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Abstract

Recent work on bilingual lexicon induc-
tion (BLI) has frequently depended either on
aligned bilingual lexicons or on distribution
matching, often with an assumption about the
isometry of the two spaces. We propose a
technique to quantitatively estimate this as-
sumption of the isometry between two embed-
ding spaces and empirically show that this as-
sumption weakens as the languages in ques-
tion become increasingly etymologically dis-
tant. We then propose Bilingual Lexicon In-
duction with Semi-Supervision (BLISS) — a
semi-supervised approach that relaxes the iso-
metric assumption while leveraging both lim-
ited aligned bilingual lexicons and a larger set
of unaligned word embeddings, as well as a
novel hubness filtering technique. Our pro-
posed method obtains state of the art results on
15 of 18 language pairs on the MUSE dataset,
and does particularly well when the embed-
ding spaces don’t appear to be isometric. In
addition, we also show that adding supervision
stabilizes the learning procedure, and is effec-
tive even with minimal supervision.*

1 Introduction

Bilingual lexicon induction (BLI), the task of find-
ing corresponding words in two languages from
comparable corpora (Haghighi et al., 2008; Xing
et al., 2015; Zhang et al., 2017a; Artetxe et al.,
2017; Lample et al., 2018), finds use in numerous
NLP tasks like POS tagging (Zhang et al., 2016),
parsing (Xiao and Guo, 2014), document classi-
fication (Klementiev et al., 2012), and machine
translation (Irvine and Callison-Burch, 2013; Qi
et al., 2018).
Most work on BLI uses methods that learn a
mapping between two word embedding spaces
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(Ruder, 2017), which makes it possible to leverage
pre-trained embeddings learned on large monolin-
gual corpora. A commonly used method for BLI,
which is also empirically effective, involves learn-
ing an orthogonal mapping between the two em-
bedding spaces (Mikolov et al. (2013a), Xing et al.
(2015), Artetxe et al. (2016), Smith et al. (2017)).
However, learning an orthogonal mapping inher-
ently assumes that the embedding spaces for the
two languages are isometric (subsequently re-
ferred to as the orthogonality assumption). This
is a particularly strong assumption that may not
necessarily hold true, and consequently we can ex-
pect methods relying on this assumption to pro-
vide sub-optimal results. In this work, we exam-
ine this assumption, identify where it breaks down,
and propose a method to alleviate this problem.
We first present a theoretically motivated ap-
proach based on the Gromov-Hausdroff (GH) dis-
tance to check the extent to which the orthogo-
nality assumption holds (§2). We show that the
constraint indeed does not hold, particularly for
etymologically and typologically distant language
pairs. Motivated by the above observation, we
then propose a framework for Bilingual Lexicon
Induction with Semi-Supervision (BLISS) (§3.2)
Besides addressing the limitations of the orthogo-
nality assumption, BLISS also addresses the short-
comings of purely supervised and purely unsu-
pervised methods for BLI (§3.1). Our framework
jointly optimizes for supervised embedding align-
ment, unsupervised distribution matching, and a
weak orthogonality constraint in the form of a
back-translation loss. Our results show that the
different losses work in tandem to learn a better
mapping than any one can on its own (§4.2). In
particular, we show that two instantiations of the
semi-supervised framework, corresponding to dif-
ferent supervised loss objectives, outperform their
supervised and unsupervised counterparts on nu-
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merous language pairs across two datasets. Our
best model outperforms the state-of-the-art on 10
of 16 language pairs on the MUSE datasets.

Our analysis (§4.4) demonstrates that adding su-
pervision to the learning objective, even in the
form of a small seed dictionary, substantially im-
proves the stability of the learning procedure. In
particular, for cases where either the embedding
spaces are far apart according to GH distance or
the quality of the original embeddings is poor,
our framework converges where the unsupervised
baselines fail to. We also show that for the same
amount of available supervised data, leveraging
unsupervised learning allows us to obtain supe-
rior performance over baseline supervised, semi-
supervised and unsupervised methods.

2 Isometry of Embedding Spaces

Both supervised and unsupervised BLI often rely
on the assumption that the word embedding spaces
are isometric to each other. Thus, they learn an
orthogonal mapping matrix to map one space to
another Xing et al. (2015).

This orthogonality assumption might not al-
ways hold, particularly for the cases when the lan-
guage pairs in consideration are etymologically
distant — Zhang et al. (2017b) and Sggaard et al.
(2018) provide evidence of this by observing a
higher Earth Mover’s distance and eigenvector
similarity metric respectively between etymolog-
ically distant languages. In this work, we propose
a novel way of a-priori analyzing the validity of
the orthogonality assumption using the Gromov
Hausdorff (GH) distance to check how well two
language embedding spaces can be aligned under
an isometric transformation!.

The Hausdorff distance between two metric
spaces is a measure of the worst case or the dia-
metric distance between the spaces. Intuitively, it
measures the distance between the nearest neigh-
bours that are the farthest apart. Concretely, given
two metric spaces &', and ) with a distance func-
tion d(.,.), the Hausdorff distance is defined as:

H(X,Y) = max{ sup inf d(z,y),
zeX YEY 1)
sup inf d(z,y) }.
sup 1o (z,y) }

The Gromov-Hausdorff distance minimizes the
Hausdorff distance over all isometric transforms

tNote that since we mean center the embeddings, the or-
thogonal transforms are equivalent to isometric transforms
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between X’ and ), thereby providing a quantitative
estimate of the isometry of two spaces

M) =inf (X)), @
where f, g belong to set of isometric transforms.

Computing the Gromov-Hausdorff distance
involves solving hard combinatorial problems,
which is intractable in general. Following Chazal
et al. (2009), we approximate it by computing the
Bottleneck distance between the two metric spaces
(the details of which can be found in Appendix
(§A.1)). As can be observed from Table 2, the GH
distances are higher for etymologically distant lan-
guage pairs.

3 Semi-supervised Framework

In this section, we motivate and define our semi-
supervised framework for BLI. First we describe
issues with purely supervised and unsupervised
methods, and then lay the framework for tackling
them along with orthogonality constraints.

3.1 Drawbacks of Purely Supervised and
Unsupervised Methods

Most purely supervised methods for BLI just use
words in an aligned bilingual dictionary and do not
utilize the rich information present in the topol-
ogy of the embeddings’ space. Purely unsuper-
vised methods, on the other hand, can suffer from
poor performance if the distribution of the embed-
ding spaces of the two languages are very different
from each other. Moreover, unsupervised methods
can successfully align clusters of words, but miss
out on fine grained alignment within the clusters.

We explicitly show the aforementioned prob-
lem of purely unsupervised methods with the help
of the toy dataset shown in la, and 1b. In this
dataset, due to the density difference between the
two large blue clusters, unsupervised matching is
consistently able to align them properly, but has
trouble aligning the smaller embedded green and
red sub-clusters. The correct transformation of
the source space is a clockwise 90° rotation fol-
lowed by reflection along the x-axis. Unsuper-
vised matching converges to this correct transfor-
mation only half of the time; in rest of the cases, it
ignores the alignment of the sub-clusters and con-
verges to a 90° counter-clockwise transformation
as shown in Ic.

We also find evidence of this problem in the real
datasets used in our experiments as shown in Ta-
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Figure 1: A toy dataset demonstrating the shortcomings of unsupervised distribution matching. Fig. a) and b) show
two different distributions (source and target respectively) over six classes. Classes 1 and 2; classes 3 and 4; classes
5 and 6 were respectively drawn from a uniform distribution over a sphere, rectangle and triangle respectively. Fig.
c¢) shows the misprojected source distribution obtained from unsupervised distribution matching which fails to

align with the target distribution of Fig. b).

Source — Target Incorrect Predicted

aunt — TeTs 6abymika (Grandmother)

uruguay — ypyrsas apreHTHHBI (Argentina)

regiments — 1oskoB kasaJsiepuiickue (Cavalry)

comedian — KOMHUK axTép (Actor)

Table 1: Words for which semi-supervised method pre-
dicts correctly, but unsupervised method doesn’t. The
unsupervised method is able to guess the general fam-
ily but fails to pinpoint exact match.

ble 1. It can be seen that the unsupervised method
aligns clusters of similar words, but is poor at fine
grained alignment. We hypothesize that this prob-
lem can be resolved by giving it some supervision
in the form of matching anchor points inside these
sub-clusters, which correctly aligns them. Anal-
ogously, for the task of BLI, generating a small
supervised seed lexicon for providing the requi-
site supervision, is generally feasible for most lan-
guage pairs, through bilingual speakers, existing
dictionary resources, or Wikipedia language links.

3.2 A Semi-supervised Framework

In order to alleviate the problems with the or-
thogonality constraints, the purely unsupervised
and supervised approaches, we propose a semi-
supervised framework, described below.

Let X = {z1...2y} and Y = {y1...Ym},
zi,y; € RY be two sets of word embeddings from
the source and target language respectively and let
S = {(z,y7) ... (zf,y})} denote the bilingual
aligned word embeddings.

For learning a linear mapping matrix W that
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maps X to ) we leverage unsupervised distribu-
tion matching, aligning known word pairs and a
data-driven weak orthogonality constraint.

Unsupervised Distribution Matching: Given
all word embeddings X and ), the unsupervised
loss Lyy|p aims to match the distribution of both
embedding spaces. In particular, for our formu-
lation, we use an adversarial distribution match-
ing objective, similar to the work of Lample et al.
(2018). Specifically, a mapping matrix W from
the source to the target is learned to fool a dis-
criminator D, which is trained to distinguish be-
tween the mapped source embeddings WX
{Wzy...Wz,} and Y. We parameterize our dis-
criminator with an MLP, and alternatively opti-
mize the mapping matrix and the discriminator
with the corresponding objectives:

Lpw D(Wx;))

3

Ly |p

Aligning Known Word Pairs: Given aligned
bilingual word embeddings S, we aim to mini-
mize a similarity function (f;) which maximizes
the similarity between the corresponding matched
pairs of words. Specifically, the loss is defined as:

S AWty

(z5,y5)€S

“

Lys = —

i
S|



Weak Orthogonality Constraint: Given an
embedding space X, we define a consistency loss
that maximizes a similarity function f, between x
and WT Wz, x € X. This cyclic consistency loss
Lyy|o encourages orthogonality of the W' matrix
based on the joint optimization:

7 falwi, WWz)  (5)

1
Lo = ——

The above loss term, used in conjunction with
the supervised and unsupervised losses, allows the
model to adjust the trade-off between orthogo-
nality and accuracy based on the joint optimiza-
tion. This is particularly helpful in the embedding
spaces where the orthogonality constraint is vio-
lated (§4.4). Moreover, this data driven orthogo-
nality constraint is more robust than an enforced
hard constraint (A.3).

The final loss function for the mapping matrix
is:

L =Lwp+Lwis+Lwo (6)

Lyy|p enables the model to leverage the distri-
butional information available from the two em-
bedding spaces, thereby using all available mono-
lingual data. On the other hand, Ly g allows for
the correct alignment of labeled pairs when avail-
able in the form of a small seed dictionary. Fi-
nally, Lyy|o encourages orthogonality. One can
think of Lyy|o and Lyy |5 as working against each
other when the spaces are not isometric. Jointly
optimizing both helps the model to strike a bal-
ance between them in a data driven manner, en-
couraging orthogonality but still allowing for flex-
ible mapping.

3.3 Nearest Neighbor Retrieval

For NN lookup, we use the CSLS distance defined
by Lample et al. (2018). Let T'4(b) be the av-
erage cosine similarity between b and it’s k-NN
in A. Then CSLS is defined as CSLS(z,y) =
2cos(Wz,y) —I'y(Wz) - Twa(y).”.

3.4 Iterative Procrustes Refinement and
Hubness Mitigation

A common method of improving BLI is itera-
tively expanding the dictionary and refining the
mapping matrix as a post-processing step (Artetxe
et al., 2017; Lample et al., 2018). Given a learnt
mapping matrix, Procrustes refinement first finds

*W X denotes the set {Wz : z € X'}
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the pair of points in the two languages that are
very closely matched by the mapping matrix and
constructs a bilingual dictionary from these pairs.
These pair of points are found by considering the
nearest neighbors (NN) of the projected source
words in the target space. The mapping matrix
is then refined by setting it to be the Procrustes
solution of the dictionary obtained. Iterative Pro-
crustes Refinement (also referred as Iterative Dic-
tionary Expansion) applies the above step itera-
tively.

However, learning an orthogonal linear map in
such a way leads to some words (known as hubs)
to become nearest neighbors of a majority of other
words (Radovanovié et al., 2010; Dinu and Baroni,
2014). In order to estimate the hubness of a point,
(Radovanovi¢ et al., 2010) first compute N, (k),
the counts of all points y such that x € k— N N(y),
normalized over all k. The skewness of the distri-
bution over N, (k) is defined as the hubness of the
point, with positive skew representing hubs and
negative skew representing isolated points. An ap-
proximation to this would be N;(1), i.e the num-
ber of points for which x is the nearest neighbor.

We use a simple hubness filtering mechanism to
filter out words in the target domain that are hubs,
i.e., words in the target domain which have more
than a threshold number of neighbors in the source
domain are not considered in the iterative dictio-
nary expansion. Empirically, this leads to a small
boost in performance. In our models, we use iter-
ative Procrustes refinement with hubness filtering
at each refinement step.

4 Experiments and Results

In this section, we measure the GH distances
between embedding spaces of various language
pairs, and compute their correlation with several
empirical measures of orthogonality. Next, we an-
alyze the performance of the instantiations of our
semi-supervised framework for two settings of su-
pervised losses, and show that they outperform
their supervised and unsupervised counterparts for
a majority of the language pairs. Finally we ana-
lyze our performance with varying amounts of su-
pervision and highlight the framework’s training
stability over unsupervised methods.

4.1 Empirical Evaluation of GH Distance

To evaluate the lower bound on the GH distance
between the two embedding spaces, we select the



ru-uk en-fr en-es es-fr en-uk en-ru en-sv en-el en-hi en-ko |(%0}11';‘| |%({1)'r|

GH 0.18 0.17 02 024 034 044 046 047 05 092 * *

A 164 41 59 41 117 147 73 115 77 6.6 * *
MUSE(U) * 823 81.7 855 29.1 440 533 379 346 5.1 0.87 0.61
RCSLS * 83.3 84.1 87.1 383 579 617 476 373 375 0.74 0.52
GeoMM * 82.1 814 87.8 39.1 513 650 47.8 39.8 34.6 0.76 0.49
BLISS(R) * 839 843 87.1 40.7 57.1 65.1 48.5 38.1 399 0.73 0.50
[T — WTW||2 \ 0.03 0.01 0.03 0.02 598 543 71.6 72.6 106.3 98.46 \ 0.84 0.75

Table 2: Correlation of GH and Eigenvector similarity with performance of BLI methods. Bold marks best metrics.

5000 most frequent words of the source and tar-
get language and compute the Bottleneck distance.
These embeddings are mean centered, unit normed
and the Euclidean distance is used as the distance
metric.

Row 1 of Table 2 summarizes the GH distances
obtained for different language pairs. We find that
etymologically close languages such as en-fr and
ru-uk have a very low GH distance and can possi-
bly be aligned well using orthogonal transforms.
In contrast, we find that etymologically distant
language pairs such as en-ru and en-hi cannot be
aligned well using orthogonal transforms.

To further corroborate this, similar to Sggaard
et al. (2018) , we compute correlations of the GH
distance with the accuracies of several methods
for BLI. We find that the GH distance exhibits
a strong negative correlation with these accura-
cies, implying that as the GH distance increases, it
becomes increasingly difficult to align these lan-
guage pairs. Sggaard et al. (2018) proposed the
eigenvector similarity metric between embedding
spaces for measuring similarity between the em-
bedding spaces. We compute their metric over
top n (100, 500, 1000, 5000 and 10000) embed-
dings (Column A in Table 2 shows correlation for
the best setting of n) and show that the GH dis-
tance (Column GH) correlates better with the ac-
curacies than eigenvector similarity. Furthermore,
we also compute correlations against an empirical
measure of the orthogonality of two embedding
spaces by computing |[I — WTW||2, where W
is a mapping from one language to the other ob-
tained from an unsupervised method (MUSE(U)).
Note that an advantage of this metric is that it can
be computed even when the supervised dictionar-
ies are not available (ru-uk in Table 2). We obtain
a strong correlation with this metric as well.

4.2 Benchmark Tasks: Setup
Baseline Methods

MUSE (U/S/IR): Lample et al. (2018) pro-
posed two models: MUSE(U) and MUSE(S)
for unsupervised and supervised BLI respectively.
MUSE(U) uses a GAN based distribution match-
ing followed by iterative Procrustes refinement.
MUSE(S) learns an orthogonal map between the
embedding spaces by minimizing the Euclidean
distance between the supervised translation pairs.
Note that for unit normed embedding spaces, this
is equivalent to maximizing the cosine similar-
ity between these pairs. MUSE(IR) is the semi-
supervised extension of MUSE(S), which uses it-
erative refinement using the CSLS distance start-
ing from the mapping learnt by MUSE(S). We also
use our proposed hubness filtering technique dur-
ing the iterative refinement process (MUSE(HR))
which leads to small performance improvements.
We consequently use the hubness filtering tech-
nique in all our models.

RCSLS: Joulin et al. (2018) propose optimiz-
ing the CSLS distance! directly for the supervised
matching pairs. This leads to significant improve-
ments over MUSE(S) and achieves state of the art
results for a majority of the language pairs at the
time of writing.

VecMap models: Artetxe et al. (2017) and
Artetxe et al. (2018a) proposed two models,
VecMap and VecMap™ ™ which were based on It-
erative Procrustes refinement starting from a small
seed lexicon based on numeral matching.

We also compare against two well known meth-
ods GeoMM (Jawanpuria et al., 2018) and Vecmap
(U)*™" (Artetxe et al., 2018b). These methods
learn orthogonal mappings for both source and tar-
get spaces to a common embedding space, and

ISince the CSLS distance requires computing the nearest
neighbors over the whole embedding space, this can also be
considered a semi-supervised method.
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subsequently translate in the common space.

BLISS models

We instantiate two instances of our framework
corresponding to the two supervised losses in the
baseline methods mentioned above. BLISS(M)
optimizes the cosine distance between supervised
matching pairs as its supervised loss (Lyy|s),
while BLISS(R) optimizes the CSLS distance be-
tween these matching pairs for its Lyy|g. We use
the unsupervised CSLS metric as a stopping cri-
terion during training. This metric, introduced
by Lample et al. (2018), computes the average
cosine similarity between matched source-target
pairs using the CSLS distance for NN retrieval;
and the authors showed that this correlates well
with ground truth accuracy.

After learning the final mapping matrix, the
translations of the words in the source language
are mapped to the target space and their nearest
neighbors according to the CSLS distance are cho-
sen as the translations.

Datasets

We evaluate our models against baselines on two
popularly used datasets: the MUSE dataset and the
VecMap dataset. The MUSE dataset used by Lam-
ple et al. (2018) consists of embeddings trained by
Bojanowski et al. (2017) on Wikipedia and bilin-
gual dictionaries generated by internal translation
tools used at Facebook. The VecMap dataset intro-
duced by Dinu and Baroni (2014) consists of the
CBOW embeddings trained on the WacKy crawl-
ing corpora. The bilingual dictionaries were ob-
tained from the Europarl word alignments. We
use the standard training and test splits available
for both the datasets.

4.3 Benchmark Tasks: Results

In Tables 3 and 4, we group the instantiations
of BLISS(M/R) with it’s supervised counterparts.
We use { to compare models within a group, and
use bold do compare across different groups for a
language pair.

As can be seen from Table 3, BLISS(M/R) out-
perform baseline methods within their groups for
9 of 10 language pairs. Moreover BLISS(R) gives
the best accuracy across all baseline methods for 6
out of 10 language pairs.

We observe a similar trend for the VecMap
datasets, where BLISS(M/R) outperforms its su-
pervised and unsupervised counterparts (Table 4).

It can be seen that BLISS(M) and BLISS(R)
outperform the MUSE baselines (MUSE(U),
MUSE(R)) and RCSLS respectively.

We observe that GeoMM and VecMap(U)™"
outperform BLISS models on the VecMap
datasets. A potential reason for this could be the
slight disadvantage that BLISS suffers from be-
cause of translating in the target space, as opposed
to in the common embedding space. This hypothe-
sis is also supported by the results of Kementched-
jhieva et al. (2018).

All the hyperparameters for the experiments can
be found in the Appendix (§A.4)

4.4 Benefits of BLISS

Languages with high GH distance: As can be
seen from Table 2, BLISS(R) substantially out-
performs RCSLS on 6 of 9 language pairs, espe-
cially when the GH distance between the pairs is
high (en-uk (2.4%), en-sv (3.4%), en-el (0.9%),
en-hi(0.8%), en-ko (2.4%)). Results from Table
3 also underscores this point, wherein BLISS(R)
performs at least at par with (and often better
than) RCSLS on European languages, and per-
forms significantly better on en-zh (2.8%) and zh-
en (0.9%).

Performance with varying amount of su-
pervision: Table 5 shows the performance of
BLISS(R) as a function of the number of data
points provided for supervision. As can be ob-
served, the model performs reasonably well even
for low amounts of supervision and outperforms
the unsupervised baseline MUSE(U) and it’s su-
pervised counterpart RCSLS. Moreover, note that
the difference is more prominent for the etymolog-
ically distant pair en<+zh. In this case the base-
line models completely fail to train for 50 points,
whereas BLISS(R) performs reasonably well.

Stability of Training: We also observe that
providing even a little bit of supervision helps
stabilize the training process, when compared to
purely unsupervised distribution matching. We
measure the stability during training using both the
ground truth accuracy and the unsupervised CSLS
metric. As can be seen from Figure 2, BLISS(M)
is significantly more stable than MUSE(U), con-
verging to better accuracy and CSLS values. Fur-
thermore, for en<+zh, Vecmap(U)™*™ fails to con-
verge, while MUSE is somewhat unstable. How-
ever, BLISS does not suffer from this issue.

When the word vectors are not rich enough
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Model Type  Objective Trasl;)sallzzon en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en
MUSE(U) |Unsup GAN target | 81.7 83.3 823 821 740 722 440 59.1 325 314
MUSE(S) | Sup Cos target 814 829 81.1 824 735 724 517 637 42717 367
MUSE(R) | Semi  Cos + IR target 81.9 835 821 824 743 727 517 637 427" 367
MUSEHR) | Semi  Cos + IR target 823" 833 825 832 7577 72.8 528 64.11 4277 367
BLISS(M) | Semi  Cos + GAN target 82.3" 843" 83.31 83.9" 757t 73.8t 5571 637 411 414f
RCSLS | Semi CSLS target 84.1 863" 833 84.1 79.17 763 5797 672 459 464
BLISS(R) | Semi CSLS+ GAN target 84.3" 86.2 83.9" 84.7" 79.1% 76.6" 57.1 67.7" 4877 47.31
GeoMM | Su C'aSSL‘(‘jSC:“O“ common gy 4 855 82.1 84.1 747 767 513 67.6 49.1 453

NN Based Dist common
++
Vecmap(U)*+| Unsup matching + IR 822 845 825 83.6 752 742 485 651 00 00

Table 3: Performance comparison of BLISS on the MUSE dataset. Sup, Unsup and Semi refer to supervised,
unsupervised and semi-supervised methods. Objective refers to the metric optimized. t marks the best in each
category, while bold marks the best performance across all groups for a language pair.

. Vec Vec |MUSE MUSE BLISS BLISS Vec
Pairs ceds Map Map™t| (U) (IR) (M) RCSLS R) GeoMM Map(U)*t+
enye Al [397 453 | 458 453 459t | 454 462" | 483 48.5
Num.|373 - 458" 07 443 03 446" 1.2 48.5
ende A [409 441 | 00 470 4831 | 473 4817 | 489 48.1
Num.|39.6 - 0.0 399 472t 1.0 465" 2.3 48.1

Table 4: Performance of different models on the VecMap dataset. T marks the best in each category, while bold
marks the best performance across different levels of supervision for a language pair.

# Datapoints || Model || en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en
* MUSE(U) 81.7 83.3 823 821 740 722 440 59.1 3251 3147
& Vecmap(U)* 82.27 845" 825" 83.6" 7527 7427 485" 6517 00 00

MUSE(IR) 03 87 05 16 319 7277 01 00 03 03
50 GeoMM 03 19 03 10 03 03 00 06 00 00
RCSLS 01 04 00 03 01 01 01 01 00 00
BLISS (R) 82.17 83.6" 82.8" 83.0f 75.17 72.7t 39.3" 61.0f 32.67 32.57
MUSE(IR) 81.6 83.57 82.1 820 73.1 727 403 62 345 322
500 GeoMM 319 46.6 344 447 135 147 106 205 39 29
RCSLS 229 449 224 435 99 102 79 196 66 7.1
BLISS(R) 82.3" 83.4 8237 829" 7477 73.1"7 41.6" 63.07 36.3" 35.17
MUSE(IR) 81.9 82.8 822 821 752 724 504 637 392 363
5000 GeoMM 79.7 827 799 832 717 706 49.7 655" 4377 401
RCSLS 80.9 829 804 825 725 709 513 638 425 419
BLISS(R) 824" 84.9" 82.6" 83.9" 7577 725" 5217 652 425 42.8F

Table 5: Performance with different levels of supervision. T marks the best performance at a given level of super-

vision, while bold marks the best for a language pair.

(word2vec (Mikolov et al., 2013b) instead of fast-
Text), the unsupervised method can completely
fail to train. This can be observed for the case of
en-de in Table 4. BLISS(M/R) does not face this
problem: adding supervision, even in the form of
50 mapped words for the case of en-de, helps it to
achieve reasonable performance.
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5 Related Work

Mikolov et al. (2013a) first used anchor points to
align two embedding spaces, leveraging the fact
that these spaces exhibit similar structure across
languages. Since then, several approaches have
been proposed for learning bilingual dictionaries
(Faruqui and Dyer, 2014; Zou et al., 2013; Xing
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Figure 2: Training Stability of different language pairs (en-de), (en-ru), (en-zh)

et al., 2015). Xing et al. (2015) showed that
adding an orthogonal constraint significantly im-
proves performance, and admits a closed form
solution. This was further corroborated by the
work of Smith et al. (2017), who showed that in
orthogonality was necessary for self-consistency.
Artetxe et al. (2016) showed the equivalence be-
tween the different methods, and their subsequent
work (Artetxe et al., 2018a) analyzed different
techniques proposed in various works (like em-
bedding centering, whitening etc.), and showed
that leveraging a combination of different methods
showed significant performance gains.

However, the validity of this orthogonality as-
sumption has of late come into question: Zhang
et al. (2017b) found that the Wasserstein distance
between distant language pairs was considerably
higher , while Sggaard et al. (2018) explored the
orthogonality assumption using eigenvector simi-
larity. We find our weak orthogonality constraint
(along the lines of Zhang et al. (2017a)) when used
in our semi-supervised framework to be more ro-
bust to this.

There has also recently been an increasing fo-
cus on generating these bilingual mappings with-
out an aligned bilingual dictionary, i.e., in an unsu-
pervised manner. Zhang et al. (2017a) and Lam-
ple et al. (2018) both use adversarial training for
aligning two monolingual embedding spaces with-
out any seed lexicon, while Zhang et al. (2017b)
used a Wasserstein GAN to achieve this adversar-
ial alignment, and use an earth-mover based fine-
tuning approach; while Grave et al. (2018) formu-
late this as a joint estimation of an orthogonal ma-
trix and a permutation matrix. However, we show
that adding a little supervision, which is usually
easy to obtain, improves performance.

Another vein of research (Jawanpuria et al.,
2018; Artetxe et al., 2018b; Kementchedjhieva
et al., 2018) has been to learn orthogonal map-

191

pings from both the source and the target embed-
ding spaces into a common embedding space and
doing the translations in the common embedding
space. Artetxe et al. (2017) and Sggaard et al.
(2018) motivate the utility of using both the su-
pervised seed dictionaries and, to some extent, the
structure of the monolingual embedding spaces.
They use iterative Procrustes refinement starting
with a small seed dictionary to learn a mapping;
but doing may lead to sub-optimal performance
for distant language pairs. However, these meth-
ods are close to our methods in spirit, and conse-
quently form the baselines for our experiments.
Another avenue of research has been to try and
modify the underlying embedding generation al-
gorithms. Cao et al. (2016) modify the CBOW
algorithm (Mikolov et al., 2013b) by augmenting
the CBOW loss to match the first and second order
moments from the source and target latent spaces,
thereby ensuring the source and target embedding
spaces follow the same distribution. Luong et al.
(2015), in their work, use the aligned words to
jointly learn the embedding spaces of both the
source and target language, by trying to predict
the context of a word in the other language, given
an alignment. An issue with the proposed method
is that it requires the retraining of embeddings,
and cannot leverage a rich collection of precom-
puted vectors (like ones provided by Word2Vec
(Mikolov et al., 2013b), Glove (Pennington et al.,
2014) and FastText (Bojanowski et al., 2017)).

6 Conclusions

In this work, we analyze the validity of the orthog-
onality assumption and show that it breaks for dis-
tant language pairs. We motivate the task of semi-
supervised BLI by showing the shortcomings of
purely supervised and unsupervised approaches.
We finally propose a semi-supervised framework
which combines the advantages of supervised and



unsupervised approaches and uses a joint opti-
mization loss to enforce a weak and flexible or-
thogonality constraint. We provide two instantia-
tions of our framework, and show that both out-
perform their supervised and unsupervised coun-
terparts. On analyzing the model errors, we find
that a large fraction of them arise due to polysemy
and antonymy (An interested reader can find the
details in Appendix (§A.2).

We also find that translating in a common em-
bedding space, as opposed to the target embedding
space, obtains orthogonal gains for BLI, and plan
on investigating this in the semi-supervised setting
in future work.
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