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Abstract

Motivated by infamous cheating scandals in
various industries and political events, we ad-
dress the problem of detecting concealed in-
formation in technical settings. In this work,
we explore acoustic-prosodic and linguistic in-
dicators of information concealment by col-
lecting a unique corpus of professionals prac-
ticing for oral exams while concealing infor-
mation. We reveal subtle signs of concealed
information in speech and text, compare, and
contrast them with those in deception detec-
tion literature, thus uncovering the link be-
tween concealing information and deception.
We then present a series of experiments that
automatically detect concealed information
from text and speech. We compare the use
of acoustic-prosodic, linguistic, and individ-
ual feature sets, using different machine learn-
ing models. Finally, we present a multi-task
learning framework with acoustic, linguistic,
and individual features, that outperforms hu-
man performance by over 15%.

1 Introduction

In 2018, a cheating scandal (Mobley, 2018) at the
world’s most notoriously difficult verbal exam for
wine professionals shook the global wine indus-
try — answers were found leaked by some exam-
iners to candidates beforehand — and all results
were invalidated; in 2016, with questions leak-
ing ahead of political campaigns (Wemple, 2016),
CNN faced a grave scandal from which only more
controversies ensued; in 2000, the notorious po-
tential debate leak (Bruni and Van Natta, 2000) in-
between the Bush and the Gore campaigns drew
the attention of F.B.I. investigators. What all of the
three scandals share in common is the fact that it
had been difficult to accurately identify who and to
whom leaked the critical information, because the
party who unfairly obtained the information tried
their best to conceal and pretend otherwise.
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Despite the importance and potential impact of
detecting concealed information, research on de-
tecting concealed information has been scarce. It
is partly because large-scale datasets with ground
truth labels of information concealment are diffi-
cult to come by. It is only in rare cases can we
verify the existence of concealed information in
the wild.

From the perspective of information attainment
and revelation, deception and concealing informa-
tion are correlated ambiguously. In Table 1, we
clarify the difference between the two important
concepts with an information grid. When we pos-
sess the critical information but appear not in pos-
session, we are concealing information; whereas
in contrast, when we do not possess the informa-
tion but pretend we are in the know, we are de-
ceiving. Despite the proliferation of deception de-
tection studies in text and speech, research on the
closely related problem of detecting concealed in-
formation has been sparse.

The Information Grid ‘ Appearance

‘ Information ‘

Truth ‘ ‘
‘ No Information ‘ Deception ‘

No Information

Information Honesty ‘ Concealed Information

Honesty

Table 1: The Information Grid: Concealed Information
vs. Deception

Prior to trying to detect concealed informa-
tion, we first ask why might we be able to do so
systematically, as opposed to random guessing?
Specifically, what makes concealed information
detectable? There exist at least two counteracting
factors. First, consistent with deception, when in-
dividuals are concealing information, they expe-
rience potentially greater cognitive load to keep
their logic straight, and/or being in fear of being
caught, especially when the stakes are high, and
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the expectations are great. Second, contrary to
deception, because of the endowment with crit-
ical information, the candidates also experience
more confidence, less fear, and therefore poten-
tially lighter cognitive load, due to the informa-
tional advantages. All of these possible offsets
make it particularly challenging to control for po-
tential indicators of concealing information.

In the present study, we present a unique corpus of
both text and speech, collected from field exper-
iments that provide ground-truth labels, allowing
us to initiate the investigation of concealed infor-
mation, with a focus on technical settings, where
some candidates are being evaluated on their tech-
nical skills that require logical reasoning. More
specifically, we address the following questions:

1. How good (or bad) are humans at detecting
concealed information in technical settings?

2. Can we improve on human performance,
with a new multimodal dataset, a better un-
derstanding of individual differences, and tai-
lored classifiers for audios and texts?

3. How are indicators of concealed information
related to those of deception?

4. When are Machine Learning classifiers better
(or worse) than human domain experts?

To preview our results, this work contributes to
the critical problem of automatic detection of con-
cealed information, increases our scientific under-
standing of information concealment versus de-
ception and individual differences in concealing
information, and presents a series of experiments
aimed at automatically detecting concealed in-
formation from text and speech. We collect a
unique corpus of speech and text from field exper-
iments for the purpose, and show that our multi-
task learning framework that combines acoustic-
prosodic, linguistic, and individual feature sets
outperforms baselines by over 11%, and human
performance by over 15%.

2 Related Work

There exists limited research in social psychol-
ogy on Concealed Information Theory (CIT) (Am-
bach et al., 2010) and interpersonal deception
that articulates the nuanced meaning of conceal-
ment as a subset of interpersonal deception (Buller
et al., 1994). However, ours differ from this body
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of work in terms of method, scale, and focus.
With large-scale computational detection methods
based on machine learning and deep learning, we
deviate from autonomic and brain electrical mea-
sures elicited from small-scale on-campus labora-
tory experiments and manual analyses.

Besides, as has been detailed in Section 1, the
current study is related to deception detection,
which has been extensively studied in multiple dis-
ciplines such as cognitive psychology, computa-
tional linguistics, and paralinguistics, forensic sci-
ence, etc.

Early work by psychologists (e.g. Ekman et al.,
1991, Streeter et al., 1977, Newman et al., 2003)
have found indicators of deceptive speech include
pitch increases, LIWC (Pennebaker et al., 2001)
features, etc. More recently, computer scientists
have investigated deception detection in various
contexts, identifying cues from texts, speech sig-
nals, gestures, and facial expressions. We refer in-
terested readers to Burzo et al. (2017) for an ex-
cellent review in this realm.

Language-based indicators of deception have been
identified in various contexts. For instance,
Bachenko et al. (2008) found that a mixture of
linguistic features including hedging, verb tense,
and negative expressions are predictive of truth-
fulness in criminal narratives, interrogation, and
legal testimony. Ott et al. (2011) investigated
online deceptive opinion spams by crowdsourc-
ing a dataset of fake hotel reviews using Amazon
Mechanical Turk, and found deceptive spams ex-
hibit more positive emotions, first-person singu-
lars, concrete expressions, and fewer spatial con-
figurations. Studies in the similar vein include
Hancock et al. (2007), Mihalcea and Strapparava
(2009), Feng et al. (2012), etc. Toma and Hancock
(2010), Guadagno et al. (2012), Joinson and Dietz-
Uhler (2002) and Warkentin et al. (2010) explored
deception detection in more diverse online settings
such as online dating, social networks, and online
communities.

There has also been much progress in identify-
ing cues of deception in speech signals. Lev-
itan et al. (2015) collected a large-scale corpus
of cross-cultural speech of deception and truth-
telling, coupled with individual features such as
personality traits. They found that gender, na-
tive language, and personality information signifi-
cantly improves classification accuracy along with
acoustic-prosodic features. Levitan et al. (2016)



combined acoustic-prosodic, lexical, and phono-
tactic features to automate deception detection and
outperformed human performance by a large mar-
gin. Levitan et al. (2018a) and Levitan et al.
(2018b) tested for statistically significant acoustic-
prosodic and linguistic indicators of deception de-
tection. Moreover, Mendels et al. (2017) trained a
hybrid deep learning model that combines speech
signals with textual features, outperforming shal-
low machine learning methods.

Videos of deceptive and non-deceptive speech
have also been collected to leverage the visual
cues for automatic detection. Pérez-Rosas et al.
(2015a), and Pérez-Rosas et al. (2015b) collected
real-life trial videos and applied image processing
methods to extract gestures and facial expressions,
which prove to improve the performance of decep-
tion detection classifiers.

Ideologically, the current study is related to stud-
ies that explore how to improve human decision-
making processes with machine learning algo-
rithms, especially in tasks that prove difficult for
humans. Other research efforts include Kleinberg
et al. (2017) where algorithms aid judges’ deci-
sions, Ranganath et al. (2009) where machines de-
tect flirtation better than humans, and the decep-
tion detection literature reviewed above where ma-
chines outperform humans by a large margin.

3 Data

3.1 Blind Tasting Game

We design a field experiment that mimics the set-
ting of the motivating cheating scandal in blind
tasting oral exams (in Section 1) and provides fi-
nancial incentives to participants to conceal criti-
cal information, which is randomly assigned to in-
dividuals.

More specifically, in each session of the blind tast-
ing game, there are 5 — 10 wine professionals par-
ticipating in 7 — 15 rounds sequentially. During
each round, one mysterious wine, the identity of
which is known to one participant by chance, is
poured. Every individual including the informed
one, proceeds to taste, describe, reason, and con-
clude on his/her guesses about the identity of the
wine, in a random sequence, both verbally and in
writing. The professionals participate to practice
their tasting skills, and strive to make as many
correct calls about wines’ identities as possible.
Once every individual has voiced their opinions,
the identity is revealed, and each participant is
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asked to provide guesses of the informed partic-
ipants before revelation — they can write as many
as they wish. The participants who have done the
best job concealing information (i.e. the least cor-
rect guesses of concealing information by others)
in aggregate are rewarded with fine wines as in-
centives at the end of each session.

We recorded 49 sessions with a total of 41 pro-
fessionals in rooms with soundproof equipment
and collected answer sheets on which participants
wrote descriptions, conclusions, and guesses of in-
formed individuals.

We also collected information about participants’
gender, native language, credentials, and granular
domain knowledge (self-confidence in identifying
every style or region of wines) in post-session
questionnaires. 88% of participants’ native lan-
guage is American English, the rest include Ko-
rean, Spanish, British English, and Chinese. 61%
of participants have passed the level of certified
sommelier or above with the Court of Master Som-
melier, one of the most authoritative institutions in
the industry, especially in the United States; and
41% of participants have passed the third level
with the Wine & Spirit Education Trust, the other
most authoritative institution in Europe.

3.2 Pre-processing

We manually annotated the audio samples by
speaker, with or without information, and the iden-
tity of wine, using Praat (Boersma et al., 2002).
We discarded audios unrelated to the tasting game,
such as small talk. The resulting audio samples
were then transcribed with wit.ai API for auto-
matic speech recognition, and hand-corrected af-
terward. We also transcribed the written answers
and annotated accordingly.

The speech was tagged and aligned with the
speaker id. We then segmented it into turn units,
where a turn is defined as a maximal sequence of
inter-pausal units (pause-free segments separated
by a minimum pause length of 50 ms) from a sin-
gle speaker without any interlocutor speech that
is not a backchannel. Labels of speaker id, wine
identity, speakers’ guesses of both wine and in-
formed individuals were assigned to each turn ac-
cordingly. We define single turn segments as indi-
vidual turns of a speaker in any round separately
and aggregate them by speaker and round as multi-
ple turn segments. Our classification is performed
on both segmentations of the data, whereas statis-
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tical analyses are on multiple turn segments.

The resulting corpus totaled 164 hours, and 3288
multiple turn and 9104 single turn segments. We
randomly split our entire set into training, devel-
opment, and testing sets at the ratio of 70:10:20
separately for single and multiple turn. Evaluation
results were based on 5-fold cross-validation.

4 Feature Extraction

4.1 Acoustic-prosodic Features and
Indicators

We extract 8 low-level acoustic features com-
monly studied in speech research: intensity mean
and max, pitch mean and max, 3 voice quality fea-
tures (shimmer, jitter, noise-to-harmonics ratio),
and speaking quality, as well as 13 Mel-Frequency
Cepstral Coefficients (MFCCs) per window of
256 frames and stride of 100 frames, using Praat
(Boersma et al., 2002), Parselmouth (Jadoul et al.,
2018), and python speech features library.
Following previous studies on deception, we use
openSMILE (Eyben et al., 2010) to extract two
feature sets from the InterSpeech challenges:
the 2013 Computational Paralinguistics Challenge
baseline feature set (IS2013) (Schuller et al.,
2013), and the 2009 Emotion challenge baseline
feature set (IS2009) (Schuller et al., 2009). The
two feature sets contain 6373 and 384 features re-
spectively, from computation of various function-
als over low-level descriptors such as pitch (fun-
damental frequency), intensity, spectral, cepstral,
duration, voice quality, spectral harmonicity, and
psychoacoustic spectral sharpness. These have
been shown useful for many tasks such as native
language detection (e.g., Keren et al., 2016), emo-
tion detection (e.g., Eyben et al., 2013, Satt et al.,
2017), sincerity (e.g., Zhang et al., 2016, Herms,
2016), and deception detection (e.g., Zhang et al.,
2016, Herms, 2016). The two feature sets were
used in our machine learning classification tasks.
All the audio features are z-score normalized by
speaker.

Table 2 shows the statistically significant low-
level acoustic features (marked by S) for both
classes based on paired t-tests between the features
of truthfulness and information concealment, cor-
rected for family-wise Type I error by controlling
the false discovery rate (FDR) at & = 0.05%. (S)
indicates significant uncorrected p-values.

As is shown in Table 2, across all speakers (the
last column), we observe an increase in maximum

‘ Feature

| Pitch(max) | S | | | | s

‘ Pitch (mean) ‘

S
(S)

‘Intensity (max) ‘ S

| Intensity (mean) |

‘ Duration

(XS

\
\
\
‘ Speaking Rate ‘ ‘
\
‘ Voice Quality ‘

Table 2: Low-level Acoustic Indicators of Information
Concealment

pitch, intensity, speaking rate, and a decrease in
duration, suggesting that speakers on average tend
to speak with higher maximum pitch, intensity,
rate, and shorter duration when concealing infor-
mation. It has been documented in multiple decep-
tion detection studies (e.g. Levitan et al., 2018a)
that people also tend to speak with a higher maxi-
mum pitch and intensity when telling a lie.

To understand the individual differences in speech
with concealed information, we report the same
test statistics for specific subsets of speakers —
grouped by gender, and skill level. We find that
maximum pitch is significantly increased in in-
formation concealment for male speakers but not
for female speakers, and that increased speaking
rate in information concealment for speakers with
lower skill. These results largely echo the results
in recent deception detection studies in interview
dialogues (e.g. Levitan et al., 2018a), except that
we found the total duration was longer for truth-
ful speech than speech with concealed informa-
tion. The finding about increased speaking rate
in relatively lower-skilled professionals supports
the hypothesis that extra information boosts confi-
dence level and outweighs the effect of increased
cognitive load when concealing information.

4.2 Linguistic Features and Indicators

LIWC: previous research in speech and text
found LIWC dimensions useful for predicting
personality (Newman et al., 2003), deception
(Levitan et al., 2018b), etc., therefore we extract
93 semantic classes using LIWC 2015 (Pen-
nebaker et al., 2001, Pennebaker et al., 2015).
They include standard linguistic dimensions
(e.g., pronoun, article), grammar (e.g., verb, adj,
compare), psychological processes (e.g., cognitive
process cogproc, social processes social, affective
processes affect), time orientation (e.g., focuspast,
focuspresent, focusfuture), relativity (relativ),
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and formality (e.g., informal language informal,
Netspeak).

Linguistic: we extract 10 linguistic features based
on results from previous literature. Included are
binary and numeric features capturing hedging
(Choi et al., 2012, Prokofieva and Hirschberg,
2014), linguistic and syntactical distinctiveness,
subjectivity, sentiment (valence, intensity) (Pang
et al., 2008), contraction, level of detail (Li and
Nenkova, 2015), and contextual concreteness.

We measure hedging using a rule-based algorithm
introduced in Prokofieva and Hirschberg (2014),
complemented with a comprehensive hedging
dictionary released by Choi et al. (2012).

We measure linguistic and syntactical distinctive-
ness by training a “common language model”
using a wine review corpus that consists of
860,119 reviews from four major websites —
Vinous, Wine Spectator, Wine Enthusiast, and
Decanter, as summarized in Hu (2018). Following
Danescu-Niculescu-Mizil et al. (2012), we use
unigrams, bigrams, and trigrams for training and
use the model to predict the likelihood of given
sentences in our corpus, which measures linguistic
distinctiveness. For syntactical distinctiveness we
add Part-of-speech tags to the language model.
We measure contextual concreteness by building
a domain-specific rule-based algorithm following
the tasting grid widely used by wine profes-
sionals. Our method counts both the number
and percentage of cluster descriptor versus item
descriptor, weighted by pre-specified weights
calculated based on a weighting scheme identical
to tf-idf except that the document corresponding
to representative descriptors of a style and region
of wine.

Subjectivity and sentiment measures were ex-
tracted with TextBlob (Loria, 2010).

Length: we include the average number of words
by turn and sentence, the average length of words
by turn, sentence, and word.

Ngrams: we extract unigrams, bigrams, and
trigrams, which has been shown useful for
domain-specific deception detection (Ott et al.,
2011).

Embeddings: we obtain distributed representa-
tions of words to capture semantic relationships
using GloVe (Pennington et al., 2014) word
vectors trained on 1B tweets and the same wine
review corpus used for the common language
model.

All the linguistic features are extracted for both
audio transcriptions and written texts. We calcu-
late the differences in-between using Euclidean
distance (where Ngrams are preprocessed to be
binary on every dimension).

Table 3 shows (1) the top ngram features for both
concealed information and truthful classes from
a logistic regression classifier, which yields an
Fl-score of 60.13% with minimal manipulation;
(2) the statistically significant LIWC, linguistic,
and other features for both classes based on
the same tests as detailed in Section 4.1, by
taking the union of significant feature sets from
transcriptions and written texts.  We further

‘ Feature ‘ Concealed Information ‘ Truthful

yeah, but it, citrus, uh um, there is, there are,
N-grams correct, ruby, did not, was like, so, slight,
lift, botrytis, would not not sure, blossom, clear
clout, certain, function, ompare. pronoun. verb
- c are, pronoun, verb,
LIWC cogproc, negate, discrep, P - P - —
e ingest, feel
differ, assent, posemo
‘ Syntax ‘ adj, adverb, syn_distinct ‘ ‘
‘ Else ‘ specificity, A(Trans, Text) ‘ hedging, #word, length ‘

Table 3: Linguistic Indicators of Information Conceal-
ment vs. Truthfulness

compare our results with those in recent deception
detection studies (Levitan et al., 2016, Levitan
et al., 2018b, Levitan et al., 2018a). In Table 3,
we denote significant features consistent with
deception literature as red and underlined, and
those opposite with deception literature as blue
and italicized.

Consistent with Benus et al. (2006), we found
that the use of filler pauses such as “um” were
correlated with truthful speech. The LIWC
cogproc (cognitive processes — e.g. ‘“‘cause”,
“think”, “know”), certain, posemo (positive
emotion), negation, and assent features were sig-
nificantly more frequent in speech with concealed
information, in line with Levitan et al. (2018b),
supporting the hypotheses that cognitive load,
as well as confidence level, increases with the
pressure of concealing information.

We also found the LIWC compare, verb, and feel
features, backed by hedging, total word count and
length significantly more frequently associated
with speech without concealed information,
suggesting an interesting balance of more visceral
responses and deliberation associated with truth-
telling in technical settings.

Other significant indicators of concealed in-
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formation include syntactical distinctiveness
(syn_distinct), specificity, clout, discrepancy,
and disparity between speech and written text
(A(Trans,Text)), the results regarding clout
(confidence) and discrepancy are consistent with
Levitan et al. (2018b).

Some of the ngrams features appear to echo
the other linguistic indicators. For instance,
“botrytis” is a precise winemaking term that is
usually associated with aromas of honey, ginger,
and saffron, which corresponds to the specificity
feature identified as an indicator of information
concealment; ‘“clear” is a fairly general term
in wine talk that indicates neither certainty nor
specificity, and therefore more indicative of
truthfulness; the appearance of the word “ruby”
is in accordance with the statistics that wine
professionals in our sample performed better on
and are more confident in calling red wines than
white wines.

5 Classification Experiments

We first balance our dataset by random upsam-
pling, since the number of negative labels is more
than twice of positive labels.

5.1 Baseline Models

We trained Logistic Regression (LR) classifiers
with ngrams, and Random Forest (RF) classi-
fiers with acoustic features as baseline models for
text and speech respectively. For LR, we var-
ied preprocessing methods (stop words, number of
ngrams, binary vs. numeric), and the most perfor-
mant LR model uses only bigram features. For
RF, we varied the number of trees, the choice of
feature sets detailed in Section 4.1. The most per-
formant RF model uses 800 tree estimators, and
the IS 2009 Emotion Challenge feature set alone.

5.2 Deep Learning Models

Given the results from baseline models and pre-
vious literature (Mendels et al., 2017; Levi-
tan et al., 2016), we train Bidirectional Long
Short-Term models (BiLSTM, Schuster and Pali-
wal, 1997; Zhang et al., 2015) with sequences
of word embeddings, Multi-Layer Perceptrons
(MLP) with acoustic feature sets, and the com-
binations thereof. The GloVe embeddings were
used to initialize the weights but back propaga-
tion was also allowed to update embedding val-
ues during training. We use Bayesian optimiza-
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tion (Snoek et al., 2012) to tune the hyperparam-
eters. It was used to maximize the F1 scores on
the development set, based on various hyperpa-
rameters including learning rate, number of hid-
den layers of MLP, the number of hidden units
per layer, optimizers and associated parameters,
dropout rate, and batch size. and concatenate em-
beddings learned from acoustic features passed
through an MLP and those passed through a BiL-
STM for the last softmax layer. The combined
model structure follows Mendels et al. (2017) ex-
cept that we used 4 hidden layers for MLP, and
concatenated additional individual features before
the last softmax layer. Our model consists of
four fully connected layers, each with 680 hid-
den units followed by ReLU (Krizhevsky et al.,
2012) activations. We use a softmax layer with
two outputs that corresponds to the two classes
(Concealment vs. Truthful) in our task, trained
on categorical cross-entropy as the loss function.
Training process also includes Batch Normaliza-
tion (Ioffe and Szegedy, 2015) and Dropout (Sri-
vastava et al., 2014) implementation (keep prob-
ability being 0.6) upon the output of each layer.
The optimizer is Adam (Kingma and Ba, 2014).
The BiLSTM trained on word embeddings is then
merged with MLP and individual feature vectors
by concatenation based on last hidden layers. The
base model with trigrams did perform slightly bet-
ter than BiLSTM with GloVe with an improve-
ment of 0.50 and 0.31 of F1 scores over bigrams
but the resulting vector dimension does not bal-
ance well with that from MLP and individual fea-
tures for gradient propagation. Therefore, we use
BiLSTM with GloVe of comparable performance
and greater simplicity. To prevent the acoustic
MLP from being penalized more than the linguis-
tic BILSTM, we adopt an auxiliary softmax layer
to the BiLSTM output concatenated with individ-
ual features, with a parameter chosen to be 0.41 by
Bayesian optimization.

5.3 Multi-task Learning

Based on the combined model in Section 5.2,
we explore multi-task learning by adding two
more tasks that share the same training set,
and an additional dataset scraped from blind
tasting video and audio clips posted by Guild of
Sommeliers. It consists of 5.5 hours clean blind
tasting demonstrations, and 21 rounds. The two
additional tasks are predicting if the speaker’s
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answer is correct, and the identity of the wine.
The overall structure is shown in Figure 1.

Word Embedding (200)

BiLSTM, 125 hidd it:
[ Fully Connected Layer, 680 hidden units ! ‘ aden units ‘
| Dropout, Batch Norm for training ‘

1

I

! \

Acoustic Features

Individual Features

4 hidden
layers

[ Fully Connected Layer, 680 hidden units
\ Dropout, Batch Norm for training

Vector Concatenation \‘

Main Softmax [~ Correct?
[

| > Identity?

Concealed Information?

Auxiliary Softmax

Figure 1: Multi-task Leaning Framework Combining
Acoustic, Linguistic, and Individual Features

5.4 Measuring Human Performance

We obtained the overall human performance at an
F1-score of 56.28 for multiple turn segmentation,
by converting individual guesses into binary
labels and aggregating them. There is no statistics
for single turn segmentation available because we
asked participants to provide guesses at the end
of each round. The Fl-score of individuals with
higher credientials did beat Random Forest with
IS 2009 features at 63.14. We speculate that it
could be because these participants more versed
in blind tasting are also better at detecting incon-
sistencies between descriptions and conclusions,
which are telltale signs of concealed information
in our context.

If we were to obtain human performance for sin-
gle turn segmentation, we would have to ask the
participants to provide guesses every time there
was a speaker turn, which would greatly disrupt
the experiment. While it is entirely possible to
hire another group of qualified wine professionals
familiar with the setting to help annotate the
dataset by both single and multiple turn, and
we could have obtained human performance by
asking other wine professionals not involved in
the experiments to listen to the audio clips and
provide labels, but it was not feasible due to
logistic and financial constraints at the time of
implementation.

Since some of the professionals know one another
well and the task of guessing several individuals
out of all for each round makes it easier than the
detection task faced by algorithms, due to social
and order effects (the sequence of rounds was

408

randomly determined to counterbalance order
effects from treatments, but it does not eliminate
the biases from human performance measures),
we argue that our statistics for human perfor-
mance is biased, but it provides the upper bound
because the real performance could be even worse.

5.5 Results

Table 4 shows the Fl-scores of the most perfor-
mant models from each model class as described
in Section 5. We also marked human performance
on multiple turn segments in red in the first row,
since it is worse than all the models in the ta-
ble. Across all the models and feature sets, multi-

‘ Model ‘ Features F1 (single / multiple turn)

Multi-task GloVe.

Logistic Reeression Bieram Human: NA /56.28
OgIstic Regressio grams 61.18/65.45
|  Random Forest | 1S 2009 | 59.23/60.03 |
| MLP | 1S 2009 | 63.96/67.27 |
| BIiLSTM | GloVe | 61.41/67.35 |
| MLP+BiLSTM | 182009, GloVe | 64.12/68.57 |
IS 2009,
MLP + BiLSTM Individual Features, 64.14/70.02
GloVe.
. IS 2009,
MLP + BiLSTM + Individual Features, 65.16/71.51

Table 4: Classification Results of Baselines, DL Mod-
els, Combined DL Model, and Multi-task Learning
Model

ple turn segmentation yields better F1-scores com-
pared to single turn segmentation. It is intuitive
in the sense that, multiple turn segments contains
more information than single turn segments, lead-
ing to more informative features that help classifi-
cation. Consistent with Levitan et al. (2015), we
have also found individual features such as gen-
der, skill level, and native language, boost classi-
fication performance by a relatively large margin
— the same magnitude as the boost from com-
bining acoustic and linguistic features. Further-
more, multi-task learning with auxiliary classifiers
boosts Fl-score by the same margin as adding
individual features to the joint model, which is
higher than human domain experts’ performance
by 15.23%.

6 Conclusions, Limitations, and Future
Directions

We have presented a study of concealed informa-
tion in text and speech. Our analysis of acoustic-
prosodic and linguistic characteristics of informa-



tion concealment, contrasted with those of de-
ception, provides insight into the nature of text
and speech with or without concealed information.
We have also evaluated the performance of sev-
eral machine learning classification methods to the
critical problem of detecting concealed informa-
tion in technical settings. We developed a hybrid
multi-task learning model that outperforms base-
line models by 11.48% and human domain experts
by 15.23%.

The current study is by no means perfect. First,
more samples and machine learning experiments
could have been done, had we had more time,
funding, and resources. Second, during the blind
tasting games, the identity of each wine dur-
ing each round was known to one participant
by chance, in that, every potential grape-region
combo in a total pool of 38 combos was randomly
assigned to one participant beforehand without re-
placement. At the time of pouring, there was no
secret mechanism in place to inform the particu-
lar participant who brought the wine being poured.
However, given the fact that (1) it was common
knowledge (each one knows it, if each one knows
that the others know it, if each one knows that
each one knows that the others know it, and so
on) that each grape-region combo was assigned
to no one or one individual for each session, and
(2) all participants were required to bring a wine
of the assigned grape-region that they know very
well and ensure it of a classical style most repre-
sentative of the grape and region, the task of de-
tecting self-brought wines becomes trivial to our
participants, and therefore the informing mecha-
nism stands. We acknowledge that a cleaner and
cleverer design could have been implemented to
randomly assign and secretly inform participants,
however, that would require hiring more indepen-
dent administrators and sacrificing some partici-
pants’ practice opportunities, which were the rea-
sons why we settled for the current setting. Third,
more analyses of acoustics such as pitch and tonal
contour, phonotactic variations could be incorpo-
rated to further explore the space of information
concealment in speech. Fourth, additional experi-
ments with identified significant acoustic and lin-
guistic features would add more weight to the cur-
rent paper.

Lastly, we look forward to further exploring this
line of research by investigating:

1. the individual differences in both detecting

409

concealed information and concealing in-
formation, by analyzing the features across
groups defined by individual personality
traits (Fornaciari et al., 2013, An et al., 2018),
ethnics, native languages, and different di-
mensions of professional skills;

the result and model robustness by collect-
ing and testing other field data such as board
games;

. the predictive power of phonotactic variation
features;

. the relationship between perceived informa-
tion concealment and concealing informa-
tion;

. how soon can we detect concealed informa-
tion;

how to conduct domain adaptation with re-
gards to detecting concealed information;

. efficient ways to make the multi-task learning
framework scalable.

In addition, this line of work might inspire new
methods for detecting insider trading in financial
markets.
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