
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 95–106
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

95

Generating Logical Forms from Graph Representations of Text and
Entities

Peter Shaw1, Philip Massey1, Angelica Chen1, Francesco Piccinno2, Yasemin Altun2

1Google 2Google Research
{petershaw,pmassey,angelicachen,piccinno,altun}@google.com

Abstract
Structured information about entities is critical
for many semantic parsing tasks. We present
an approach that uses a Graph Neural Net-
work (GNN) architecture to incorporate infor-
mation about relevant entities and their rela-
tions during parsing. Combined with a de-
coder copy mechanism, this approach provides
a conceptually simple mechanism to generate
logical forms with entities. We demonstrate
that this approach is competitive with the state-
of-the-art across several tasks without pre-
training, and outperforms existing approaches
when combined with BERT pre-training.

1 Introduction

Semantic parsing maps natural language utter-
ances into structured meaning representations.
The representation languages vary between tasks,
but typically provide a precise, machine inter-
pretable logical form suitable for applications such
as question answering (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2007; Liang et al., 2013;
Berant et al., 2013). The logical forms typically
consist of two types of symbols: a vocabulary of
operators and domain-specific predicates or func-
tions, and entities grounded to some knowledge
base or domain.

Recent approaches to semantic parsing have
cast it as a sequence-to-sequence task (Dong and
Lapata, 2016; Jia and Liang, 2016; Ling et al.,
2016), employing methods similar to those de-
veloped for neural machine translation (Bahdanau
et al., 2014), with strong results. However, spe-
cial consideration is typically given to handling of
entities. This is important to improve generaliza-
tion and computational efficiency, as most tasks
require handling entities unseen during training,
and the set of unique entities can be large.

Some recent approaches have replaced surface
forms of entities in the utterance with placehold-

ers (Dong and Lapata, 2016). This requires a pre-
processing step to completely disambiguate enti-
ties and replace their spans in the utterance. Ad-
ditionally, for some tasks it may be beneficial to
leverage relations between entities, multiple entity
candidates per span, or entity candidates without a
corresponding span in the utterance, while gener-
ating logical forms.

Other approaches identify only types and sur-
face forms of entities while constructing the log-
ical form (Jia and Liang, 2016), using a separate
post-processing step to generate the final logical
form with grounded entities. This ignores poten-
tially useful knowledge about relevant entities.

Meanwhile, there has been considerable re-
cent interest in Graph Neural Networks (GNNs)
(Scarselli et al., 2009; Li et al., 2016; Kipf and
Welling, 2017; Gilmer et al., 2017; Veličković
et al., 2018) for effectively learning representa-
tions for graph structures. We propose a GNN
architecture based on extending the self-attention
mechanism of the Transformer (Vaswani et al.,
2017) to make use of relations between input el-
ements.

We present an application of this GNN ar-
chitecture to semantic parsing, conditioning on
a graph representation of the given natural lan-
guage utterance and potentially relevant entities.
This approach is capable of handling ambigu-
ous and potentially conflicting entity candidates
jointly with a natural language utterance, relax-
ing the need for completely disambiguating a set
of linked entities before parsing. This graph for-
mulation also enables us to incorporate knowledge
about the relations between entities where avail-
able. Combined with a copy mechanism while de-
coding, this approach also provides a conceptually
simple method for generating logical forms with
grounded entities.

We demonstrate the capability of the pro-

96

Dataset Example

GEO x : which states does the mississippi run through ?
y : answer (state (traverse 1(riverid (mississippi))))

ATIS x : in denver what kind of ground transportation is there from the airport to downtown
y : (_lambda $0 e (_and (_ground_transport $0) (_to_city

$0 denver : ci) (_from_airport $0 den : ap)))

SPIDER x : how many games has each stadium held ?
y : SELECT T1 . id , count (∗) FROM stadium AS T1 JOIN game AS

T2 ON T1 . id = T2 . stadium id GROUP BY T1 . id

Table 1: Example input utterances, x, and meaning representations, y, with entities underlined.

posed architecture by achieving competitive re-
sults across 3 semantic parsing tasks. Further im-
provements are possible by incorporating a pre-
trained BERT (Devlin et al., 2018) encoder within
the architecture.

2 Task Formulation

Our goal is to learn a model for semantic pars-
ing from pairs of natural language utterances and
structured meaning representations. Let the nat-
ural language utterance be represented as a se-
quence x = (x1, . . . , x|x|) of |x| tokens, and the
meaning representation be represented as a se-
quence y = (y1, . . . , y|y|) of |y| elements.

The goal is to estimate p(y | x), the conditional
probability of the meaning representation y given
utterance x, which is augmented by a set of poten-
tially relevant entities.

Input Utterance Each token xi ∈ V in is from a
vocabulary of input tokens.

Entity Candidates Given the input utterance x,
we retrieve a set, e = {e1, . . . , e|e|}, of potentially
relevant entity candidates, with e ⊆ Ve, where Ve
is in the set of all entities for a given domain. We
assume the availability of an entity candidate gen-
erator for each task to generate e given x, with
details given in § 5.2.

For each entity candidate, e ∈ Ve, we require
a set of task-specific attributes containing one or
more elements from Va. These attributes can be
NER types or other characteristics of the entity,
such as “city” or “river” for some of the entities
listed in Table 1. Whereas Ve can be quite large
for open domains, or even infinite if it includes sets
such as the natural numbers, Va is typically much
smaller. Therefore, we can effectively learn repre-
sentations for entities given their set of attributes,

from our set of example pairs.

Edge Labels In addition to x and e for a particu-
lar example, we also consider the (|x|+|e|)2 pair-
wise relations between all tokens and entity candi-
dates, represented as edge labels.

The edge label between tokens xi and xj corre-
sponds to the relative sequential position, j − i, of
the tokens, clipped to within some range.

The edge label between token xi and entity ej ,
and vice versa, corresponds to whether xi is within
the span of the entity candidate ej , or not.

The edge label between entities ei and ej cap-
tures the relationship between the entities. These
edge labels can have domain-specific interpreta-
tions, such as relations in a knowledge base, or any
other type of entity interaction features. For tasks
where this information is not available or useful, a
single generic label between entity candidates can
be used.

Output We consider the logical form, y, to be
a linear sequence (Vinyals et al., 2015b). We to-
kenize based on the syntax of each domain. Our
formulation allows each element of y to be either
an element of the output vocabulary, Vout, or an
entity copied from the set of entity candidates e.
Therefore, yi ∈ Vout ∪ Ve. Some experiments in
§5.2 also allow elements of y to be tokens ∈ V in
from x that are copied from the input.

3 Model Architecture

Our model architecture is based on the Trans-
former (Vaswani et al., 2017), with the self-
attention sub-layer extended to incorporate rela-
tions between input elements, and the decoder ex-
tended with a copy mechanism.

97

x1 x2 x8

e4e1 e2

how

stadium
/table
...

games has each stadium held ?many

game
/table
...

x3 x4 x5 x6 x7

stadium_id
/column

...

…e3

id
/column

/primary_key
...

Figure 1: We use an example from SPIDER to illustrate the model inputs: tokens from the given utterance, x, a set
of potentially relevant entities, e, and their relations. We selected two edge label types to highlight: edges denoting
that an entity spans a token, and edges between entities that, for SPIDER, indicate a foreign key relationship
between columns, or an ownership relationship between columns and tables.

3.1 GNN Sub-layer
We extend the Transformer’s self-attention mecha-
nism to form a Graph Neural Network (GNN) sub-
layer that incorporates a fully connected, directed
graph with edge labels.

The sub-layer maps an ordered sequence of
node representations, u = (u1, . . . , u|u|), to a
new sequence of node representations, u′ =
(u′1, . . . , u

′
|u|), where each node is represented ∈

Rd. We use rij to denote the edge label corre-
sponding to ui and uj .

We implement this sub-layer in terms of a func-
tion f(m, l) over a node representation m ∈ Rd

and an edge label l that computes a vector repre-
sentation in Rd′ . We use nheads parallel attention
heads, with d′ = d/nheads. For each head k, the
new representation for the node ui is computed by

uk′i =

|u|∑
j=1

αijf(uj , rij), (1)

where each coefficient αij is a softmax over the
scaled dot products sij ,

sij =
(Wqui)

ᵀf(uj , rij)√
d′

, (2)

and Wq is a learned matrix. Finally, we concate-
nate representations from each head,

u′i = Wh
[
u1′i | · · · | u

nheads′
i

]
, (3)

where Wh is another learned matrix and [· · ·]
denotes concatenation.

If we implement f as,

f(m, l) = Wrm, (4)

where Wr ∈ Rd′×d is a learned matrix, then
the sub-layer would be effectively identical to
self-attention as initially proposed in the Trans-
former (Vaswani et al., 2017).

We focus on two alternative formulations of f
that represent edge labels as learned matrices and
learned vectors.

Edge Matrices The first formulation represents
edge labels as linear transformations, a common
parameterization for GNNs (Li et al., 2016),

f(m, l) = Wlm, (5)

where Wl ∈ Rd′×d is a learned embedding matrix
per edge label.

Edge Vectors The second formulation repre-
sents edge labels as additive vectors using the
same formulation as Shaw et al. (2018),

f(m, l) = Wrm+wl, (6)

where Wr ∈ Rd′×d is a learned matrix shared by
all edge labels, and wl ∈ Rd is a learned embed-
ding vector per edge label l.

3.2 Encoder

Input Representations Before the initial en-
coder layer, tokens are mapped to initial repre-
sentations using either a learned embedding table
for V in, or the output of a pre-trained BERT (De-
vlin et al., 2018) encoder. Entity candidates are
mapped to initial representations using the mean
of the embeddings for each of the entity’s at-
tributes, based on a learned embedding table for

98

Previous Outputs

Nenc
Layers

TokensEntities

Embed

GNN Sub-layer

Feed-Forward Network

Ndec
Layers

GNN Sub-layer

Embed

Encoder-Decoder Attention

Select Action

Generate or Copy

Output

Feed-Forward Network

Relations

Embed / BERTEmbed

Figure 2: Our model architecture is based on the Transformer (Vaswani et al., 2017), with two modifications. First,
the self-attention sub-layer has been extended to be a GNN that incorporates edge representations. In the encoder,
the GNN sub-layer is conditioned on tokens, entities, and their relations. Second, the decoder has been extended
to include a copy mechanism (Vinyals et al., 2015a). We can optionally incorporate a pre-trained model such as
BERT to generate contextual token representations.

Va. We also concatenate an embedding represent-
ing the node type, token or entity, to each input
representation.

We assume some arbitrary ordering for entity
candidates, generating a combined sequence of
initial node representations for tokens and entities.
We have edge labels between every pair of nodes
as described in § 2.

Encoder Layers Our encoder layers are essen-
tially identical to the Transformer, except with the
proposed extension to self-attention to incorpo-
rate edge labels. Therefore, each encoder layer
consists of two sub-layers. The first is the GNN
sub-layer, which yields new sets of token and en-
tity representations. The second sub-layer is an
element-wise feed-forward network. Each sub-
layer is followed by a residual connection and
layer normalization (Ba et al., 2016). We stack
Nenc encoder layers, yielding a final set of token
representations, wx

(Nenc), and entity representa-
tions, we

(Nenc).

3.3 Decoder

The decoder auto-regressively generates output
symbols, y1, . . . , y|y|. It is similarly based on
the Transformer (Vaswani et al., 2017), with the
self-attention sub-layer replaced by the GNN sub-
layer. Decoder edge labels are based only on the
relative timesteps of the previous outputs. The
encoder-decoder attention layer considers both en-
coder outputs wx

(Nenc) and we
(Nenc), jointly nor-

malizing attention weights over tokens and entity

candidates. We stack Ndec decoder layers to pro-
duce an output vector representation at each output
step, zj ∈ Rdz , for j ∈ {1, . . . , |y|}.

We allow the decoder to copy tokens or entity
candidates from the input, effectively combining
a Pointer Network (Vinyals et al., 2015a) with a
standard softmax output layer for selecting sym-
bols from an output vocabulary (Gu et al., 2016;
Gulcehre et al., 2016; Jia and Liang, 2016). We
define a latent action at each output step, aj for
j ∈ {1, . . . , |y|}, using similar notation as Jia et
al. (2016). We normalize action probabilities with
a softmax over all possible actions.

Generating Symbols We can generate a sym-
bol, denoted Generate[i],

P (aj =Generate[i] | x,y1:j−1) ∝
exp(zᵀjw

out
i),

(7)

where wout
i is a learned embedding vector for

the element ∈ Vout with index i. If aj =
Generate[i], then yj will be the element ∈ Vout
with index i.

Copying Entities We can also copy an entity
candidate, denoted CopyEntity[i],

P (aj = CopyEntity[i] | x,y1:j−1) ∝
exp((zjW

e)ᵀw(Nenc)
ei),

(8)

where We is a learned matrix, and i ∈
{1, . . . , |e|}. If aj = CopyEntity[i], then yj =
ei.

99

4 Related Work

Various approaches to learning semantic parsers
from pairs of utterances and logical forms have
been developed over the years (Tang and
Mooney, 2000; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2011; Andreas et al., 2013).
More recently, encoder-decoder architectures have
been applied with strong results (Dong and Lap-
ata, 2016; Jia and Liang, 2016).

Even for tasks with relatively small domains
of entities, such as GEO and ATIS, it has been
shown that some special consideration of entities
within an encoder-decoder architecture is impor-
tant to improve generalization. This has included
extending decoders with copy mechanisms (Jia
and Liang, 2016) and/or identifying entities in the
input as a pre-processing step (Dong and Lapata,
2016).

Other work has considered open domain tasks,
such as WEBQUESTIONSSP (Yih et al., 2016).
Recent approaches have typically relied on a sepa-
rate entity linking model, such as S-MART (Yang
and Chang, 2015), to provide a single disam-
biguated set of entities to consider. In principle,
a learned entity linker could also serve as an en-
tity candidate generator within our framework, al-
though we do not explore such tasks in this work.

Considerable recent work has focused on
constrained decoding of various forms within
an encoder-decoder architecture to leverage the
known structure of the logical forms. This has
led to approaches that leverage this structure dur-
ing decoding, such as using tree decoders (Dong
and Lapata, 2016; Alvarez-Melis and Jaakkola,
2017) or other mechanisms (Dong and Lapata,
2018; Goldman et al., 2017). Other approaches
use grammar rules to constrain decoding (Xiao
et al., 2016; Yin and Neubig, 2017; Krishnamurthy
et al., 2017; Yu et al., 2018b). We leave investiga-
tion of such decoder constraints to future work.

Many formulations of Graph Neural Networks
(GNNs) that propagate information over local
neighborhoods have recently been proposed (Li
et al., 2016; Kipf and Welling, 2017; Gilmer et al.,
2017; Veličković et al., 2018). Recent work has of-
ten focused on large graphs (Hamilton et al., 2017)
and effectively propagating information over mul-
tiple graph steps (Xu et al., 2018). The graphs
we consider are relatively small and are fully-
connected, avoiding some of the challenges posed
by learning representations for large, sparsely con-

nected graphs.
Other recent work related to ours has considered

GNNs for natural language tasks, such as combin-
ing structured and unstructured data for question
answering (Sun et al., 2018), or for representing
dependencies in tasks such as AMR parsing and
machine translation (Beck et al., 2018; Bastings
et al., 2017). The approach of Krishnamurthy
et al. (2017) similarly considers ambiguous en-
tity mentions jointly with query tokens for seman-
tic parsing, although does not directly consider a
GNN.

Previous work has interpreted the Transformer’s
self-attention mechanism as a GNN (Veličković
et al., 2018; Battaglia et al., 2018), and extended
it to consider relative positions as edge repre-
sentations (Shaw et al., 2018). Previous work
has also similarly represented edge labels as vec-
tors, as opposed to matrices, in order to avoid
over-parameterizing the model (Marcheggiani and
Titov, 2017).

5 Experiments

5.1 Semantic Parsing Datasets

We consider three semantic parsing datasets, with
examples given in Table 1.

GEO The GeoQuery dataset consists of nat-
ural language questions about US geography
along with corresponding logical forms (Zelle and
Mooney, 1996). We follow the convention of
Zettlemoyer and Collins (2005) and use 600 train-
ing examples and 280 test examples. We use log-
ical forms based on Functional Query Language
(FunQL) (Kate et al., 2005).

ATIS The Air Travel Information System (ATIS)
dataset consists of natural language queries about
travel planning (Dahl et al., 1994). We follow
Zettlemoyer and Collins (2007) and use 4473
training examples, 448 test examples, and repre-
sent the logical forms as lambda expressions.

SPIDER This is a large-scale text-to-SQL
dataset that consists of 10,181 questions and
5,693 unique complex SQL queries across 200
database tables spanning 138 domains (Yu et al.,
2018c). We use the standard training set of 8,659
training example and development set of 1,034
examples, split across different tables.

100

5.2 Experimental Setup
Model Configuration We configured hyperpa-
rameters based on performance on the validation
set for each task, if provided, otherwise cross-
validated on the training set.

For the encoder and decoder, we selected the
number of layers from {1, 2, 3, 4} and embed-
ding and hidden dimensions from {64, 128, 256},
setting the feed forward layer hidden dimen-
sions 4× higher. We employed dropout
at training time with Pdropout selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. We used 8 attention
heads for each task. We used a clipping distance of
8 for relative position representations (Shaw et al.,
2018).

We used the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98, and ε = 10−9,
and tuned the learning rate for each task. We used
the same warmup and decay strategy for learning
rate as Vaswani et al. (2017), selecting a num-
ber of warmup steps up to a maximum of 3000.
Early stopping was used to determine the total
training steps for each task. We used the final
checkpoint for evaluation. We batched training
examples together, and selected batch size from
{32, 64, 128, 256, 512}. During training we used
masked self-attention (Vaswani et al., 2017) to en-
able parallel decoding of output sequences. For
evaluation, we used greedy search.

We used a simple strategy of splitting each in-
put utterance on spaces to generate a sequence of
tokens. We mapped any token that didn’t occur at
least 2 times in the training dataset to a special out-
of-vocabulary token. For experiments that used
BERT, we instead used the same wordpiece (Wu
et al., 2016) tokenization as used for pre-training.

BERT For some of our experiments, we eval-
uated incorporating a pre-trained BERT (Devlin
et al., 2018) encoder by effectively using the out-
put of the BERT encoder in place of a learned to-
ken embedding table. We then continue to use
graph encoder and decoder layers with randomly
initialized parameters in addition to BERT, so
there are many parameters that are not pre-trained.
The additional encoder layers are still necessary to
condition on entities and relations.

We achieved best results by freezing the pre-
trained parameters for an initial number of steps,
and then jointly fine-tuning all parameters, sim-
ilar to existing approaches for gradual unfreez-
ing (Howard and Ruder, 2018). When unfreezing

the pre-trained parameters, we restart the learn-
ing rate schedule. We found this to perform better
than keeping pre-trained parameters either entirely
frozen or entirely unfrozen during fine-tuning.

We used BERTLARGE (Devlin et al., 2018),
which has 24 layers. For fine tuning we used
the same Adam optimizer with weight decay and
learning rate decay as used for BERT pre-training.
We reduced batch sizes to accommodate the sig-
nificantly larger model size, and tuned learning
rate, warm up steps, and number of frozen steps
for pre-trained parameters.

Entity Candidate Generator We use an entity
candidate generator that, given x, can retrieve a
set of potentially relevant entities, e, for the given
domain. Although all generators share a common
interface, their implementation varies across tasks.

For GEO and ATIS we use a lexicon of entity
aliases in the dataset and attempt to match with
ngrams in the query. Each entity has a single at-
tribute corresponding to the entity’s type. We used
binary valued relations between entity candidates
based on whether entity candidate spans overlap,
but experiments did not show significant improve-
ments from incorporating these relations.

For SPIDER, we generalize our notion of enti-
ties to include tables and table columns. We in-
clude all relevant tables and columns as entity can-
didates, but make use of Levenshtein distance be-
tween query ngrams and table and column names
to determine edges between tokens and entity can-
didates. We use attributes based on the types and
names of tables and columns. Edges between en-
tity candidates capture relations between columns
and the table they belong to, and foreign key rela-
tions.

For GEO, ATIS, and SPIDER, this leads to
19.5%, 32.7%, and 74.6% of examples contain-
ing at least one span associated with multiple en-
tity candidates, respectively, indicating some en-
tity ambiguity.

Further details on how entity candidate genera-
tors were constructed are provided in § A.1.

Output Sequences We pre-processed output se-
quences to identify entity argument values, and
replaced those elements with references to entity
candidates in the input. In cases where our entity
candidate generator did not retrieve an entity that
was used as an argument, we dropped the example
from the training data set or considered it incorrect

101

Method GEO ATIS

Kwiatkowski et al. (2013) 89.0 —
Liang et al. (2013) 87.9 —
Wang et al. (2014) — 91.3
Zhao and Huang (2015) 88.9 84.2
Jia and Liang (2016) 89.3 83.3
− data augmentation 85.0 76.3

Dong and Lapata (2016) † 87.1 84.6
Rabinovich et al. (2017) † 87.1 85.9
Dong and Lapata (2018) † 88.2 87.7

Ours

GNN w/ edge matrices 82.5 84.6
GNN w/ edge vectors 89.3 87.1
GNN w/ edge vectors + BERT 92.5 89.7

Method SPIDER

Xu et al. (2017) 10.9
Yu et al. (2018a) 8.0
Yu et al. (2018b) 24.8
− data augmentation 18.9

Ours

GNN w/ edge matrices 29.3
GNN w/ edge vectors 32.1
GNN w/ edge vectors + BERT 23.5

Table 2: We report accuracies on GEO, ATIS, and SPIDER for various implementations of our GNN sub-layer. For
GEO and ATIS, we use † to denote neural approaches that disambiguate and replace entities in the utterance as a
pre-processing step. For SPIDER, the evaluation set consists of examples for databases unseen during training.

if in the test set.

Evaluation To evaluate accuracy, we use exact
match accuracy relative to gold logical forms. For
GEO we directly compare output symbols. For
ATIS, we compare normalized logical forms us-
ing canonical variable naming and sorting for un-
ordered arguments (Jia and Liang, 2016). For SPI-
DER we use the provided evaluation script, which
decomposes each SQL query and conducts set
comparison within each clause without values. All
accuracies are reported on the test set, except for
SPIDER where we report and compare accuracies
on the development set.

Copying Tokens To better understand the effect
of conditioning on entities and their relations, we
also conducted experiments that considered an al-
ternative method for selecting and disambiguating
entities similar to Jia et al. (2016). In this approach
we use our model’s copy mechanism to copy to-
kens corresponding to the surface forms of entity
arguments, rather than copying entities directly.

P (aj = CopyToken[i] | x,y1:j−1) ∝
exp((zjW

x)ᵀw(Nenc)
xi

),
(9)

where Wx is a learned matrix, and where i ∈
{1, . . . , |x|} refers to the index of token xi ∈ V in.
If aj = CopyToken[i], then yj = xi.

This allows us to ablate entity information in the
input while still generating logical forms. When
copying tokens, the decoder determines the type of
the entity using an additional output symbol. For

GEO, the actual entity can then be identified as a
post-processing step, as a type and surface form is
sufficient. For other tasks this could require a more
complicated post-processing step to disambiguate
entities given a surface form and type.

Method GEO

Copying Entities
GNN w/ edge vectors + BERT 92.5
GNN w/ edge vectors 89.3

Copying Tokens
GNN w/ edge vectors 87.9
− entity candidates, e 84.3

BERT 89.6

Table 3: Experimental results for copying tokens in-
stead of entities when decoding, with and without con-
ditioning on the set of entity candidates, e.

5.3 Results and Analysis
Accuracies on GEO, ATIS, and SPIDER are shown
in Table 2.

GEO and ATIS Without pre-training, and de-
spite adding a bit of entity ambiguity, we achieve
similar results to other recent approaches that dis-
ambiguate and replace entities in the utterance as a
pre-processing step during both training and eval-
uating (Dong and Lapata, 2016, 2018). When in-
corporating BERT, we increase absolute accura-
cies over Dong and Lapata (2018) on GEO and
ATIS by 3.2% and 2.0%, respectively. Notably,

102

they also present techniques and results that lever-
age constrained decoding, which our approach
would also likely further benefit from.

For GEO, we find that when ablating all en-
tity information in our model and copying to-
kens instead of entities, we achieve similar results
as Jia and Liang (2016) when also ablating their
data augmentation method, as shown in Table 3.
This is expected, since when ablating entities com-
pletely, our architecture essentially reduces to the
same sequence-to-sequence task setup. These re-
sults demonstrate the impact of conditioning on
the entity candidates, as it improves performance
even on the token copying setup. It appears that
leveraging BERT can partly compensate for not
conditioning on entity candidates, but combining
BERT with our GNN approach and copying enti-
ties achieves 2.9% higher accuracy than using only
a BERT encoder and copying tokens.

For ATIS, our results are outperformed by
Wang et al. (2014) by 1.6%. Their approach uses
hand-engineered templates to build a CCG lexi-
con. Some of these templates attempt to handle
the specific types of ungrammatical utterances in
the ATIS task.

SPIDER For SPIDER, a relatively new dataset,
there is less prior work. Competitive approaches
have been specific to the text-to-SQL task (Xu
et al., 2017; Yu et al., 2018a,b), incorporating task-
specific methods to condition on table and col-
umn information, and incorporating SQL-specific
structure when decoding. Our approach improves
absolute accuracy by +7.3% relative to Yu et
al. (2018b) without using any pre-trained language
representations, or constrained decoding. Our ap-
proach could also likely benefit from some of the
other aspects of Yu et al. (2018b) such as more
structured decoding, data augmentation, and using
pre-trained representations (they use GloVe (Pen-
nington et al., 2014)) for tokens, columns, and ta-
bles.

Our results were surprisingly worse when at-
tempting to incorporate BERT. Of course, success-
fully incorporating pre-trained representations is
not always straightforward. In general, we found
using BERT within our architecture to be sensi-
tive to learning rates and learning rate schedules.
Notably, the evaluation setup for SPIDER is very
different than training, as examples are for tables
unseen during training. Models may not general-
ize well to unseen tables and columns. It’s likely

that successfully incorporating BERT for SPIDER

would require careful tuning of hyperparameters
specifically for the database split configuration.

Entity Spans and Relations Ablating span re-
lations between entities and tokens for GEO and
ATIS is shown in Table 4. The impact is more
significant for ATIS, which contains many queries
with multiple entities of the same type, such as
nonstop flights seattle to boston where disam-
biguating the origin and destination entities re-
quires knowledge of which tokens they are asso-
ciated with, given that we represent entities based
only on their types for these tasks. We leave for
future work consideration of edges between en-
tity candidates that incorporate relevant domain
knowledge for these tasks.

Edge Ablations GEO ATIS

GNN w/ edge vectors 89.3 87.1
− entity span edges 88.6 34.2

Table 4: Results for ablating information about entity
candidate spans for GEO and ATIS.

For SPIDER, results ablating relations between
entities and tokens, and relations between entities,
are shown in Table 5. This demonstrates the im-
portance of entity relations, as they include use-
ful information for disambiguating entities such as
which columns belong to which tables, and which
columns have foreign key relations.

Edge Ablations SPIDER

GNN w/ edge vectors 32.1
− entity span edges 27.8
− entity relation edges 26.3

Table 5: Results for ablating information about rela-
tions between entity candidates and tokens for SPIDER.

Edge Representations Using additive edge vec-
tors outperforms using learned edge matrix trans-
formations for implementing f , across all tasks.
While the vector formulation is less expressive,
it also introduces far fewer parameters per edge
type, which can be an important consideration
given that our graph contains many similar edge
labels, such as those representing similar relative
positions between tokens. We leave further ex-
ploration of more expressive edge representations
to future work. Another direction to explore is a

103

heterogeneous formulation of the GNN sub-layer,
that employs different formulations for different
subsets of nodes, e.g. for tokens and entities.

6 Conclusions

We have presented an architecture for semantic
parsing that uses a Graph Neural Network (GNN)
to condition on a graph of tokens, entities, and
their relations. Experimental results have demon-
strated that this approach can achieve competitive
results across a diverse set of tasks, while also pro-
viding a conceptually simple way to incorporate
entities and their relations during parsing.

For future direction, we are interested in ex-
ploring constrained decoding, better incorporating
pre-trained language representations within our ar-
chitecture, conditioning on additional relations be-
tween entities, and different GNN formulations.

More broadly, we have presented a flexible ap-
proach for conditioning on available knowledge in
the form of entities and their relations, and demon-
strated its effectiveness for semantic parsing.

Acknowledgments

We would like to thank Karl Pichotta, Zuyao Li,
Tom Kwiatkowski, and Dipanjan Das for helpful
discussions. Thanks also to Ming-Wei Chang and
Kristina Toutanova for their comments, and to all
who provided feedback in draft reading sessions.
Finally, we are grateful to the anonymous review-
ers for their useful feedback.

References
D. Alvarez-Melis and T. Jaakkola. 2017. Tree struc-

tured decoding with doubly recurrent neural net-
works. In International Conference on Learning
Representations (ICLR).

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), volume 2, pages 47–52.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Simaan. 2017. Graph

convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957–1967.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-
teusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. 2018. Rela-
tional inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
273–283.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Deborah A Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis task:
The atis-3 corpus. In Proceedings of the workshop
on Human Language Technology, pages 43–48. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 33–43.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In ACL.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural
message passing for quantum chemistry. In Inter-
national Conference on Machine Learning, pages
1263–1272.

Omer Goldman, Veronica Latcinnik, Udi Naveh, Amir
Globerson, and Jonathan Berant. 2017. Weakly-
supervised semantic parsing with abstract examples.
arXiv preprint arXiv:1711.05240.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1631–1640.

104

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 140–149.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
In Advances in Neural Information Processing Sys-
tems, pages 1024–1034.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 12–22.

Rohit J Kate, Yuk Wah Wong, and Raymond J Mooney.
2005. Learning to transform natural to formal lan-
guages. In Proceedings of the National Conference
on Artificial Intelligence, volume 20, page 1062.
Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1516–1526.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 conference on empirical methods in natural
language processing, pages 1545–1556.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in ccg grammar induction for semantic parsing.
In Proceedings of the conference on empirical meth-
ods in natural language processing, pages 1512–
1523. Association for Computational Linguistics.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2016. Gated graph sequence neural
networks. In International Conference on Learning
Representations (ICLR).

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiskỳ, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 599–609.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1139–1149.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), volume 2, pages
464–468.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Co-
hen. 2018. Open domain question answering using
early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4231–
4242.

Lappoon R Tang and Raymond J Mooney. 2000. Au-
tomated construction of database interfaces: Inte-
grating statistical and relational learning for seman-
tic parsing. In Proceedings of the 2000 Joint SIG-
DAT conference on Empirical methods in natural
language processing and very large corpora: held in
conjunction with the 38th Annual Meeting of the As-
sociation for Computational Linguistics-Volume 13,
pages 133–141. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

105

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations (ICLR).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In Advances in Neural
Information Processing Systems, pages 2692–2700.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2773–2781.

Adrienne Wang, Tom Kwiatkowski, and Luke Zettle-
moyer. 2014. Morpho-syntactic lexical generaliza-
tion for ccg semantic parsing. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1284–1295.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1341–1350.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomo-
hiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International
Conference on Learning Representations (ICLR).

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Yi Yang and Ming-Wei Chang. 2015. S-mart: Novel
tree-based structured learning algorithms applied to
tweet entity linking. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), volume 1, pages 504–513.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 201–206.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 440–450.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 588–594.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. Syntaxsqlnet: Syntax tree networks for
complex and cross-domaintext-to-sql task. arXiv
preprint arXiv:1810.05237.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018c. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the thirteenth na-
tional conference on Artificial intelligence-Volume
2, pages 1050–1055. AAAI Press.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured
classification with probabilistic categorial gram-
mars. In Proceedings of the Twenty-First Confer-
ence on Uncertainty in Artificial Intelligence, pages
658–666. AUAI Press.

Luke S Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing to
logical form. EMNLP-CoNLL 2007, page 678.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1416–1421.

106

A Supplemental Material

A.1 Entity Candidate Generator Details

In this section we provide details of how we con-
structed entity candidate generators for each task.

GEO The annotator was constructed from the
geobase database, which provides a list of geo-
graphical facts. For each entry in the database, we
extracted the name as the entity alias and the type
(e.g., “state”, “city”) as its attribute. Since not all
cities used in the GEO query set are listed as ex-
plicit entries, we also used cities in the state en-
tries. Finally, geobase has no entries around coun-
tries, so we added relevant aliases for “USA” with
a special “country” attribute. There was 1 example
where an entity in the logical form did not appear
in the input, leading to the example being dropped
from the training set.

In lieu of task-specific edge relations, we used
binary edge labels between entities that captured
which annotations span the same tokens. How-
ever, experiments demonstrated that these edges
did not significantly affect performance. We leave
consideration of other types of entity relations for
these tasks to future work.

ATIS We constructed a lexicon mapping nat-
ural language entity aliases in the dataset (e.g.,
“newark international”, “5pm”) to unique entity
identifiers (e.g. “ewr:ap”, “1700:ti”). For ATIS,
this lexicon required some manual construction.
Each entity identifier has a two-letter suffix (e.g.,
“ap”, “ti”) that maps it to a single attribute (e.g.,
“airport”, “time”). We allowed overlapping entity
mentions when the entities referred to different en-
tity identifiers. For instance, in the query span “at-
lanta airport”, we include both the city of Atlanta
and the Atlanta airport.

Notably there were 9 examples where one of the
entities used as an argument in the logical form
did not have a corresponding mention in the in-
put utterance. From manual inspection, many of
the dropped examples appear to have incorrectly
annotated logical forms. These examples were
dropped from training set or marked as incorrect
if they appeared in the test set.

We use the same binary edge labels between en-
tities as for GEO.

SPIDER For SPIDER we generalize our notion
of entities to consider tables and columns as enti-
ties. We attempt to determine spans for each ta-

ble and column by computing normalized Leven-
shtein distance between table and column names
and unigrams or bigrams in the utterance. The best
alignment having a score > 0.75 is selected, and
we use these generated alignments to populate the
edges between tokens and entity candidates.

We generate a set of attributes for the table
based on unigrams in the table name, and an at-
tribute to identify the entity as a table. Likewise,
for columns, we generate a set of attributes based
on unigrams in the column name as well as an at-
tribute to identify the value type of the column. We
also include attributes indicating whether an align-
ment was found between the entity and the input
text.

We include 3 task-specific edge label types be-
tween entity candidates to denote bi-directional re-
lations between column entities and the table en-
tity they belong to, and to denote the presence of a
foreign key relationship between columns.

