
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 80–94
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

80

AMR Parsing as Sequence-to-Graph Transduction

Sheng Zhang Xutai Ma Kevin Duh Benjamin Van Durme
Johns Hopkins University

{zsheng2, xutai ma}@jhu.edu
{kevinduh, vandurme}@cs.jhu.edu

Abstract
We propose an attention-based model that
treats AMR parsing as sequence-to-graph
transduction. Unlike most AMR parsers that
rely on pre-trained aligners, external semantic
resources, or data augmentation, our proposed
parser is aligner-free, and it can be effectively
trained with limited amounts of labeled AMR
data. Our experimental results outperform all
previously reported SMATCH scores, on both
AMR 2.0 (76.3% F1 on LDC2017T10) and
AMR 1.0 (70.2% F1 on LDC2014T12).

1 Introduction

Abstract Meaning Representation (AMR, Ba-
narescu et al., 2013) parsing is the task of trans-
ducing natural language text into AMR, a graph-
based formalism used for capturing sentence-level
semantics. Challenges in AMR parsing include:
(1) its property of reentrancy – the same concept
can participate in multiple relations – which leads
to graphs in contrast to trees (Wang et al., 2015);
(2) the lack of gold alignments between nodes
(concepts) in the graph and words in the text which
limits attempts to rely on explicit alignments to
generate training data (Flanigan et al., 2014; Wang
et al., 2015; Damonte et al., 2017; Foland and Mar-
tin, 2017; Peng et al., 2017b; Groschwitz et al.,
2018; Guo and Lu, 2018); and (3) relatively lim-
ited amounts of labeled data (Konstas et al., 2017).

Recent attempts to overcome these challenges
include: modeling alignments as latent vari-
ables (Lyu and Titov, 2018); leveraging exter-
nal semantic resources (Artzi et al., 2015; Bjerva
et al., 2016); data augmentation (Konstas et al.,
2017; van Noord and Bos, 2017b); and employ-
ing attention-based sequence-to-sequence mod-
els (Barzdins and Gosko, 2016; Konstas et al.,
2017; van Noord and Bos, 2017b).

In this paper, we introduce a different way to
handle reentrancy, and propose an attention-based

possible-01 help-01 victim

ARG1

ARG1

ARG0

possible-01 help-01 2 victim 3 victim 3

ARG1 ARG1

ARG0

1

(a)

(b)

Figure 1: Two views of reentrancy in AMR for an ex-
ample sentence “The victim could help himself.” (a)
A standard AMR graph. (b) An AMR tree with node
indices as an extra layer of annotation, where the cor-
responding graph can be recovered by merging nodes
of the same index and unioning their incoming edges.

model that treats AMR parsing as sequence-to-
graph transduction. The proposed model, sup-
ported by an extended pointer-generator network,
is aligner-free and can be effectively trained with
limited amount of labeled AMR data. Exper-
iments on two publicly available AMR bench-
marks demonstrate that our parser clearly outper-
forms the previous best parsers on both bench-
marks. It achieves the best reported SMATCH

scores: 76.3% F1 on LDC2017T10 and 70.2% F1
on LDC2014T12. We also provide extensive ab-
lative and qualitative studies, quantifying the con-
tributions from each component. Our model im-
plementation is available at https://github.
com/sheng-z/stog.

2 Another View of Reentrancy

AMR is a rooted, directed, and usually acyclic
graph where nodes represent concepts, and labeled
directed edges represent the relationships between
them (see Figure 1 for an AMR example). The
reason for AMR being a graph instead of a tree is
that it allows reentrant semantic relations. For in-
stance, in Figure 1(a) “victim” is both ARG0 and

https://github.com/sheng-z/stog
https://github.com/sheng-z/stog

81

ARG1 of “help-01”. While efforts have gone into
developing graph-based algorithms for AMR pars-
ing (Chiang et al., 2013; Flanigan et al., 2014),
it is more challenging to parse a sentence into an
AMR graph rather than a tree as there are efficient
off-the-shelf tree-based algorithms, e.g., Chu and
Liu (1965); Edmonds (1968). To leverage these
tree-based algorithms as well as other structured
prediction paradigms (McDonald et al., 2005), we
introduce another view of reentrancy.

AMR reentrancy is employed when a node par-
ticipates in multiple semantic relations. We con-
vert an AMR graph into a tree by duplicating
nodes that have reentrant relations; that is, when-
ever a node has a reentrant relation, we make a
copy of that node and use the copy to participate
in the relation, thereby resulting in a tree. Next,
in order to preserve the reentrancy information,
we add an extra layer of annotation by assigning
an index to each node. Duplicated nodes are as-
signed the same index as the original node. Fig-
ure 1(b) shows a resultant AMR tree: subscripts
of nodes are indices; two “victim” nodes have the
same index as they refer to the same concept. The
original AMR graph can be recovered by merg-
ing identically indexed nodes and unioning edges
from/to these nodes. Similar ideas were used by
Artzi et al. (2015) who introduced Skolem IDs to
represent anaphoric references in the transforma-
tion from CCG to AMR, and van Noord and Bos
(2017a) who kept co-indexed AMR variables, and
converted them to numbers.

3 Task Formalization

If we consider the AMR tree with indexed nodes
as the prediction target, then our approach to pars-
ing is formalized as a two-stage process: node
prediction and edge prediction.1 An example of
the parsing process is shown in Figure 2.
Node Prediction Given a input sentence w =
〈w1, ..., wn〉, each wi a word in the sentence, our
approach sequentially decodes a list of nodes u =
〈u1, ..., um〉 and deterministically assigns their in-
dices d = 〈d1, ..., dm〉.

P (u) =

m∏
i=1

P (ui | u<i, d<i,w)

Note that we allow the same node to occur multi-
1 The two-stage process is similar to “concept identifica-

tion” and “relation identification” in Flanigan et al. (2014);
Zhou et al. (2016); Lyu and Titov (2018); inter alia.

The victim could help himself.

possible help victim victim

possible help victim victim

ARG1
ARG1

ARG0

Node Prediction

Edge Prediction

2 3 31

2 3 31

Figure 2: A two-stage process of AMR parsing. We
remove senses (i.e., -01, -02, etc.) as they will be as-
signed in the post-processing step.

ple times in the list; multiple occurrences of a node
will be assigned the same index. We choose to pre-
dict nodes sequentially rather than simultaneously,
because (1) we believe the current node generation
is informative to the future node generation; (2)
variants of efficient sequence-to-sequence mod-
els (Bahdanau et al., 2014; Vinyals et al., 2015)
can be employed to model this process. At the
training time, we obtain the reference list of nodes
and their indices using a pre-order traversal over
the reference AMR tree. We also evaluate other
traversal strategies, and will discuss their differ-
ence in Section 7.2.
Edge Prediction Given a input sentence w, a node
list u, and indices d, we look for the highest
scoring parse tree y in the space Y(u) of valid
trees over u with the constraint of d. A parse
tree y is a set of directed head-modifier edges
y = {(ui, uj) | 1 ≤ i, j ≤ m}. In order
to make the search tractable, we follow the arc-
factored graph-based approach (McDonald et al.,
2005; Kiperwasser and Goldberg, 2016), decom-
posing the score of a tree to the sum of the score
of its head-modifier edges:

parse(u) = argmax
y∈Y(u)

∑
(ui,uj)∈y

score(ui, uj)

Based on the scores of the edges, the high-
est scoring parse tree (i.e., maximum spanning
arborescence) can be efficiently found using the
Chu-Liu-Edmonnds algorithm. We further in-
corporate indices as constraints in the algorithm,
which is described in Section 4.4. After obtaining
the parse tree, we merge identically indexed nodes
to recover the standard AMR graph.

82

The victim could help himself <S> possible help victim

MLP

a zoo

Switch

pgen
<latexit sha1_base64="f99M40YqF/hoQBMQQ+IHUi/3vg8=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpZhN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxhfz/z2A2gjYnWHkwT8iA2VCAVnaKX7pN9DeEIdZUNQ03654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfja/ekrPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6KYc3PhEpSBMUXi8JUUozpLAI6EBo4yokljGthb6V8xDTjaIMq2RC85ZdXSeui6rlV7/ayUq/lcRTJCTkl58QjV6RObkiDNAknmjyTV/LmPDovzrvzsWgtOPnMMfkD5/MHTe+S/Q==</latexit><latexit sha1_base64="f99M40YqF/hoQBMQQ+IHUi/3vg8=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpZhN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxhfz/z2A2gjYnWHkwT8iA2VCAVnaKX7pN9DeEIdZUNQ03654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfja/ekrPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6KYc3PhEpSBMUXi8JUUozpLAI6EBo4yokljGthb6V8xDTjaIMq2RC85ZdXSeui6rlV7/ayUq/lcRTJCTkl58QjV6RObkiDNAknmjyTV/LmPDovzrvzsWgtOPnMMfkD5/MHTe+S/Q==</latexit><latexit sha1_base64="f99M40YqF/hoQBMQQ+IHUi/3vg8=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpZhN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxhfz/z2A2gjYnWHkwT8iA2VCAVnaKX7pN9DeEIdZUNQ03654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfja/ekrPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6KYc3PhEpSBMUXi8JUUozpLAI6EBo4yokljGthb6V8xDTjaIMq2RC85ZdXSeui6rlV7/ayUq/lcRTJCTkl58QjV6RObkiDNAknmjyTV/LmPDovzrvzsWgtOPnMMfkD5/MHTe+S/Q==</latexit><latexit sha1_base64="f99M40YqF/hoQBMQQ+IHUi/3vg8=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpZhN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxhfz/z2A2gjYnWHkwT8iA2VCAVnaKX7pN9DeEIdZUNQ03654lbdOegq8XJSITka/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfja/ekrPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6KYc3PhEpSBMUXi8JUUozpLAI6EBo4yokljGthb6V8xDTjaIMq2RC85ZdXSeui6rlV7/ayUq/lcRTJCTkl58QjV6RObkiDNAknmjyTV/LmPDovzrvzsWgtOPnMMfkD5/MHTe+S/Q==</latexit>

Source
Attention

Distribution

Target
Attention

Distribution

Vocabulary
Distributionptgt

<latexit sha1_base64="Rqf255uaSR5j8lnvl9aZa1jGXzI=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpbhJ2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxhfz/z2A2gj4ugOJwn4ig0jEQrO0Er3Sb+H8IRaZTjEab9ccavuHHSVeDmpkByNfvmrN4h5qiBCLpkxXc9N0M+YRsElTEu91EDC+JgNoWtpxBQYP5tfPaVnVhnQMNa2IqRz9fdExpQxExXYTsVwZJa9mfif100xrPmZiJIUIeKLRWEqKcZ0FgEdCA0c5cQSxrWwt1I+YppxtEGVbAje8surpHVR9dyqd3tZqdfyOIrkhJySc+KRK1InN6RBmoQTTZ7JK3lzHp0X5935WLQWnHzmmPyB8/kDbfSTEg==</latexit><latexit sha1_base64="Rqf255uaSR5j8lnvl9aZa1jGXzI=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpbhJ2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxhfz/z2A2gj4ugOJwn4ig0jEQrO0Er3Sb+H8IRaZTjEab9ccavuHHSVeDmpkByNfvmrN4h5qiBCLpkxXc9N0M+YRsElTEu91EDC+JgNoWtpxBQYP5tfPaVnVhnQMNa2IqRz9fdExpQxExXYTsVwZJa9mfif100xrPmZiJIUIeKLRWEqKcZ0FgEdCA0c5cQSxrWwt1I+YppxtEGVbAje8surpHVR9dyqd3tZqdfyOIrkhJySc+KRK1InN6RBmoQTTZ7JK3lzHp0X5935WLQWnHzmmPyB8/kDbfSTEg==</latexit><latexit sha1_base64="Rqf255uaSR5j8lnvl9aZa1jGXzI=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpbhJ2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxhfz/z2A2gj4ugOJwn4ig0jEQrO0Er3Sb+H8IRaZTjEab9ccavuHHSVeDmpkByNfvmrN4h5qiBCLpkxXc9N0M+YRsElTEu91EDC+JgNoWtpxBQYP5tfPaVnVhnQMNa2IqRz9fdExpQxExXYTsVwZJa9mfif100xrPmZiJIUIeKLRWEqKcZ0FgEdCA0c5cQSxrWwt1I+YppxtEGVbAje8surpHVR9dyqd3tZqdfyOIrkhJySc+KRK1InN6RBmoQTTZ7JK3lzHp0X5935WLQWnHzmmPyB8/kDbfSTEg==</latexit><latexit sha1_base64="Rqf255uaSR5j8lnvl9aZa1jGXzI=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0sWy2k3bpbhJ2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFBE0UaCETqKBqUBCOxhfz/z2A2gj4ugOJwn4ig0jEQrO0Er3Sb+H8IRaZTjEab9ccavuHHSVeDmpkByNfvmrN4h5qiBCLpkxXc9N0M+YRsElTEu91EDC+JgNoWtpxBQYP5tfPaVnVhnQMNa2IqRz9fdExpQxExXYTsVwZJa9mfif100xrPmZiJIUIeKLRWEqKcZ0FgEdCA0c5cQSxrWwt1I+YppxtEGVbAje8surpHVR9dyqd3tZqdfyOIrkhJySc+KRK1InN6RBmoQTTZ7JK3lzHp0X5935WLQWnHzmmPyB8/kDbfSTEg==</latexit>

psrc
<latexit sha1_base64="LBJIGmiRa8y7fNwyIgzxQ26kqoY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi2GPBi8cK9gPaWDbbTbt0dxN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmTjVlDVpLGLdCYlhgivWRI6CdRLNiAwFa4fj65nffmDa8Fjd4SRhgSRDxSNOCVrpPun3kD2hlpnRdNovV7yqN4e7SvycVCBHo1/+6g1imkqmkApiTNf3EgwyopFTwaalXmpYQuiYDFnXUkUkM0E2v3rqnlll4EaxtqXQnau/JzIijZnI0HZKgiOz7M3E/7xuilEtyLhKUmSKLhZFqXAxdmcRuAOuGUUxsYRQze2tLh0RTSjaoEo2BH/55VXSuqj6XtW/vazUa3kcRTiBUzgHH66gDjfQgCZQ0PAMr/DmPDovzrvzsWgtOPnMMfyB8/kDY1qTCw==</latexit><latexit sha1_base64="LBJIGmiRa8y7fNwyIgzxQ26kqoY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi2GPBi8cK9gPaWDbbTbt0dxN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmTjVlDVpLGLdCYlhgivWRI6CdRLNiAwFa4fj65nffmDa8Fjd4SRhgSRDxSNOCVrpPun3kD2hlpnRdNovV7yqN4e7SvycVCBHo1/+6g1imkqmkApiTNf3EgwyopFTwaalXmpYQuiYDFnXUkUkM0E2v3rqnlll4EaxtqXQnau/JzIijZnI0HZKgiOz7M3E/7xuilEtyLhKUmSKLhZFqXAxdmcRuAOuGUUxsYRQze2tLh0RTSjaoEo2BH/55VXSuqj6XtW/vazUa3kcRTiBUzgHH66gDjfQgCZQ0PAMr/DmPDovzrvzsWgtOPnMMfyB8/kDY1qTCw==</latexit><latexit sha1_base64="LBJIGmiRa8y7fNwyIgzxQ26kqoY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi2GPBi8cK9gPaWDbbTbt0dxN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmTjVlDVpLGLdCYlhgivWRI6CdRLNiAwFa4fj65nffmDa8Fjd4SRhgSRDxSNOCVrpPun3kD2hlpnRdNovV7yqN4e7SvycVCBHo1/+6g1imkqmkApiTNf3EgwyopFTwaalXmpYQuiYDFnXUkUkM0E2v3rqnlll4EaxtqXQnau/JzIijZnI0HZKgiOz7M3E/7xuilEtyLhKUmSKLhZFqXAxdmcRuAOuGUUxsYRQze2tLh0RTSjaoEo2BH/55VXSuqj6XtW/vazUa3kcRTiBUzgHH66gDjfQgCZQ0PAMr/DmPDovzrvzsWgtOPnMMfyB8/kDY1qTCw==</latexit><latexit sha1_base64="LBJIGmiRa8y7fNwyIgzxQ26kqoY=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi2GPBi8cK9gPaWDbbTbt0dxN2J2oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZemAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqmTjVlDVpLGLdCYlhgivWRI6CdRLNiAwFa4fj65nffmDa8Fjd4SRhgSRDxSNOCVrpPun3kD2hlpnRdNovV7yqN4e7SvycVCBHo1/+6g1imkqmkApiTNf3EgwyopFTwaalXmpYQuiYDFnXUkUkM0E2v3rqnlll4EaxtqXQnau/JzIijZnI0HZKgiOz7M3E/7xuilEtyLhKUmSKLhZFqXAxdmcRuAOuGUUxsYRQze2tLh0RTSjaoEo2BH/55VXSuqj6XtW/vazUa3kcRTiBUzgHH66gDjfQgCZQ0PAMr/DmPDovzrvzsWgtOPnMMfyB8/kDY1qTCw==</latexit>

Context Vector

Initial
Hidden
State

Final Distribution

possible help victim

DecoderEncoder

Encoder
Embedding

Layer

Decoder
Embedding

Layer

Input Sentence Partial AMR Node List w/ Node Inidces

. 2 31

Figure 3: Extended pointer-generator network for node prediction. For each decoding time step, three probabilities
psrc, ptgt and pgen are calculated. The source and target attention distributions as well as the vocabulary distribution
are weighted by these probabilities respectively, and then summed to obtain the final distribution, from which we
make our prediction. Best viewed in color.

4 Model

Our model has two main modules: (1) an ex-
tended pointer-generator network for node predic-
tion; and (2) a deep biaffine classifier for edge
prediction. The two modules correspond to the
two-stage process for AMR parsing, and they are
jointly learned during training.

4.1 Extended Pointer-Generator Network

Inspired by the self-copy mechanism in Zhang
et al. (2018), we extend the pointer-generator net-
work (See et al., 2017) for node prediction. The
pointer-generator network was proposed for text
summarization, which can copy words from the
source text via pointing, while retaining the abil-
ity to produce novel words through the generator.
The major difference of our extension is that it can
copy nodes, not only from the source text, but also
from the previously generated nodes on the target
side. This target-side pointing is well-suited to our
task as nodes we will predict can be copies of other
nodes. While there are other pointer/copy net-
works (Gulcehre et al., 2016; Merity et al., 2016;
Gu et al., 2016; Miao and Blunsom, 2016; Nalla-
pati et al., 2016), we found the pointer-generator
network very effective at reducing data sparsity in

AMR parsing, which will be shown in Section 7.2.
As depicted in Figure 3, the extended pointer-

generator network consists of four major compo-
nents: an encoder embedding layer, an encoder, a
decoder embedding layer, and a decoder.
Encoder Embedding Layer This layer converts
words in input sentences into vector representa-
tions. Each vector is the concatenation of em-
beddings of GloVe (Pennington et al., 2014),
BERT (Devlin et al., 2018), POS (part-of-speech)
tags and anonymization indicators, and features
learned by a character-level convolutional neural
network (CharCNN, Kim et al., 2016).

Anonymization indicators are binary indica-
tors that tell the encoder whether the word is an
anonymized word. In preprocessing, text spans of
named entities in input sentences will be replaced
by anonymized tokens (e.g. person, country)
to reduce sparsity (see the Appendix for details).

Except BERT, all other embeddings are fetched
from their corresponding learned embedding look-
up tables. BERT takes subword units as input,
which means that one word may correspond to
multiple hidden states of BERT. In order to ac-
curately use these hidden states to represent each
word, we apply an average pooling function to the
outputs of BERT. Figure 4 illustrates the process

83

of generating word-level embeddings from BERT.

victim could help himselfThe

Wordpiece Tokenizer

The vict ##im could help him ##self

BERT

Average
Pooling

Average
Pooling

BERT Embeddings

.

.

Figure 4: Word-level embeddings from BERT.

Encoder The encoder is a multi-layer bidirec-
tional RNN (Schuster and Paliwal, 1997):

hl
i = [
−→
f l(hl−1

i ,hl
i−1);

←−
f l(hl−1

i ,hl
i+1)],

where
−→
f l and

←−
f l are two LSTM cells (Hochre-

iter and Schmidhuber, 1997); hl
i is the l-th layer

encoder hidden state at the time step i; h0
i is the

encoder embedding layer output for word wi.
Decoder Embedding Layer Similar to the en-
coder embedding layer, this layer outputs vector
representations for AMR nodes. The difference
is that each vector is the concatenation of embed-
dings of GloVe, POS tags and indices, and feature
vectors from CharCNN.

POS tags of nodes are inferred at runtime: if a
node is a copy from the input sentence, the POS
tag of the corresponding word is used; if a node
is a copy from the preceding nodes, the POS tag
of its antecedent is used; if a node is a new node
emitted from the vocabulary, an UNK tag is used.

We do not include BERT embeddings in this
layer because AMR nodes, especially their order,
are significantly different from natural language
text (on which BERT was pre-trained). We tried
to use “fixed” BERT in this layer, which did not
lead to improvement.2

Decoder At each step t, the decoder (an l-layer
unidirectional LSTM) receives hidden state sl−1t

from the last layer and hidden state slt−1 from the
previous time step, and generates hidden state slt:

slt = f l(sl−1t , slt−1),

where s0t is the concatenation (i.e., the input-
feeding approach, Luong et al., 2015) of two vec-
tors: the decoder embedding layer output for the

2 Limited by the GPU memory, we do not fine-tune BERT
on this task and leave it for future work.

previous node ut−1 (while training, ut−1 is the
previous node of the reference node list; at test
time it is the previous node emitted by the de-
coder), and the attentional vector s̃t−1 from the
previous step (explained later in this section). sl0
is the concatenation of last encoder hidden states
from

−→
f l and

←−
f l respectively.

Source attention distribution at
src is calculated

by additive attention (Bahdanau et al., 2014):

etsrc = v>srctanh(Wsrch
l
1:n +Usrcs

l
t + bsrc),

at
src = softmax(etsrc),

and it is then used to produce a weighted sum of
encoder hidden states, i.e., the context vector ct.

Attentional vector s̃t combines both source and
target side information, and it is calculated by an
MLP (shown in Figure 3):

s̃t = tanh(Wc[ct; s
l
t] + bc)

The attentional vector s̃t has 3 usages:
(1) it is fed through a linear layer and softmax to
produce the vocabulary distribution:

Pvocab = softmax(Wvocabs̃t + bvocab)

(2) it is used to calculate the target attention dis-
tribution at

tgt:

ettgt = v>tgttanh(Wtgts̃1:t−1 +Utgts̃t + btgt),

at
tgt = softmax(ettgt),

(3) it is used to calculate source-side copy prob-
ability psrc, target-side copy probability ptgt, and
generation probability pgen via a switch layer:

[psrc, ptgt, pgen] = softmax(Wswitchs̃t + bswitch)

Note that psrc + ptgt + pgen = 1. They act as a
soft switch to choose between copying an exist-
ing node from the preceding nodes by sampling
from the target attention distribution at

tgt, or emit-
ting a new node in two ways: (1) generating a new
node from the fixed vocabulary by sampling from
Pvocab, or (2) copying a word (as a new node) from
the input sentence by sampling from the source at-
tention distribution at

src.
The final probability distribution P (node)(ut) for

node ut is defined as follows. If ut is a copy of
existing nodes, then:

P (node)(ut) = ptgt

t−1∑
i:ui=ut

at
tgt[i],

84

otherwise:

P (node)(ut) = pgenPvocab(ut) + psrc

n∑
i:wi=ut

at
src[i],

where at[i] indexes the i-th element of at. Note
that a new node may have the same surface form
as the existing node. We track their difference us-
ing indices. The index dt for node ut is assigned
deterministically as below:

dt =

{
t, if ut is a new node;

dj , if ut is a copy of its antecedent uj .

4.2 Deep Biaffine Classifier

For the second stage (i.e., edge prediction), we
employ a deep biaffine classifier, which was orig-
inally proposed for graph-based dependency pars-
ing (Dozat and Manning, 2016), and recently has
been applied to semantic parsing (Peng et al.,
2017a; Dozat and Manning, 2018).

As depicted in Figure 5, the major difference
of our usage is that instead of re-encoding AMR
nodes, we directly use decoder hidden states from
the extended pointer-generator network as the in-
put to deep biaffine classifier. We find two ad-
vantages of using decoder hidden states as input:
(1) through the input-feeding approach, decoder
hidden states contain contextualized information
from both the input sentence and the predicted
nodes; (2) because decoder hidden states are used
for both node prediction and edge prediction, we
can jointly train the two modules in our model.

Given decoder hidden states 〈s1, ..., sm〉 and a
learnt vector representation s′0 of a dummy root,
we follow Dozat and Manning (2016), factoriz-
ing edge prediction into two components: one that
predicts whether or not a directed edge (uk, ut)
exists between two nodes uk and ut, and another
that predicts the best label for each potential edge.

Edge and label scores are calculated as below:

s
(edge-head)
t = MLP(edge-head)(st)

s
(edge-dep)
t = MLP(edge-dep)(st)

s(label-head)
t = MLP(label-head)(st)

s
(label-dep)
t = MLP(label-dep)(st)

score(edge)
k,t = Biaffine(s(edge-head)

k , s
(edge-dep)
t)

score(label)
k,t = Bilinear(s(label-head)

k , s
(label-dep)
t)

<S> possible help victim

Initial
Hidden
State

Decoder

Embedding
Layer

AMR Node List w/ Node indices

victim </S>

Deep Biaffine Attentionroot

po
ss
ib
le

ro
ot

he
lp

vi
ct
im

vi
ct
im

possible
help

victim
victim

MST w/ Node indices

Predicted AMR Tree

possible help victim victim

ARG1
ARG1

ARG0

Attention
Matrix

2 3 31

1

2

3

3

1 2 3 3

1 2 3 3

Figure 5: Deep biaffine classifier for edge prediction.
Edge label prediction is not depicted in the figure.

where MLP, Biaffine and Bilinear are defined as
below:

MLP(x) = ELU(Wx+ b)

Biaffine(x1,x2) = x>1 Ux2 +W [x1;x2] + b

Bilinear(x1,x2) = x>1 Ux2 + b

Given a node ut, the probability of uk being the
edge head of ut is defined as:

P (head)
t (uk) =

exp(score(edge)
k,t)∑m

j=1 exp(score(edge)
j,t)

The edge label probability for edge (uk, ut) is
defined as:

P (label)
k,t (l) =

exp(score(label)
k,t [l])∑

l′ exp(score(label)
k,t [l′])

4.3 Training
The training objective is to jointly minimize the
loss of reference nodes and edges, which can be
decomposed to the sum of the negative log likeli-
hood at each time step t for (1) the reference node
ut, (2) the reference edge head uk of node ut, and
(3) the reference edge label l between uk and ut:

minimize−
m∑
t=1

[logP (node)(ut) + logP (head)
t (uk)

+ logP (label)
k,t (l) + λcovlosst]

85

covlosst is a coverage loss to penalize repetitive
nodes: covlosst =

∑
i min(at

src[i], covt[i]), where
covt is the sum of source attention distributions
over all previous decoding time steps: covt =∑t−1

t′=0 a
t′
src. See See et al. (2017) for full details.

4.4 Prediction

For node prediction, based on the final probability
distributionP (node)(ut) at each decoding time step,
we implement both greedy search and beam search
to sequentially decode a node list u and indices d.

For edge prediction, given the predicted node
list u, their indices d, and the edge scores S =
{score(edge)

i,j | 0 ≤ i, j ≤ m}, we apply the Chu-
Liu-Edmonds algorithm with a simple adaption to
find the maximum spanning tree (MST). As de-
scribed in Algorithm 1, before calling the Chu-
Liu-Edmonds algorithm, we first include a dummy
root u0 to ensure every node have a head, and then
exclude edges whose source and destination nodes
have the same indices, because these nodes will be
merged into a single node to recover the standard
AMR graph where self-loops are invalid.

Algorithm 1: Chu-Liu-Edmonds algo. w/ Adaption
Input : Nodes u = 〈u1, ..., um〉,

Indices d = 〈d1, ...dm〉,
Edge scores S = {score(edge)

i,j | 0 ≤ i, j ≤ m}
Output: A maximum spanning tree.
// Include the dummy root u0.
V ← {u0} ∪ u;
d0 ← 0;

// Exclude invalid edges.
// di is the node index for node ui.
E ← {(ui, uj) | 0 ≤ i, j ≤ m; di 6= dj};
// Chu-Liu-Edmonds algorithm
return MST(V,E, S, u0);

5 Related Work

AMR parsing approaches can be categorized
into alignment-based, transition-based, grammar-
based, and attention-based approaches.

Alignment-based approaches were first ex-
plored by JAMR (Flanigan et al., 2014), a pipeline
of concept and relation identification with a graph-
based algorithm. Zhou et al. (2016) improved this
by jointly learning concept and relation identifica-
tion with an incremental model. Both approaches
rely on features based on alignments. Lyu and
Titov (2018) treated alignments as latent variables
in a joint probabilistic model, leading to a sub-
stantial reported improvement. Our approach re-

quires no explicit alignments, but implicitly learns
a source-side copy mechanism using attention.

Transition-based approaches began with Wang
et al. (2015, 2016), who incrementally transform
dependency parses into AMRs using transiton-
based models, which was followed by a line of
research, such as Puzikov et al. (2016); Brandt
et al. (2016); Goodman et al. (2016); Damonte
et al. (2017); Ballesteros and Al-Onaizan (2017);
Groschwitz et al. (2018). A pre-trained aligner,
e.g. Pourdamghani et al. (2014); Liu et al. (2018),
is needed for most parsers to generate training data
(e.g., oracles for a transition-based parser). Our
approach makes no significant use of external se-
mantic resources,3 and is aligner-free.

Grammar-based approaches are represented by
Artzi et al. (2015); Peng et al. (2015) who lever-
aged external semantic resources, and employed
CCG-based or SHRG-based grammar induction
approaches converting logical forms into AMRs.
Pust et al. (2015) recast AMR parsing as a ma-
chine translation problem, while also drawing fea-
tures from external semantic resources.

Attention-based parsing with Seq2Seq-style
models have been considered (Barzdins and
Gosko, 2016; Peng et al., 2017b), but are lim-
ited by the relatively small amount of labeled
AMR data. Konstas et al. (2017) overcame this
by making use of millions of unlabeled data
through self-training, while van Noord and Bos
(2017b) showed significant gains via a character-
level Seq2Seq model and a large amount of silver-
standard AMR training data. In contrast, our ap-
proach supported by extended pointer generator
can be effectively trained on the limited amount
of labeled AMR data, with no data augmentation.

6 AMR Pre- and Post-processing

Anonymization is often used in AMR prepro-
cessing to reduce sparsity (Werling et al., 2015;
Peng et al., 2017b; Guo and Lu, 2018, inter alia).
Similar to Konstas et al. (2017), we anonymize
sub-graphs of named entities and other entities.
Like Lyu and Titov (2018), we remove senses, and
use Stanford CoreNLP (Manning et al., 2014) to
lemmatize input sentences and add POS tags.

In post-processing, we assign the most frequent
sense for nodes (-01, if unseen) like Lyu and Titov

3 We only use POS tags in the core parsing task. In post-
processing, we use an entity linker as a common move for
wikification like van Noord and Bos (2017b).

86

(2018), and restore wiki links using the DBpe-
dia Spotlight API (Daiber et al., 2013) following
Bjerva et al. (2016); van Noord and Bos (2017b).
We add polarity attributes based on the rules ob-
served from the training data. More details of pre-
and post-processing are provided in the Appendix.

7 Experiments

7.1 Setup

GloVe.840B.300d embeddings
dim 300

BERT embeddings
source BERT-Large-cased
dim 1024

POS tag embeddings
dim 100

Anonymization indicator embeddings
dim 50

Index embeddings
dim 50

CharCNN
num filters 100
ngram filter sizes [3]

Encoder
hidden size 512
num layers 2

Decoder
hidden size 1024
num layers 2

Deep biaffine classifier
edge hidden size 256
label hidden size 128

Optimizer
type ADAM
learning rate 0.001
max grad norm 5.0

Coverage loss weight λ 1.0

Beam size 5

Vocabulary
encoder vocab size (AMR 2.0) 18000
decoder vocab size (AMR 2.0) 12200
encoder vocab size (AMR 1.0) 9200
decoder vocab size (AMR 1.0) 7300

Batch size 64

Table 1: Hyper-parameter settings

We conduct experiments on two AMR general
releases (available to all LDC subscribers): AMR
2.0 (LDC2017T10) and AMR 1.0 (LDC2014T12).
Our model is trained using ADAM (Kingma and
Ba, 2014) for up to 120 epochs, with early stop-
ping based on the development set. Full model
training takes about 19 hours on AMR 2.0 and 7

hours on AMR 1.0, using two GeForce GTX TI-
TAN X GPUs. At training, we have to fix BERT
parameters due to the limited GPU memory. We
leave fine-tuning BERT for future work.

Table 1 lists the hyper-parameters used in our
full model. Both encoder and decoder embed-
ding layers have GloVe and POS tag embeddings
as well as CharCNN, but their parameters are not
tied. We apply dropout (dropout rate = 0.33) to
the outputs of each module.

7.2 Results

Corpus Parser F1(%)

AMR
2.0

Buys and Blunsom (2017) 61.9
van Noord and Bos (2017b) 71.0∗

Groschwitz et al. (2018) 71.0±0.5
Lyu and Titov (2018) 74.4±0.2
Naseem et al. (2019) 75.5

Ours 76.3±0.1

AMR
1.0

Flanigan et al. (2016) 66.0
Pust et al. (2015) 67.1
Wang and Xue (2017) 68.1
Guo and Lu (2018) 68.3±0.4

Ours 70.2±0.1

Table 2: SMATCH scores on the test sets of AMR 2.0
and 1.0. Standard deviation is computed over 3 runs
with different random seeds. ∗ indicates the previous
best score from attention-based models.

Main Results We compare our approach against
the previous best approaches and several recent
competitors. Table 2 summarizes their SMATCH

scores (Cai and Knight, 2013) on the test sets of
two AMR general releases. On AMR 2.0, we out-
perform the latest push from Naseem et al. (2019)
by 0.8% F1, and significantly improves Lyu and
Titov (2018)’s results by 1.9% F1. Compared to
the previous best attention-based approach (van
Noord and Bos, 2017b), our approach shows a
substantial gain of 5.3% F1, with no usage of any
silver-standard training data. On AMR 1.0 where
the traininng instances are only around 10k, we
improve the best reported results by 1.9% F1.
Fine-grained Results In Table 3, we assess the
quality of each subtask using the AMR-evaluation
tools (Damonte et al., 2017). We see a notable
increase on reentrancies, which we attribute to
target-side copy (based on our ablation studies in
the next section). Significant increases are also

87

Metric vN’18 L’18 N’19 Ours

SMATCH 71.0 74.4 75.5 76.3±0.1

Unlabeled 74 77 80 79.0±0.1
No WSD 72 76 76 76.8±0.1
Reentrancies 52 52 56 60.0±0.1
Concepts 82 86 86 84.8±0.1
Named Ent. 79 86 83 77.9±0.2
Wikification 65 76 80 85.8±0.3
Negation 62 58 67 75.2±0.2
SRL 66 70 72 69.7±0.2

Table 3: Fine-grained F1 scores on the AMR 2.0 test
set. vN’17 is van Noord and Bos (2017b); L’18 is Lyu
and Titov (2018); N’19 is Naseem et al. (2019).

shown on wikification and negation, indicating
the benefits of using DBpedia Spotlight API and
negation detection rules in post-processing. On
all other subtasks except named entities, our ap-
proach achieves competitive results to the previous
best approaches (Lyu and Titov, 2018; Naseem
et al., 2019), and outperforms the previous best
attention-based approach (van Noord and Bos,
2017b). The difference of scores on named entities
is mainly caused by anonymization methods used
in preprocessing, which suggests a potential im-
provement by adapting the anonymization method
presented in Lyu and Titov (2018) to our approach.

Ablation
AMR

1.0
AMR

2.0

Full model 70.2 76.3

no source-side copy 62.7 70.9
no target-side copy 66.2 71.6
no coverage loss 68.5 74.5
no BERT embeddings 68.8 74.6
no index embeddings 68.5 75.5
no anonym. indicator embed. 68.9 75.6
no beam search 69.2 75.3
no POS tag embeddings 69.2 75.7
no CharCNN features 70.0 75.8

only edge prediction 88.4 90.9

Table 4: Ablation studies on components of our model.
(Scores are sorted by the delta from the full model.)

Ablation Study We consider the contributions of
several model components in Table 4. The largest
performance drop is from removing source-side

copy,4 showing its efficiency at reducing sparsity
from open-class vocabulary entries. Removing
target-side copy also leads to a large drop. Specifi-
cally, the subtask score of reentrancies drops down
to 38.4% when target-side copy is disabled. Cov-
erage loss is useful with regard to discouraging
unnecessary repetitive nodes. In addition, our
model benefits from input features such as lan-
guage representations from BERT, index embed-
dings, POS tags, anonymization indicators, and
character-level features from CharCNN. Note that
without BERT embeddings, our model still out-
performs the previous best approaches (Lyu and
Titov, 2018; Guo and Lu, 2018) that are not us-
ing BERT. Beam search, commonly used in ma-
chine translation, is also helpful in our model. We
provide side-by-side examples in the Appendix to
further illustrate the contribution from each com-
ponent, which are largely intuitive, with the excep-
tion of BERT embeddings. There the exact contri-
bution of the component (qualitative, before/after
ablation) stands out less: future work might con-
sider a probing analysis with manually constructed
examples, in the spirit of Linzen et al. (2016);
Conneau et al. (2018); Tenney et al. (2019).

In the last row, we only evaluate model perfor-
mance at the edge prediction stage by forcing our
model to decode the reference nodes at the node
prediction stage. The results mean if our model
could make perfect prediction at the node predic-
tion stage, the final SMATCH score will be sub-
stantially high, which identifies node prediction as
the key to future improvement of our model.

vocab_gen src_copy tgt_copy
0

30

60

90

43.8 47.6

8.6

64.4 67.4
60.861.6

72.4

49.4

Frequency (%)
Precision (%)
Recall (%)

Figure 6: Frequency, precision and recall of nodes from
different sources, based on the AMR 2.0 test set.

There are three sources for node prediction: vo-
cabulary generation, source-side copy, or target-
side copy. Let all reference nodes from source z

4All other hyper-parameter settings remain the same.

88

be N (z)
ref , and all system predicted nodes from z be

N
(z)
sys . we compute frequency, precision and recall

of nodes from source z as below:

frequency(z) = |N (z)
ref |

/∑
z
|N (z)

ref |

precision(z) = |N (z)
ref ∩N

(z)
sys |

/
|N (z)

sys |

recall(z) = |N (z)
ref ∩N

(z)
sys |

/
|N (z)

ref |

Figure 6 shows the frequency of nodes from dif-
ference sources, and their corresponding precision
and recall based on our model prediction. Among
all reference nodes, 43.8% are from vocabulary
generation, 47.6% from source-side copy, and
only 8.6% from target-side copy. On one hand,
the highest frequency of source-side copy helps
address sparsity and results in the highest preci-
sion and recall. On the other hand, we see space
for improvement, especially on the relatively low
recall of target-side copy, which is probably due to
its low frequency.
Node Linearization As decribed in Section 3,
we create the reference node list by a pre-
order traversal over the gold AMR tree. As
for the children of each node, we sort them in
alphanumerical order. This linearization strat-
egy has two advantages: (1) pre-order traversal
guarantees that a head node (predicate) always
comes in front of its children (arguments); (2)
alphanumerical sort orders according to role ID
(i.e., ARG0>ARG1>...>ARGn), following intu-
ition from research in Thematic Hierarchies (Fill-
more, 1968; Levin and Hovav, 2005).

Node Linearization
AMR

1.0
AMR

2.0

Pre-order + Alphanum 70.2 76.3
Pre-order + Alignment 61.9 68.3
Pure Alignment 64.3 71.3

Table 5: SMATCH scores of full models trained and
tested based on different node linearization strategies.

In Table 5, we report SMATCH scores of full
models trained and tested on data generated via
our linearization strategy (Pre-order + Alphanum),
as compared to two obvious alternates: the first al-
ternate still runs a pre-order traversal, but it sorts
the children of each node based on the their align-
ments to input words; the second one linearizes
nodes purely based alignments. Alignments are

created using the tool by Pourdamghani et al.
(2014). Clearly, our linearization strategy leads
to much better results than the two alternates. We
also tried other traversal strategies such as combin-
ing in-order traversal with alphanumerical sorting
or alignment-based sorting, but did not get scores
even comparable to the two alternates.5

Average Pooling vs. Max Pooling In Figure 4,
we apply average pooling to the outputs (last-layer
hidden states) of BERT in order to generate word-
level embeddings for the input sentence. Table 6
shows scores of models using different pooling
functions. Average pooling performs slightly bet-
ter than max pooling.

AMR 1.0 AMR 2.0

Average Pooling 70.2±0.1 76.3±0.1
Max Pooling 70.0±0.1 76.2±0.1

Table 6: SMATCH scores based different pooling func-
tions. Standard deviation is over 3 runs on the test data.

8 Conclusion

We proposed an attention-based model for AMR
parsing where we introduced a series of novel
components into a transductive setting that extend
beyond what a typical NMT system would do on
this task. Our model achieves the best perfor-
mance on two AMR corpora. For future work, we
would like to extend our model to other semantic
parsing tasks (Oepen et al., 2014; Abend and Rap-
poport, 2013). We are also interested in seman-
tic parsing in cross-lingual settings (Zhang et al.,
2018; Damonte and Cohen, 2018).

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback. This work was supported in part
by the JHU Human Language Technology Center
of Excellence (HLTCOE), and DARPA LORELEI
and AIDA. The U.S. Government is authorized to
reproduce and distribute reprints for Governmen-
tal purposes. The views and conclusions contained
in this publication are those of the authors and
should not be interpreted as representing official
policies or endorsements of DARPA or the U.S.
Government.

5 van Noord and Bos (2017b) also investigated lineariza-
tion order, and found that alignment-based ordering yielded
the best results under their setup where AMR parsing is
treated as a sequence-to-sequence learning problem.

89

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 228–238. Association for Computa-
tional Linguistics.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage ccg semantic parsing with amr. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1699–1710. Association for Computational Linguis-
tics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186. Association for Compu-
tational Linguistics.

Guntis Barzdins and Didzis Gosko. 2016. Riga at
semeval-2016 task 8: Impact of smatch extensions
and character-level neural translation on amr pars-
ing accuracy. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1143–1147. Association for Computa-
tional Linguistics.

Johannes Bjerva, Johan Bos, and Hessel Haagsma.
2016. The meaning factory at semeval-2016 task
8: Producing amrs with boxer. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 1179–1184. Associa-
tion for Computational Linguistics.

Lauritz Brandt, David Grimm, Mengfei Zhou, and Yan-
nick Versley. 2016. Icl-hd at semeval-2016 task 8:
Meaning representation parsing - augmenting amr
parsing with a preposition semantic role labeling
neural network. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1160–1166. Association for Computa-
tional Linguistics.

Jan Buys and Phil Blunsom. 2017. Oxford at semeval-
2017 task 9: Neural amr parsing with pointer-
augmented attention. In Proceedings of the 11th
International Workshop on Semantic Evaluation

(SemEval-2017), pages 914–919. Association for
Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752. Association for Computa-
tional Linguistics.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing graphs with hyperedge
replacement grammars. In Proceedings of the
51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 924–932. Association for Computational
Linguistics.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single $&!#* vector:
Probing sentence embeddings for linguistic proper-
ties. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2126–2136. Associa-
tion for Computational Linguistics.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems (I-Semantics).

Marco Damonte and Shay B. Cohen. 2018. Cross-
lingual abstract meaning representation parsing. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1146–1155, New
Orleans, Louisiana. Association for Computational
Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers,
pages 536–546. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency

http://aclweb.org/anthology/P13-1023
http://aclweb.org/anthology/P13-1023
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1182
https://doi.org/10.18653/v1/S16-1182
https://doi.org/10.18653/v1/S16-1179
https://doi.org/10.18653/v1/S16-1179
https://doi.org/10.18653/v1/S16-1179
https://doi.org/10.18653/v1/S16-1179
https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/S17-2157
https://doi.org/10.18653/v1/S17-2157
http://aclweb.org/anthology/P13-2131
http://aclweb.org/anthology/P13-2131
http://aclweb.org/anthology/P13-1091
http://aclweb.org/anthology/P13-1091
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
https://doi.org/10.18653/v1/N18-1104
https://doi.org/10.18653/v1/N18-1104
http://aclweb.org/anthology/E17-1051
http://aclweb.org/anthology/E17-1051
http://aclweb.org/anthology/P18-2077

90

parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 484–490. Associa-
tion for Computational Linguistics.

Jack Edmonds. 1968. Optimum branchings. Math-
ematics and the Decision Sciences, Part, 1(335-
345):26.

Charles J. Fillmore. 1968. The case for case. Holt,
Rinehart & Winston, New York.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. Cmu at semeval-2016 task
8: Graph-based amr parsing with infinite ramp
loss. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1202–1206. Association for Computational
Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436. Association for Computational Linguistics.

William Foland and James H. Martin. 2017. Abstract
meaning representation parsing using lstm recurrent
neural networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 463–472.
Association for Computational Linguistics.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Ucl+sheffield at semeval-2016 task 8:
Imitation learning for amr parsing with an alpha-
bound. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1167–1172. Association for Computational
Linguistics.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
Amr dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841. Associa-
tion for Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640. Association for Computational
Linguistics.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 140–
149. Association for Computational Linguistics.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based amr parsing with a refined search space. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1712–1722. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, AAAI’16,
pages 2741–2749. AAAI Press.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural amr:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 146–157. Associa-
tion for Computational Linguistics.

Beth Levin and Malka Rappaport Hovav. 2005. Argu-
ment realization. Cambridge University Press.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin,
and Ting Liu. 2018. An AMR aligner tuned by
transition-based parser. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2422–2430, Brussels, Bel-
gium. Association for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing
as graph prediction with latent alignment. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 397–407. Association for Computa-
tional Linguistics.

http://aclweb.org/anthology/P18-2077
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.18653/v1/S16-1186
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.18653/v1/P17-1043
https://doi.org/10.18653/v1/P17-1043
https://doi.org/10.18653/v1/P17-1043
https://doi.org/10.18653/v1/S16-1180
https://doi.org/10.18653/v1/S16-1180
https://doi.org/10.18653/v1/S16-1180
http://aclweb.org/anthology/P18-1170
http://aclweb.org/anthology/P18-1170
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.18653/v1/P16-1014
http://aclweb.org/anthology/D18-1198
http://aclweb.org/anthology/D18-1198
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
https://www.aclweb.org/anthology/D18-1264
https://www.aclweb.org/anthology/D18-1264
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://aclweb.org/anthology/P18-1037
http://aclweb.org/anthology/P18-1037

91

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98. Association for
Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 319–328. Association for Com-
putational Linguistics.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Ab-
stractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290. Association for
Computational Linguistics.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding smatch: Transition-based amr pars-
ing with reinforcement learning. arXiv preprint
arXiv:1905.13370.

Rik van Noord and Johan Bos. 2017a. Dealing with
co-reference in neural semantic parsing. In Proceed-
ings of the 2nd Workshop on Semantic Deep Learn-
ing (SemDeep-2), pages 41–49, Montpellier, France.
Association for Computational Linguistics.

Rik van Noord and Johan Bos. 2017b. Neural semantic
parsing by character-based translation: Experiments
with abstract meaning representations. Computa-
tional Linguistics in the Netherlands Journal, 7:93–
108.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017a.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2037–2048. Asso-
ciation for Computational Linguistics.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 32–41, Beijing,
China. Association for Computational Linguistics.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017b. Addressing the data sparsity
issue in neural amr parsing. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 366–375. Association for Com-
putational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning english strings with
abstract meaning representation graphs. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
425–429. Association for Computational Linguis-
tics.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1143–1154. Associa-
tion for Computational Linguistics.

Yevgeniy Puzikov, Daisuke Kawahara, and Sadao
Kurohashi. 2016. M2l at semeval-2016 task 8: Amr
parsing with neural networks. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 1154–1159. Associa-
tion for Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
http://aclweb.org/anthology/P05-1012
http://aclweb.org/anthology/P05-1012
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/D16-1031
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://arxiv.org/pdf/1905.13370v1.pdf
https://arxiv.org/pdf/1905.13370v1.pdf
https://www.aclweb.org/anthology/W17-7306
https://www.aclweb.org/anthology/W17-7306
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.3115/v1/S14-2008
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/P17-1186
https://doi.org/10.18653/v1/K15-1004
https://doi.org/10.18653/v1/K15-1004
http://aclweb.org/anthology/E17-1035
http://aclweb.org/anthology/E17-1035
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.3115/v1/D14-1048
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/D15-1136
https://doi.org/10.18653/v1/S16-1178
https://doi.org/10.18653/v1/S16-1178
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX

92

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2773–2781.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng
Ji, and Nianwen Xue. 2016. Camr at semeval-2016
task 8: An extended transition-based amr parser. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1173–
1178. Association for Computational Linguistics.

Chuan Wang and Nianwen Xue. 2017. Getting the
most out of amr parsing. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1257–1268. Associa-
tion for Computational Linguistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for amr parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 366–375. Association for Computational Lin-
guistics.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
982–991. Association for Computational Linguis-
tics.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018. Cross-lingual de-
compositional semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1664–1675. Asso-
ciation for Computational Linguistics.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang
QU, Ran Li, and Yanhui Gu. 2016. Amr parsing
with an incremental joint model. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 680–689. Associ-
ation for Computational Linguistics.

A Appendices

A.1 AMR Pre- and Post-processing

Firstly, we to run Standford CoreNLP like Lyu
and Titov (2018), lemmatizing input sentences and
adding POS tags to each token. Secondly, we
remove senses, wiki links and polarity attributes
in AMR. Thirdly, we anonymize sub-graphs of
named entities and *-entity in a way simi-
lar to Konstas et al. (2017). Figure 7 shows an
example before and after preprocessing. Sub-
graphs of named entities are headed by one of

AMR’s fine-grained entity types (e.g., highway,
country region in Figure 7) that contain a
:name role. Sub-graphs of other entities are
headed by their corresponding entity type name
(e.g., date-entity in Figure 7). We replace
these sub-graphs with a token of a special pat-
tern “TYPE i” (e.g. HIGHWAY 0, DATE 0 in Fig-
ure 7), where “TYPE” indicates the AMR entity
type of the corresponding sub-graph, and “i” in-
dicates that it is the i-th occurrence of that type.
On the training set, we use simple rules to find
mappings between anonymized sub-graphs and
spans of text, and then replace mapped text with
the anonymized token we inserted into the AMR
graph. Additionally, we build a mapping of Stand-
ford CoreNLP NER tags to AMR’s fine-grained
types based on the training set, which will be used
in prediction. At test time, we normalize sentences
to match our anonymized training data. For any
entity span identified by Stanford CoreNLP, we
replace it with a AMR entity type based on the
mapping built during training. If no entry is found
in the mapping, we replace entity spans with the
coarse-grained NER tags from Stanford CoreNLP,
which are also entity types in AMR.

In post-processing, we deterministically gen-
erate AMR sub-graphs for anonymizations us-
ing the corresponding text span. We assign
the most frequent sense for nodes (-01, if un-
seen) like Lyu and Titov (2018). We add wiki
links to named entities using the DBpedia Spot-
light API (Daiber et al., 2013) following Bjerva
et al. (2016); van Noord and Bos (2017b) with
the confidence threshod at 0.5. We add polar-
ity attributes based on Algorithm 2 where the
four functions isNegation, modifiedWord,
mappedNode, and addPolarity consists of
simple rules observed from the training set. We
use the PENMANCodec6 to encode and decode
both intermediate and final AMRs.

Algorithm 2: Adding polarity attributes to AMR.
Input : Sent. w = 〈w1, ..., wn〉, Predicted AMR A
Output: AMR with polarity attributes.
for wi ∈ w do

if isNegation(wi) then
wj ← modifiedWord(wi, w);
uk ← mappedNode(wj , A);
A← addPolarity(uk, A);

end
end
return A;

6https://github.com/goodmami/penman/

https://doi.org/10.18653/v1/S16-1181
https://doi.org/10.18653/v1/S16-1181
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.18653/v1/D17-1129
https://doi.org/10.3115/v1/N15-1040
https://doi.org/10.3115/v1/P15-1095
https://doi.org/10.3115/v1/P15-1095
http://aclweb.org/anthology/D18-1194
http://aclweb.org/anthology/D18-1194
https://doi.org/10.18653/v1/D16-1065
https://doi.org/10.18653/v1/D16-1065
https://github.com/goodmami/penman/

93

Sentence:
 Route 288 , the circumferential highway running around the south - western quadrant of the Richmond
New Urban Region , opened in late 2004 .

Anonymized Sentence:
HIGHWAY_0 , the circumferential highway running around the south - western quadrant of the
COUNTRY_REGION_0 , opened in late DATE_0 .

Before preprocessing

(o / open-01
 :ARG1 (h / highway
 :wiki "Virginia_State_Route_288"
 :name (r / name
 :op1 "Route"
 :op2 288)
 :ARG1-of (r3 / run-04
 :direction (a / around
 :op1 (q / quadrant
 :part-of (c / country-region
 :wiki -
 :name (r2 / name
 :op1 "Richmond"
 :op2 "New"
 :op3 "Urban"
 :op4 "Region"))
 :mod (s / southwest))))
 :mod (c2 / circumference))
 :time (l / late
 :op1 (d / date-entity
 :year 2004)))

After preprocessing

(o / open
 :ARG1 (h / HIGHWAY_0
 :ARG1-of (r3 / run
 :direction (a / around
 :op1 (q / quadrant
 :part-of (c / COUNTRY_REGION_0)
 :mod (s / southwest))))
 :mod (c2 / circumference))
 :time (l / late
 :op1 (d / DATE_0)))

Figure 7: An example AMR and the corresponding sentence before and after preprocessing. Senses are re-
moved. The first named entity is replaced by “HIGHWAY 0”; the second named entity is replaced by “COUN-
TRY REGION 0”; the first date entity replaced by “DATE 0”.

A.2 Side-by-Side Examples
In the next page, we provide examples from the
test set, with side-by-side comparisons between
the full model prediction and the model prediction
after ablation.

94

Sentence:
Smoke and clouds chase the flying waves
Lemmas:
["smoke", "and", "cloud", "chase", "the", "fly", "wave"]

Full Model

(vv1 / chase-01
 :ARG0 (vv2 / and
 :op1 (vv3 / smoke)
 :op2 (vv4 / cloud-01))
 :ARG1 (vv5 / wave
 :purpose (vv6 / fly-01)))

No Source-side Copy

(vv1 / and
 :op1 (vv2 / stretch-01
 :ARG1 (vv3 / and
 :op1 (vv4 / leech)))
 :op2 (vv6 / bug)
 :op3 (vv7 / fly-01)
 :op3 (vv8 / center))

Figure 8: Full model prediction vs. no source-side copy prediction. Tokens in blue are copied from the source
side. Without source-side copy, the prediction becomes totally different and inaccurate in this example.

Sentence:
Now we already have no cohesion! China needs to start a war!

Full Model

(vv1 / multi-sentence
 :snt1 (vv2 / have-03
 :ARG0 (vv3 / we)
 :ARG1 (vv4 / cohere-01)
 :polarity -
 :time (vv5 / already))
 :snt2 (vv6 / need-01
 :ARG0 (vv7 / country
 :name (vv8 / name
 :op1 "China")
 :wiki "China")
 :ARG1 (vv9 / start-01
 :ARG0 vv7
 :ARG1 (vv11 / war))
 :time (vv12 / now)))

No Target-side Copy

(vv1 / multi-sentence
 :snt1 (vv2 / have-03
 :ARG0 (vv3 / we)
 :ARG1 (vv4 / cohere-01)
 :polarity -
 :time (vv5 / already))
 :snt2 (vv6 / need-01
 :ARG0 (vv7 / country
 :name (vv8 / name
 :op1 "China")
 :wiki "China")
 :ARG1 (vv9 / start-01
 :ARG0 (vv10 / country)
 :ARG1 (vv11 / war))))

Figure 9: Full model prediction vs. no target-side copy prediction. Nodes in blue denote the same concept (i.e., the
country “China”). The full model correctly copies the first node (“vv7 / country”) as ARG0 of “start-01”. Without
target-side copy, the model has to generate a new node with a different index, i.e., “vv10 / country”.

Sentence:
The solemn and magnificent posture represents a sacred expectation for peace.

Full Model

(vv1 / represent-01
 :ARG0 (vv2 / posture-01
 :mod (vv3 / magnificent)
 :mod (vv4 / solemn))
 :ARG1 (vv5 / expect-01
 :ARG1 (vv6 / peace)
 :mod (vv7 / sacred)))

No Coverage Loss

(vv1 / represent-01
 :ARG0 (vv2 / posture-01
 :mod (vv3 / magnificent)
 :mod (vv4 / magnificent))
 :ARG1 (vv5 / expect-01
 :ARG1 (vv6 / peace)
 :mod (vv7 / sacred)))

Figure 10: Full model prediction vs. no coverage loss prediction. The full model correctly predicts the second
modifier “solemn”. Without coverage loss, the model generates a repetitive modifier “magnificent”.

Sentence:
Do it gradually if it's not something you're particularly comfortable with.

Full Model

(vv1 / have-condition-91
 :ARG1 (vv2 / do-02
 :ARG0 (vv3 / you)
 :ARG1 (vv4 / it)
 :manner (vv5 / gradual))
 :ARG2 (vv6 / comfortable-02
 :ARG0 vv4
 :mod (vv8 / particular)
 :polarity -))

No BERT Embeddings

(vv1 / have-concession-91
 :ARG1 (vv2 / do-02
 :ARG0 (vv3 / it)
 :ARG1 (vv4 / something
 :ARG0-of (vv5 / comfortable-02
 :ARG0 vv3
 :mod (vv7 / particular)
 :polarity -))))

Figure 11: Full model prediction vs. no BERT embeddings prediction.

