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Abstract

Neural models have become one of the most
important approaches to dialog response gen-
eration. However, they still tend to generate
the most common and generic responses in
the corpus all the time. To address this prob-
lem, we designed an iterative training process
and ensemble method based on boosting. We
combined our method with different training
and decoding paradigms as the base model,
including mutual-information-based decoding
and reward-augmented maximum likelihood
learning. Empirical results show that our ap-
proach can significantly improve the diversity
and relevance of the responses generated by
all base models, backed by objective measure-
ments and human evaluation.

1 Introduction

Sequence-to-sequence models (Sutskever et al.,
2014) has become one of the most popular ap-
proaches to dialog systems, for it provides a high
degree of automation and flexibility. On the other
hand, they are known to suffer from the “dull-
response” problem (Li et al., 2015). Various re-
search attempts have been made to improve the
diversity of responses generated by sequence-to-
sequence models. One line of research investigate
alternatives to maximum likelihood learning and
decoding, which is believed to be the main cause
of monotonicity. (Li et al., 2015) employed a de-
coding objective based on mutual information be-
tween contexts and responses; (Li et al., 2017a)
used reinforcement learning techniques for train-
ing the decoder to generate responses that max-
imize pre-defined rewards instead of perplexities;
(Li et al., 2017b; Xu et al., 2017) adopted adversar-
ial learning, in which a generator is trained to de-
ceive a discriminator that tries to differentiate be-
tween generated responses and human responses.
Beside changing training and decoding objectives,

(Liu et al., 2018; Lison and Bibauw, 2017) consid-
ered reweighting data points by penalizing those
with overly frequent responses or by emphasizing
high-quality responses. (Serban et al., 2017; Zhao
et al., 2017) introduced stochastic latent variables
into their models to capture discourse information
on an inter-utterance level. (Shao et al., 2017) ex-
perimented with a novel segment-based training
and decoding paradigm to help mitigate the prob-
lem of redundancy and contradiction.

Yet another type of approach has not been in-
vestigated in the literature in the context of re-
sponse generation – boosting and ensembling, de-
spite having been studied for machine translation
(Xiao et al., 2010; Zhang et al., 2017). Being a
long established machine learning method (Freund
and Schapire, 1997), the process typically involves
iteratively training multiple models on reweighted
instances according to the error of the previous
models and combining these models. The idea has
been recently revived and extended to generative
models and image generation, which also suffers
from diversity problem (Tolstikhin et al., 2017;
Grover and Ermon, 2018). In computer vision, the
state-of-the-art models tend to generate a few cat-
egories of objects all the time and ignore the rest,
known as the problem of “missing modes”. Boost-
ing has been shown to significantly improve the
coverage of image generation models.

For language generation, given the prior success
with data re-weighting and bootstrap approach
(Zhang et al., 2017; Liu et al., 2018), we be-
lieve dialog response generation may benefit from
boosting as well. In this work, we designed a prin-
cipled framework of boosting response generation,
based on the recently developed theory of boost-
ing generative models. Moreover, we combined
boosting with different training and/or decoding
paradigms, and empirically show that boosting can
invariably improve them, in both quantitative and



39

qualitative evaluation.

2 Preliminaries

For standard sequence-to-sequence approaches,
training of models and decoding for generations
are done through maximum likelihood estimation:

log p(y | x) =
n∑
i=1

log p(yi | y1 . . . yi−1, x) (1)

where x is the source (or context) and y is the tar-
get (or response). (Li et al., 2015) proposed a de-
coding objective based on mutual information of
x and y to improve diversity:

MMI(x, y) = log p(y | x)− λp(y) (2)

The conditional probability of y given x is esti-
mated from sequence-to-sequence models, and the
marginal probability of y from a separately trained
language model.

Reward-augmented maximum likelihood learn-
ing (RAML) (Norouzi et al., 2016) incorporates
task rewards into maximum likelihood training.
An exponential payoff distribution is defined:

s(y | y∗; τ) = 1

Z(y∗, τ)
exp{r(y, y∗)/τ} (3)

where y∗ is the true target, r is a pre-defined
reward function, and τ is temperature parame-
ter. The model is trained to minimize the KL-
divergence of the conditional distribution of y and
the payoff distribution:∑

x,y∗

DKL(s(y | y∗) || p(y | x)) =

−
∑
x,y∗

∑
y

s(y | y∗) log p(y | x) + const

(4)
In multiplicative boosting, the density estimate

of at each iteration T is given by:

qT = hαT
T qT−1 =

∏T
t=1 h

αt
t

ZT
(5)

where ht is tth model’s estimate, and αt is mod-
els’ weights. The goal of boosting is to approx-
imate better the true distribution, P . It is shown
in (Grover and Ermon, 2018) that if the model at
each iteration can optimize for a re-weighted dis-
tribution of the following form perfectly:

dt ∝ (
p

qt
)βt (6)

the distance of models’ density estimate and the
true distribution is decreasing, that is,

DKL(P || Qt) ≤ DKL(P || Qt−1) (7)

In equation (5) - (7), the density estimates are
for the joint distribution of x and y. We make
an additional assumption that the sources are uni-
formly distributed so that p(x, y) = 1

np(y | x),
for the ease of applying the boosting algorithm to
sequence-to-sequence training.

The true distribution P is usually set to be uni-
form to boost the coverage of generative mod-
els. One of our innovations in this work is ex-
tending it to the exponential payoff distribution in
RAML setting. The decreasing property of KL-
divergence still holds, as the theoretical analysis is
very much similar to that in (Grover and Ermon,
2018).

3 Design

We discuss some practical considerations when
applying boosting framework to response gener-
ation problem.

3.1 Data Reweighting

In the generative boosting method of (6), the
weights of data are inversely proportional to the
perplexities of the responses. However, it is ob-
served in experiments that the generic responses
do not always have low perplexities. If not handled
properly, such responses end up being boosted,
and become the frequently generated responses at
the next iteration.

In search for a consistent way to penalize
generic responses with high perplexities, we first
considered the discriminative boosting approach
introduced in (Grover and Ermon, 2018). A
discriminator is trained to differentiate between
generated responses and human responses. The
weights of data after discriminative boosting is the
density ratio from the discriminator. The idea is
closely related to generative adversarial learning
(Goodfellow et al., 2014). However, in our case
it is difficult to apply such approach. Because
the generated responses are very limited, most
classifiers can easily memorize all of them. The
discriminators end up assigning extremely high
probabilities to most of the human responses, and
close-to-zero densities to generated responses. In
other words, the amount of negative examples is
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Model Win Loss Tie
MLE 37.6± 6.4% 17.6± 4.0% 44.8± 6.4%

MMI 36.0± 9.2% 16.8± 6.8% 47.2± 8.8%

RAML 44.8%± 10.8% 16.8± 4.8% 38.4± 12.4%

Table 1: Human evaluation results. “Win” stands for the boosted model winning.

too small to train a discriminator to obtain good
decision boundaries and generalization.

Instead, we resort to a simple rule-based dis-
criminator. At each iteration, we maintain a list
of most frequently generated responses, Ct. We
choose a binary function to decide whether two
responses, y, z, are similar, denoted by sim(y, z).
The discriminator is defined as

Dt(y) =

{
c if ∃y0 ∈

⋃
tCt, sim(y, y0) = 1

0.5 otherwise
(8)

And the weights of data at round t is given by

dt(x, y) ∝ (
p(x, y)

qt(x, y)
)βt

Dt(y)

1−Dt(y)
(9)

In our experiments, the similarity function is cho-
sen to be a predicate of whether there is an n-gram
overlap with n ≥ 4. We chose to be aggressive and
set c = 0, so responses that are similar to those
generated by previous models are excluded. The
sizes of Ct is chosen to be around 20 so that the
amount of training data reduces by about 10 per-
cent at each iteration.

In our experiments, we include bootstrapping
as an additional baseline. At each iteration, 80%
of the data are randomly sampled for training and
validation.

3.2 Model Combination
At decoding time, due to the discrete nature of text
data, the optimization for the response that has
highest probability (or mutual information) is in-
tractable, so we use the following heuristics. Can-
didate responses are generated from the single best
model using beam search. The candidates are then
scored by all models, and the one with the highest
average score is chosen. The model weights αt are
set to be uniform.

Since each model are trained on data with
different weights, their un-normalized probabil-
ity density estimates may have different scales.
Hence, at decoding time, scores of each model
are z-normalized with mean and standard devia-
tion calculated from the training data.

3.3 Other Details

For RAML, the reward function is based on tf-idf
matching – that is, the sum of products of term fre-
quency and inverse document frequency of each
word, divided by lengths. The rationale is to en-
courage models to include key content words in
their generations. Empirically, we observed that
RAML with aforementioned reward can generate
better responses than MLE baseline even without
boosting. The temperature parameter τ is set to
be 0.1. To approximate the expectation term in
the objective of RAML, three additional responses
with highest rewards are selected from training
data for each message-response pair in the begin-
ning. We do not sample new responses at the fol-
lowing iterations for the sake of fair comparison.
We set βt in equation (6) to be 1

bt where b is be-
tween 10 and 20, and is tuned on validation set.

4 Experiments

We evaluate our algorithm on single-turn conver-
sations from Persona Dataset (Zhang et al., 2018).
Participants are instructed to converse according
to their given personalized background. In the
preparation of training data, persona descriptions
are prepended to the sources, and all trailing punc-
tuations are truncated from the responses.

We use a standard sequence-to-sequence archi-
tecture with attention mechanism. Both encoder
and decoder are LSTMs with hidden size of 512
and input size of 300. Attentional contexts are
weighted sums of hidden states of words in per-
sonas. We use Adam optimizer to train the model
with learning rate of 0.001. All model parameters
including word embeddings are randomly initial-
ized between −0.1 and 0.1.

In addition to the base models mentioned be-
fore, we investigate the combination of RAML
and MMI, in which models are trained with
RAML and decoded with MMI.
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(a) BLEU (b) ROUGE-L (c) Cosine Similarity

(d) Inertia (e) Number of unigrams (f) Number of trigrams

Figure 1: Quantitative results. X-axis is for iteration and y-axis for metrics. The numbers at iteration 1 represent
the base models.

4.1 Quantitative Evaluation

We employ two standard word-overlap-based met-
rics, BLEU (Papineni et al., 2002) and ROUGE
(Lin, 2004). We also performed embedding-based
evaluation. We embed the responses using the
word averaging approach by (Arora et al., 2016),
and measure the cosine similarity of the embed-
dings of generated responses and true responses.
To measure the diversity of the responses, we per-
form k-means clustering on their embeddings with
10 clusters, and measure the inertia. The larger in-
ertia indicates more diversity. We also show statis-
tics on number of distinct n-grams.

As can be seen in Figure 1, the general trend of
boosting is that performance drastically improves
up to the third model, then it slowly gets bet-
ter or stays the same. Boosting is far better than
bootstrapping. Boosting can improve lexical-level
semantic similarity between generate responses
and true responses, measured by cosine similarity.
While BLEU scores only fluctuate in a tight range,
ROUGE-L suffered from boosting a little, when
used on base models that can generate more diver-
sified responses. But we do not consider BLEU
and ROUGE the most important metrics. Diver-
sity measures, including count of distinct n-grams
and inertia of clusters, are significantly improved
by boosting. Combining RAML and MMI seems
to give an advantage in BLEU (mainly because
generated responses are longer), inertia, and num-

ber of unigrams.

4.2 Qualitative Evaluation

To ensure the diversified responses are as relevant
as before boosting, we ask 5 annotators to eval-
uate a randomly sampled subset of 100 examples
from each base model against its boosted counter-
part. Each context are paired with two responses –
one from the base model and one from the boosted
model. The annotators are asked to choose the
most appropriate response, or tie if they are equal.
The results are shown in Table 1. On average,
about 38 to 47 percent of the time the annota-
tors showed no preferences, and boosted models
beat base models for 36 to 45 percent of the trials.
Note that all individual tests show annotators pre-
ferred the boosted model over the base model, ex-
cept for one case, where the annotator chose MMI
base model over the boosted model slightly more
often. We also provide an example of generated
responses in Table 2.

5 Conclusion

We investigated the use of boosting to improve the
diversity and relevance of dialog response genera-
tion, with various training and decoding objectives
including mutual-information-based decoding and
reward-augmented maximum likelihood learning.
Our combination of boosting and RAML for re-
sponse generation is novel, and its combination



42

Context my family lives in alaska . it is freezing down there .
Human i bet it is oh i could not
Baseline what do you do for a living
Boosted do you live near the beach ? i live in canada

Table 2: Examples of generated responses from baseline sequence-to-sequence model and its boosted counterpart.

with MMI gives some of the most diversified re-
sults. Quantitative evaluation shows our method
can substantially improve the diversity without
harming the quality of generated responses. Our
human evaluation provides evidence that diversi-
fied responses by boosting are even more appro-
priate than those generated from baseline models.
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