use of the synchronic dataset
COCA which we randomly shuffled, and simu-
lated a diachronic corpus for which we have 7
time-bins. We randomly assigned a seventh of
COCA to each of our artificial time periods, la-
beled t; to t7. Sentences in which either word
of the synthetic semantic change pairs (see Sec.
4) or their corresponding control words appeared
were held out. These sentences were subsequently
added back to COCA according to the procedure
outlined in Section 4, which enabled us to con-
trol for the fixed ratio incremental steps between
the recipient and donor words (i.e., changes to the
injection ratio were made only for to-t3, t3-t4, t4-
ts, and t5-tg, while t1-to and tg-t7 had no such
changes).

All four models were trained on the 7 synthetic
time-bins exactly as in Experiment 1. The tar-
get words were the 356 words with synthetic lexi-
cal semantic change and their 356 control words
that were matched with the same frequency in-
crease but otherwise are considered semantically
stable. For each target word, the cosine distances
between two consecutive synthetic time-bins were
computed, resulting in 6 change scores per word.

We analyze the peak distribution of the individ-
ual words. We defined the peak position of each
word as its vector argmax (the position in which



it shows the maximum cosine distance). In order
to evaluate the models’ ability to truly detect se-
mantic change, we formulate a naive binary clas-
sification task based on the words’ peak positions.
For each word, if the peak is in position 2-5, we
classify it as changed, and otherwise as stable and
measure accuracy and F1-score.

Results Figure 4 shows the acd of the four mod-
els for the change and stable words separately, ac-
cording to the different sense injection ratios. The
two plots differ markedly. For the semantic change
words (upper plot), all four models show a notice-
able peak when the new sense was first injected
(step 2), followed by a steady decrease in acd until
step 6. In contrast, the stable words only show the
steady decrease starting from step 1, without any
noticeable peaks. This decrease probably stems
from the target words’ increased frequency that
can lead to more accurate word embeddings (Hell-
rich and Hahn, 2016). Because peaks in acd are
interpreted as points were semantic change was
the most profound, the results support the models’
ability to detect synthetic semantic changes.

Synthetically changed words
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Figure 4: acd at different sense injection steps for the
four models. Steps without sense injection are shaded.

Although the majority of peaks for the semantic
change words fall in step 2, as expected by the acd
analysis above, words had their peaks in other step
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positions as well (see Appendix B).®

Table 2 reports accuracy and F-scores for the
four models in the binary classification task. As
clearly seen, all four models perform better than
chance even under these very rudimentary condi-
tions (finding the argmax of a vector of length
6). Crucially, SGNStr outperforms the rest of
the models, and especially SGNS 41, that shows the
worst performance. These results corroborate our
hypothesis from Experiment 1 that noise is neg-
atively influencing task performance. By allevi-
ating the noise factor that exists in SGNS, (due
to alignment), SGNStR is able to show substantial
gains in this binary classification task.

Table 2: Accuracy (averaged, and split into individual
classes) and F1-scores for semantic change detection.
For stable words (control words), peaks at 1 and 6 steps
are correct. For change words, peaks at steps 2-5 are
correct. We see that all methods find unrelated change
better than related change, and that SGNStgr outper-
forms the other methods.

PPMIAo. PPMIg  SGNSaL  SGNStr
Stable 0.52 0.54 0.37 0.57
Unrelated  0.83 0.83 0.86 0.91
Related 0.73 0.73 0.78 0.78
Mean acc.  0.65 0.66 0.59 0.70
F1-score 0.69 0.69 0.67 0.74

Discussion Table 2 shows that SGNStr gains
its performance advantage over SGNS 1, mainly
from a better classification of the stable words
(0.37 vs. 0.57). In order to understand this bet-
ter, we inspect their mean cosine distance curves
only for stable words in Figure 5. SGNStRr’s curve
clearly declines, while SGNSay’s curve declines
much less and is more volatile. We attribute the
decline of both curves to the diminishing noise that
comes from the continuous increase in frequency
of the control words (Dubossarsky et al., 2017).
It seems that this diminishing frequency noise is
counteracted by the alignment noise, yielding a
flatter curve for SGNSAr. The latter increases
SGNSaL’s chance to have peaks in one of the
center injection steps producing false positives in
our classification task. However, this property
may also have a positive influence on SGNSx;
in related LSC detection tasks (Schlechtweg et al.,
2019).

8We also ran experiments with moving the time point

when the first change was injected and the results mimic those
presented here.
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Figure 5: Mean cosine distance curves for SGNStr
and SGNS AL-

6.3 Experiment 3: WSC testset

So far, the results have been based on either a large
random sample to show general tendencies for the
language in the corpus as a whole, or syntheti-
cally injected semantic change. In this part, we
test the behavior of our methods on a small, man-
ually created testset for semantic change. We use
the Word Sense Change Testset (Tahmasebi and
Risse, 2017b) that consists of words and the dif-
ferent associated change events, for the time span
1785 — 2010. In this experiment, we ignore the
sense changes and consider only words as changed
or stable, and restrict our change words to those
that have change events between 1920 and 1970.°
In total we have 13 changed and 19 stable words
(excluding words with a total frequency < 100).

Table 3: acd for WSC testset. Var € (0.0 — 0.01). CH
= changed word, ST = stable word, DIFF = difference
between ACD for change and stable in percent.

SGNS PPMI
Align TR Align TR

CH 0.47 031 0.86 0.86
ST 0.34 021 071 0.73

DIFF  38% 50% 20% 17%

In Table 3 we see acd of each model on the
changed and stable words. We find that for
all methods, SGNSA1, SGNStr, PPMI,;, and
PPMIrtR, the acd for the changed words is statis-
tically significantly higher (p values < 0.01) than
for the stable words which nicely corresponds to
intuition; words with true semantic change should
have vectors that differ more than words without
change. The mean difference between the stable
and the changed words, that gives us some notion

°As an example, the word car is considered stable since
its change event occurred before 1920.
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Figure 6: Nearest neighbors for computer. Upper part
SGNS4L, lower part SGNStg. A larger rendering of
this figure is available in Appendix D.

of how well the two different classes are separated,
is highest for SGNStr. Because of the limited size
of the testset, the results are indicative rather than
conclusive and we continue with a manual analy-
sis of the nearest neighboring words.

We carry out a qualitative evaluation for the
closest neighbors for computer (see Figure 6), a
word we expect to have changed after the inven-
tion of the digital computer in the 1940s, for the
SGNS aligned version and SGNS with Temporal
Referencing. SGNS4p has only a few words in
common in 1950-1970, and while the digital com-
puter is showing here, there are few overlapping
words. The time periods 1920-1940 have no com-
mon words. In comparison, the SGNStr show
clear patterns. We see a clear break between 1940
and 1950, without any overlapping word, and a
pattern between 1950-1970; the closest words are
the other computer;oqo- 1970.'0 This is exactly the
pattern that we expected to see using the sense in-
jection; stable senses can be distinguished from
changing senses by their relationship to the other
temporally referenced vectors.

Next, we study a word for which we expect
no sense change, namely ship (see Appendix E).
The SGNS L show a fairly low acd, but still there

"The closest words in 1920-1940 have high cosine dis-
tances and are thus not very related. Still, for each
computeryy., the other vectors of computer are among the
neighbors, meaning that despite sparsity and little overlap in
context, some structure is found.
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Table 4: acd for synthetic change. Var € (0.0 —0.01).

SGNS PPMI
Align TR Align TR
CH 046 033 086 0.87
ST 0.37 026 0.83 0.83
DIFF 24%  26% 4% 4%

are large differences in the top neighboring words.
The SGNStr show what we expect; the most simi-
lar words are the other ship;920_;970, and over time
we see that the ‘self-similarity’ decreases. For al-
most all decades, the most similar words are ship
from the decade before and after. The lower words
also help describe the meaning of ship, as a boat
and later also as a spaceship. The pattern of stabil-
ity is much more clear for SGNStr than SGNSAL
and holds for most other stable words as well.

For the word tape, that has a change in domi-
nant sense (or an addition of another strong sense)
with the addition of the music tape to adhesive
tape, we see the same patterns as for ship, but
the bottom words contain ribbon, paper, adhesive
for 1920-1940 and recorder, recording, stereo in
1950-1970.1

For both the real change in Table 3 and the syn-
thetic change in Table 4, we find that SGNStR is
best at differentiating between the stable and the
change classes for both datasets (50% for WSC
and 26% for synthetic change).

7 Conclusions and future work

In this paper, we have empirically tested the
temporal referencing method for lexical seman-
tic change. We train one vector space model
over the whole corpus, and thus share informa-
tion of the context words while training individ-
ual vectors for each target word and time period.
We compare two commonly used models, namely
PPMI and SGNS because of their properties; the
PPMI model is count-based and does not require
alignment across time, while the SGNS model has
shown state-of-the-art results in previous work.
We find that the SGNS model trained with Tem-
poral Referencing contains significantly less noise
than the standard SGNS for which an alignment
is necessary. In comparison, for the PPMI model
where no alignment is needed, Temporal Refer-

"Find all nearest neighbour lists at https://github.
com/Garrafao/TemporalReferencing/tree/
master/data.
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encing also significantly reduced the noise level,
but to a lesser extent.

Next we evaluated whether the noise reduction
carries over performance on a synthetic lexical
semantic change detection task. We simulated
change in a controlled and semantically principled
way, using sense injection and showed that words
with semantically related and unrelated semantic
change can be differentiated from control (stable)
words that are not sense injected, but increase
in frequency in the same way as the changed
words. SGNS with Temporal Referencing outper-
forms the other methods in correctly classifying
the words to the two classes (change vs. stable).

Finally, we evaluated on a small, handcrafted
set of change and stable words and found that
SGNS with Temporal Referencing gives the
largest separation between words that undergo se-
mantic change and those that stay stable over time.
In particular, we observe a similar behavior be-
tween this smaller testset and the synthetic sense
injection, supporting our sense injection method
as a good proxy for isolating and studying lexical
semantic change.

Our results support the following conclusion;
trained on a diachronic corpus, SGNS with Tem-
poral Referencing will capture more true semantic
change. In the future, we plan to evaluate Tempo-
ral Referencing against the related dynamic em-
bedding models on an annotated empirical lexi-
cal change dataset with multiple languages. We
also plan on testing how well Temporal Refer-
encing deals with corpora that are too small for
alignment-based methods, hopefully opening new
avenues of quantitative research.
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A Pre-processing and Hyperparameter
Details

We lower-cased all tokens in the corpora before
extracting word-context pairs. For pair extraction
we chose a window size of 5 for both, AL and TR.
Corpus tokens were skipped as word or context if
they did not have a minimum frequency of 100 in
the full corpus used (i.e., 1920-1970 for COHA
and full COCA) or contained non-alphabetic char-
acters (except hyphens).

We tuned model parameters on the most recent
time bin of COHA (2000-2009) based on word
similarity task scores (Hill et al., 2015; Finkel-
stein et al., 2001) reaching near state-of-the-art
results (Levy et al., 2015). The parameters for
SGNS were dim = 300 (vector dimensional-
ity), cds = 0.75 (context distribution smoothing),
k = 5 (number of negative samples) and ep = 1
(number of training epochs). PPMI was smoothed
and shifted Levy et al. (2015). The parameters
were cds = 0.75 and k = 5 (shifting parameter).

B Peak distribution analysis

In Figure 7 we present the peak distributions of the
four models for the 712 target words (356 changed
and 356 stable), color coded according to the true
classification (change/stable). The peaks represent
the models’ predictions with respect to where the
maximal cosine distance is found for each word,
which we later use in a naive and rudimentary bi-
nary classification task. As can be seen from the
different distributions, all models frequently find
peaks in position 2 (corresponding to the event of
the first sense injection). However, they are still
very much different in their overall peak distribu-
tions which influence their sensitivity in detecting
synthetically semantic changed words (Table 2).

C WSC TestSet

In Table 5 we list the words that have undergone
semantic change, as well as the change year(s) and
a description of the change. In Table 6 we list
words that do not have changed meanings.

D Closest Neighbors for Computer

In Figure 8 we see the closest neighbors for com-
puter, a word we expect to have changed after the
invention of the digital computer in the 1940s, for
the SGNS aligned version (upper) and SGNS with
temporal referencing (lower).
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Table 5: Changed words from WSC Testset

Word Change year Description

aeroplane 1919-1920 First use as weapon of war and commercial flights
cinema 1900 movie theatre

computer 1940 digital computer

cool 1964 a way of being

flight 1918 after WWI commercial aviation grows rapidly
gay 1985 recommended for use instead of homosexual
memory 1960 digital memory

mouse 1965 the computer mouse was introduced

record 1920 electrical music records

rock 1950-1960 birth of rock music

tank 1917 first tank in battle

tape 1960 common household use of the magnetic tape

Table 6: Stable words from WSC Testset

automobile
bank
camera

car

deer
export
founder
horse

mail
mirror

music
newspaper
paper
phone
ship
symptom
telephone
train
travel

E Closest Neighbors for Ship

In Figure 9 we see the closest neighbors for ship, a
word we expect to be stable, for the SGNS aligned
version (upper) and SGNS with temporal referenc-

ing (lower).
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1920 1930 1940 1950 1960 1970

jory deferment coexistence calculator computers — computers
suture interact paperwork computers ibm computerized
sst additive backlash gadget computerized electronics
spartacus wundt ventral electronic electronic —> electronic
smeed bleu halevy movable electronically data

mano perimeter input ibm feedback circuits
dmitri dna beame recorders computation wiring

norval semen hydrolysis transistor monitoring harlie

atty expertise antibiotic tapes experimenter fingerprint
1920 1930 1940 1950 1960 1970
computer ., computer,, ~ computer .~ computer, computer,,_ computer ;.
aeroplane,,.,  computer ,Ncomputer,,,  computer,,. computers —scomputers
computer ,, 7 >aeroplane ,— aeroplane ,,,  calculator computer ., —>computer,,.
racism . —> racism,, ——>racism electronically; computerized—s computerized
racism aeroplane ,— aeroplane ,,,  electronic electronic =~ — electronic
aeroplane ;> aeroplane ,—— aeroplane ,,  computers ibm calculator
racism . racism ,, —>racism . feedback calculator feedback
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Figure 8: Nearest neighbors for computer. Upper part SGNS1, lower part SGNSg.

1920 1930 1940 1950 1960 1970
ships — ships vessel ships —> ships —  ships
boat vessel boat spaceship vessel —  vessel
vessel boat ships vessel boat —  boat
sloop freighter schooner boat plumie freighter
steamer — steamer destroyer barge spaceship schooner
liner ~ — liner warship destroyer lifeboat sloop
cargo clipper sloop schooner liner sail
frigate starboard cargo freighter tanker cargo
schooner ertak liner lifeboat destroyer boats
1920 1930 1940 1950 1960 1970
ship ., ship o, ship .., — ship N ship ..,  —> ship
ship ., 2 ship .., —> ship . ship, g, ship . ship g,
vessel ship ship .., — ship i|:> ship o :I; ship .,
ship .o ship o ship o, ship g, ship o, ship
ship, ) ship,. ship o >< ship,,,, —>  ship,,  — ship
boat vessel —> vessel — vessel —  vessel —>  vessel
ship . boat —> boat —> boat —>  boat —> boat
schooner liner ships ~ — ships freighter schooner
ships — ships / freighter spaceship — spaceship sloop

Figure 9: Nearest neighbors for ship. Upper part SGNS41,, lower part SGNStg.
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