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Abstract

Recent research has made impressive progress
in single-turn dialogue modelling. In the
multi-turn setting, however, current models are
still far from satisfactory. One major chal-
lenge is the frequently occurred coreference
and information omission in our daily con-
versation, making it hard for machines to un-
derstand the real intention. In this paper, we
propose rewriting the human utterance as a
pre-process to help multi-turn dialgoue mod-
elling. Each utterance is first rewritten to re-
cover all coreferred and omitted information.
The next processing steps are then performed
based on the rewritten utterance. To properly
train the utterance rewriter, we collect a new
dataset with human annotations and introduce
a Transformer-based utterance rewriting archi-
tecture using the pointer network. We show
the proposed architecture achieves remarkably
good performance on the utterance rewriting
task. The trained utterance rewriter can be eas-
ily integrated into online chatbots and brings
general improvement over different domains.!

1 Introduction

Dialogue systems have made dramatic progress in
recent years, especially in single-turn chit-chat and
FAQ matching (Shang et al., 2015; Ghazvinine-
jad et al., 2018; Molino et al., 2018; Chen et al.,
2019). Nonethless, multi-turn dialogue modelling
still remains extremely challenging (Vinyals and
Le, 2015; Serban et al., 2016, 2017; Shen et al.,
2018a,b). The challenge is multi-sided. One
most important difficulty is the frequently oc-
curred coreference and information omission in
our daily conversations, especially in pro-drop
languages like Chinese or Japanese. From our pre-
liminary study of 2,000 Chinese multi-turn con-
*Both authors contributed equally.

'The code is available on https://github.com/
chin-gyou/dialogue—-utterance-rewriter.
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Context 1

Human: 15776 £ 572

Human: How tall is Messi?

ChatBot: B J1 BiiE I B m &SRR 79T -
ChatBot: Officially he is 5ft 7 inches.
Human: [ERICE M B IFAIER 6L ?

Human: Who is the best, he or C.Ronaldo?
Human: 75 /5 FICH & B IFRIER R ?
Human: Who is the best, Messi or C.Ronaldo?
Context 2

Human: REE0 A HE?

Human: What movie do you like most?
ChatBot: 732 bt o

ChatBot: Titanic.

Human: FF 20?7

Human: Why?

Human: Rt 255 0 G2 ?

Human: Why do you like Titanic most?

Utterance 1
(Translation)
Utterance 2

Utterance 3

Utterance 3’

Utterance 1

Utterance 2

Utterance 3

Utterance 3’

Table 1: An example of multi-turn dialogue. Each ut-
terance 3 is rewritten into Utterance 3’. Green means
coreference and blue means omission.

versations, different degrees of coreference and
omission exist in more than 70% of the utterances.
Capturing the hidden intention beneath them re-
quires deeper understanding of the dialogue con-
text, which is difficult for current neural network-
based systems. Table 1 shows two typical exam-
ples in multi-turn dialogues. “{t#”(he) from Con-
text 1 is a coreference to “#& 74 (Messi) and “ N1t
2.”(Why) from Context 2 omits the further ques-
tion of “Hft 4 B M ZRH JE 3 (Why do you
like Tatanic most)?. Without expanding the coref-
erence or omission to recover the full information,
the chatbot has no idea how to continue the talk.
To address this concern, we propose simplifying
the multi-turn dialogue modelling into a single-
turn problem by rewriting the current utterance.
The utterance rewriter is expected to perform (1)
coreference resolution and (2) information com-
pletion to recover all coreferred and omitted men-
tions. In the two examples from Table 1, each ut-
terance 3 will be rewritten into utterance 3'. Af-
terwards, the system will generate a reply by only
looking into the utterance 3’ without considering
the previous turns utterance 1 and 2. This sim-
plification shortens the length of dialogue con-
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text while still maintaining necessary information
needed to provide proper responses, which we be-
lieve will help ease the difficulty of multi-turn di-
alogue modelling. Compared with other methods
like memory networks (Sukhbaatar et al., 2015) or
explicit belief tracking (MrkSi¢ et al., 2017), the
trained utterance rewriter is model-agnostic and
can be easily integrated into other black-box dia-
logue systems. It is also more memory-efficient
because the dialogue history information is re-
flected in a single rewritten utterance.

To get supervised training data for the utterance
rewriting, we construct a Chinese dialogue dataset
containing 20k multi-turn dialogues. Each utter-
ance is paired with corresponding manually anno-
tated rewritings. We model this problem as an ex-
tractive generation problem using the Pointer Net-
work (Vinyals et al., 2015). The rewritten utter-
ance is generated by copying words from either the
dialogue history or the current utterance based on
the attention mechanism (Bahdanau et al., 2014).
Inspired by the recently proposed Transformer
architecture (Vaswani et al., 2017) in machine
translation which can capture better intra-sentence
word dependencies, we modify the Transformer
architecture to include the pointer network mech-
anism. The resulting model outperforms the re-
current neural network (RNN) and original Trans-
former models, achieving an F1 score of over 0.85
for both the coreference resolution and informa-
tion completion. Furthermore, we integrate our
trained utterance rewriter into two online chatbot
platforms and find it leads to more accurate inten-
tion detection and improves the user engagement.
In summary, our contributions are:

1. We collect a high-quality annotated dataset
for coreference resolution and information
completion in multi-turn dialogues, which
might benefit future related research.

We propose a highly effective Transformer-
based utterance rewriter outperforming sev-
eral strong baselines.

The trained utterance rewriter, when inte-
grated into two real-life online chatbots, is
shown to bring significant improvement over
the original system.

In the next section, we will first go over some re-
lated work. Afterwards, in Section 3 and 4, our
collected dataset and proposed model are intro-
duced. The experiment results and analysis are
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presented in Section 5. Finally, some conclusions
are drawn in Section 6.

2 Related Work

2.1 Sentence Rewriting

Sentence rewriting has been widely adopted in
various NLP tasks. In machine translation, people
have used it to refine the output generations from
seq2seq models (Niehues et al., 2016; Junczys-
Dowmunt and Grundkiewicz, 2017; Grangier and
Auli, 2017; Gu et al., 2017). In text summariza-
tion, reediting the retrieved candidates can provide
more accurate and abstractive summaries (See
et al., 2017; Chen and Bansal, 2018; Cao et al.,
2018). In dialogue modelling, Weston et al. (2018)
applied it to rewrite outputs from a retrieval model,
but they pay no attention to recovering the hidden
information under the coreference and omission.
Concurrent with our work, Rastogi et al. (2019)
adopts a similar idea on English conversations to
simplify the downstream SLU task by reformulat-
ing the original utterance. Rewriting the source
input into some easy-to-process standard format
has also gained significant improvements in in-
formation retrieval (Riezler and Liu, 2010), se-
mantic parsing (Chen et al., 2016) or question an-
swering (Abujabal et al., 2018), but most of them
adopt a simple dictionary or template based rewrit-
ing strategy. For multi-turn dialogues, due to the
complexity of human languages, designing suit-
able template-based rewriting rules would be time-
consuming.

2.2 Coreference Resolution

Coreference resolution aims to link an antecedent
for each possible mention. Traditional approaches
often adopt a pipeline structure which first iden-
tify all pronouns and entities then run clustering
algorithms (Haghighi and Klein, 2009; Lee et al.,
2011; Durrett and Klein, 2013; Bjorkelund and
Kuhn, 2014). At both stages, they rely heav-
ily on complicated, fine-grained features. Re-
cently, several neural coreference resolution sys-
tems (Clark and Manning, 2016a,b) utilize dis-
tributed representations to reduce human labors.
Lee et al. (2017) reported state-of-the-art results
with an end-to-end neural coreference resolution
system. However, it requires computing the scores
for all possible spans, which is computationally
inefficient on online dialogue systems. The re-
cently proposed Transformer adopted the self-



attention mechanism which could implicitly cap-
ture inter-word dependencies in an unsupervised
way (Vaswani et al., 2017). However, when mul-
tiple coreferences occur, it has problems properly
distinguishing them. Our proposed architecture is
built upon the Transformer architecture, but per-
form coreference resolution in a supervised setting
to help deal with ambiguous mentions.

3 Dataset

To get parallel training data for the sentence
rewriting, we crawled 200k candidate multi-turn
conversational data from several popular Chinese
social media platforms for human annotators to
work on. Sensitive information is filtered be-
forehand for later processing. Before starting the
annotation, we randomly sample 2,000 conversa-
tional data and analyze how often coreference and
omission occurs in multi-turn dialogues. Table 2
lists the statistics. As can be seen, only less than
30% utterances have neither coreference nor omis-
sion and quite a few utterances have both. This
further validates the importance of addressing the
these situations in multi-turn dialogues.

% Rate
Coreference 33.5
Omission 524
Neither 29.7

Table 2: Proportion of utterances containing corefer-
ence and omission in multi-turn conversation

In the annotation process, human annotators
need to identify these two situations then rewrite
the utterance to cover all hidden information. An
example is shown in Table 1. Annotators are re-
quired to provide the rewritten utterance 3’ given
the original conversation [utterance 1,2 and 3]. To
ensure the annotation quality, 10% of the annota-
tions from each annotator are daily examined by a
project manager and feedbacks are provided. The
annotation is considered valid only when the ac-
curacy of examined results surpasses 95%. Apart
from the accuracy examination, the project man-
age is also required to (1) select topics that are
more likely to be talked about in daily conversa-
tions, (2) try to cover broader domains and (3) bal-
ance the proportion of different coreference and
omission patterns. The whole annotation takes 4
months to finish. In the end, we get 40k high-
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quality parallel samples. Half of them are nega-
tive samples which do not need any rewriting. The
other half are positive samples where rewriting is
needed. Table 3 lists the statistics. The rewritten
utterance contains 10.5 tokens in average, reduc-
ing the context length by 80%.

Dataset size: 40,000
Avg. length of original conversation:  48.8
Avg. length of rewritten utterance: 10.5

Table 3: Statistics of dataset. Length is counted in the
unit of Chinese characters.

4 Model

4.1 Problem Formalization

We denote each training sample as (H,U,, — R).
H = {U,Us,...,U,_1} represents the dialogue
history containing the first n — 1 turn of utter-
ances. U, is the nth turn of utterance, the one
that needs to be rewritten. R is the rewritten ut-
terance after recovering all corefernced and omit-
ted information in U,,. R could be identical to U,
if no coreference or omission is detected (nega-
tive sample). Our goal is to learn a mapping func-
tion p(R|(H,U,)) that can automatically rewrite
U, based on the history information H. The pro-
cess is to first encode (H, U,,) into s sequence of
vectors, then decode R using the pointer network.
The next section will explain the steps in order.

4.2 Encoder

We unfold all tokens in (H,U,) into
(w1, wa,...,wy). m is the number of to-
kens in the whole dialogue. ~An end-of-turn
delimiter is inserted between each two turns. The
unfolded sequence of tokens are then encoded
with Transformer. We concatenate all tokens in
(H,U,) as the input, in hope that the Transformer
can learn rudimentary coreference information
within them by means of the self-attention mech-
anism. For each token wj;, the input embedding
is the sum of its word embedding, position

embedding and turn embedding:
The word embedding W E(w;) and position em-

bedding PFE(wj;) are the same as in normal Trans-
former architectures (Vaswani et al., 2017). We
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Figure 1: Architecture of our proposed model. Green box is the Transformer encoder and pink box is the decoder.
The decoder computes the probability \ at each step to decide whether to copy from the context or utterance.

add an additional turn embedding T'E(w;) to in-
dicate which turn each token belongs to. To-
kens from the same turn will share the same turn
embedding. The input embeddings are then for-
warded into L stacked encoders to get the final
encoding representations. Each encoder contains
a self-attention layer followed by a feedforward
neural network.:

E(O) = [I<w1>7 I(w2)7 s 7I(wm)
E() = FNN(MultiHead(E(~Y E(-1 E(-DY)

FNN is the feedforward neural network and
MultiHead(Q, K, V) is a multi-head attention
function taking a query matrix @, a key matrix K,
and a value matrix V as inputs. Each self-attention
and feedforward component comes with a residual
connection and layer-normalization step, which
we refer to Vaswani et al. (2017) for more details.
The final encodings are the output from the Lth
encoder E(X).

4.3 Decoder

The decoder also contains L layers, each layer is
composed of three sub-layers. The first sub-layer
is a multi-head self-attention:

M! = MultiHead (D!, DU~ DY)

D = R. The second sub-layer is encoder-
decoder attention that integrates E() into the de-
coder. In our task, as H and U, serve different pur-
poses, we use separate key-value matrix for tokens
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coming from the dialogue history H and those
coming from U,,. The encoded sequence E(X) ob-
tained from the last section is split into E%) (en-
codings of tokens from H) and Eg;) (encodings
of tokens from U,,) then processed separately. The
encoder-decoder vectors are computed as follows:

C(H)' = MultiHead(M?, E{ E{})

C(U,)! = MultiHead MY, E{/) | EL)

The third sub-layer is a position-wise fully con-
nected feed-forward neural network:

DW = FNN([C(H)! o C(U,)"])
where o denotes vector concatenation.

4.4 Output Distribution

In the decoding process, we hope our model could
learn whether to copy words from H or U, at
different steps. Therefore, we impose a soft gat-
ing weight A to make the decision. The decoding
probability is computed by combining the atten-



tion distribution from the last decoding layer:

p(Re=w|H, Uy, Rep)=X >
i:(wy=w)A\(w; €H)

+(1-N) >

J:(wj=w)A(w;€Un)
a = Attention(M®), E(ULH))
a/ = Attention(M®), E%))
A =o(wy D +wjCH)F + wC(Un)F)

at g

!
Ay,

a and o are the attention distribution over tokens
in H and U, respectively. wy, wy, and wy are
parameters to be learned, o is the sigmoid func-
tion to output a value between 0 and 1. The gat-
ing weight A works like a sentinel to inform the
decoder whether to extract information from the
dialogue history H or directly copy from U,. If
U,, contains neither coreference nor information
omission. A would be always 1 to copy the origi-
nal Uy, as the output. Otherwise A becomes 0 when
a coreference or omission is detected. The atten-
tion mechanism is then responsible of finding the
proper coreferred or omitted information from the
dialogue history. The whole model is trained end-
to-end by maximizing p(R|H, U,).

S Experiments

We train our model to perform the utterance
rewriting task on our collected dataset. In this
section, we focus on answering the following two
questions: (1) How accurately our proposed model
can perform coreference resolution and informa-
tion completion respectively and (2) How good
the trained utterance rewriter is at helping off-the-
shelf dialogue systems provide more appropriate
responses. To answer the first question, we com-
pare our models with several strong baselines and
test them by both automatic evaluation and hu-
man judgement. For the second question, we in-
tegrate our rewriting model to two online dialogue
systems and analyze how it affects the human-
computer interactions. The following section will
first introduce the compared models and basic set-
tings, then report our evaluation results.

5.1 Compared Models

When choosing compared models, we are mainly
curious to see (1) whether the self-attention based
Transformer architecture is superior to other net-
works like LSTMs, (2) whether the pointer-based

26

generator is better than pure generation-based
models and (3) whether it is preferred to split the
attention by a coefficient A as in our model. With
these intentions, we implement the following four
types of models for comparison:

1. (L/T)-Gen: Pure generation-based model.
Words are generated from a fixed vocabulary.

. (L/T)-Ptr-Net: Pure pointer-based model as
in Vinyals et al. (2015). Words can only be
copied from the input.

. (L/T)-Ptr-Gen: Hybrid pointer+generation
model as in See et al. (2017). Words can
be either copied from the input or generated
from a fixed vocabulary.

(L/T)-Ptr-A\: Our proposed model which
split the attention by a coefficient .

(L/T) denotes the encoder-decoder structure is the
LSTM or Transformer. For the first three types
of models, we unfold all tokens from the dialogue
as the input. No difference is made between the
dialogue history and the utterance to be rewritten.

5.2 Experiment Settings

Transformer-based models We set the hidden
size as 512. The attention has 8 individual heads
and the encoder/decoder have 6 individual stacked
layers. Models are optimized with the Adam opti-
mizer. The initial learning rate is 0.0001 and batch
size is 64. All hyperparameters are tuned base on
the performance on the validation data.

LSTM-based Models We encode words with a
single-layer bidirectional LSTM and decode with
a uni-directional LSTM. We use 128-dimensional
word embeddings and 256-dimensional hidden
states for both the encoder and decoder.”? The
batch size is set as 128. Models are trained using
Adagrad with learning rate 0.15 and initial accu-
mulator value 0.1, same as in See et al. (2017).

General Setup We built our vocabulary based
on character-based segmentation for Chinese
scripts.  For non-Chinese characters, like fre-
quently mentioned entity names ‘“Kobe” and
“NBA”, we split them by space and keep all
unique tokens which appear more than twice. The
resulting vocabulary size is 5629 (4813 Chinese

2We tried increasing the dimension but find it degrades
the performance.



BLEU-1 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L EM
L-Gen 65.49 55.38 38.69 65.57 48.57 66.38 47.14/80.18
L-Ptr-Gen  69.78 59.25 43.07 68.24 54.13 70.36 47.35|84.09
L-Ptr-Net 71.70 60.29 44.72 70.81 56.35 72.33 48.24191.94
L-Ptr-A 72.26 62.15 47.11 73.47 57.51 74.55 51.66(93.01
T-Gen 68.74 59.09 42.57 69.12 50.92 69.70 48.59|87.61
T-Ptr-Gen  70.67 62.80 45.17 73.96 53.14 72.07 49.86|89.62
T-Ptr-Net 75.10 66.89 48.11 76.10 58.51 75.54 53.30/94.71
T-Ptr-\ 77.85 68.21 52.47 78.49 60.53 77.70 55.84/98.14

Table 4: BLEU, ROUGE (F;), and EM scores on the test set. EM score is split into the results on the positive (left)
and negative (right) test samples. The first half is LSTM-based models and the second half is Transformer-based.

Bold denotes best results.

characters and 816 other tokens), including the
end-of-turn delimiter and a special UNK token for
all unknown words. In the testing stage, all mod-
els decode words by beam search with beam size
set to 4.

5.3 Quality of Sentence ReWriting

Precision Recall F1
Lee et al. (2017) 0.82 0.78 0.80
L-Gen 0.76 0.66 0.71
L-Ptr-Gen 0.81 0.76  0.78
L-Ptr-Net 0.83 0.78 0.81
L-Ptr-\ 0.85 0.82 0.83
T-Gen 0.80 0.75 0.77
T-Ptr-Gen 0.85 0.81 0.83
T-Ptr-Net 0.88 0.87 0.88
T-Ptr-\ 0.93 090 0.92

Table 5: Precision, recall and F1 score of corefer-
ence resolution. First row is the current state-of-the-art
coreference resolution model

Accuracy of Generation We first evaluate the
accuracy of generation leveraging three metrics:
BLEU, ROUGE, and the exact match score(EM)
(the percentage of decoded sequences that exactly
match the human references). For the EM score,
we report separately on the positive and negative
samples to see the difference. We report BLEU-1,
2, 4 scores and the F1 scores of ROUGE-1, 2, L.
The results are listed in Table 4. We can have sev-
eral observations in response to the three questions
proposed in the beginning of Section 5.1:

1. Transformer-based models lead to signif-
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icant improvement compare with LSTM-
based counterparts. This implies the self-
attention mechanism is helpful in identifying
coreferred and omitted information. More
analysis on how it helps coreference resolu-
tion can be seen in the next section.

The generation mode does not work well in
our setting since all words can be retrieved
from either H or U,. Pointer-based mod-
els outperform the more complex generation-
based and hybrid ones.

. Separately processing H and U,, then com-
bine their attention with a learned \ performs
better than treating the whole dialogue tokens
as s single input, though the improvement is
less significant compared with previous two
mentions.

Overall our proposed model achieves remarkably
good performance, with 55.84% of its genera-
tions exactly matches the human reference on
the positive samples. For negative samples, our
model properly copied the the original utterances
in 98.14% of the cases. It suggests our model is
already able to identify the utterances that do not
need rewriting. Future work should work on im-
proving the rewriting ability on positive samples.

Coreference Resolution Apart from the stan-
dard metrics for text generation, we specifically
test the precision, recall and F1 score of coref-
erence resolution on our task. A pronoun or a
noun is considered as properly coreferred if the
rewritten utterance contains the correct mention in
the corresponding referent. The result is shown
in Table 5. To compare with current state-of-the-



History UL RETS LTINS U2: F551EW E BERS R UL: RETECHERR NG U2: 1Y
(Translation)  Ul: Do you read Shakespeare U2: I especially like Romeo and Juliet Ul: Do you play League of Legends U2: Yes.
Utterance U3:FEIRA A U3: AW EA R
U3: Which character do you like U3: When did it start
Ground Truth  /REW B B S A AR A BT IR BT O MR B 1)
Which character do you like in Romeo and Juliet When did you start to play League of Legends
L-Gen PREAS L HLIERS // Do you like Shakespeare A IHBEFF I FF U FF IR // When start start start
L-Ptr-Gen R AR T A L 5 // You like Romeo character character 2B EFF UG // When did it start
L-Ptr-Net PRER T IS ST // You like Romeo and Juliet B i S HERR 2 FF AR // When did League of Legends start
L-Ptr-\ IRE T WS R A €2 // You like Romeo and Juliet character 4 BHEFF IR DT HERR % /) // When did you start to play League of Legends
T-Gen IRE T RS AT /7 You like Romeo and Juliet ST A BHBEFFIRETHY // Yes When start to play
T-Ptr-Gen VREA T HER S A [ BB // Which do you like in Romeo and Juliet 2B BEFF A EY // When did it start
T-Ptr-Net VREA T BEER S 2R AT A €8 // Character you like Romeo and Juliet BHERR B A 2 B FFUA B // League of Legends When did you start to play
T-Ptr-\ REIR T BER 5 SR RN F 5 // Which character do you like Romeo and Juliet {14 BHEFF G BLSHERE B 1) // When did you start to play League of Legends

Table 6: Examples of rewritten utterances. Highlighted utterances are exactly the same as the ground truth.

100

ﬁ.‘FF'

-

(8 @B &

Messi

%
how

g

Figure 2: Visualization of the self-attention weights
in Transformer. “fti”(he) is properly aligned to “1§
M’ (Messi).

art models. We train the model from Lee et al.
(2017) on our task and report the results on the first
row. The result is quite consistent with the find-
ings from the last section. Our final model outper-
forms the others by a large margin, reaching a pre-
cision score of 93% and recall score of 90%. It im-
plies our model is already quite good at finding the
proper coreference. Future challenges would be
more about information completion. Figure 2 fur-
ther provides an examples of how the Transformer
can help implicitly learn the coreference resolu-
tion through the self-attention mechanism. The
same example is also shown in Table 1. The pro-
noun “ftf”(he) in the utterance is properly aligned
to the mention “#P5”(Messi) in the dialogue his-
tory, also partially to “EK 51" (player) which is the
occupation of him. The implicitly learned coref-
erence relation should be part of the reason that
Transformers outperform LSTM models on the
coreference resolution task.

28

Model Recall Precision F1  Fluency
L-Gen 0.65 0.70 0.67 4.31
L-Ptr-Gen 0.70 0.74 0.72 4.52
L-Ptr-Net 0.78 0.81 0.79 4.74
L-Ptr-\ 0.80 0.82 0.81 4.82
T-Gen 0.71 0.74 0.73 4.74
T-Ptr-Gen 0.77 0.81 0.79 4.85
T-Ptr-Net 0.82 0.84 0.83 4.87
T-Ptr-\ 0.85 0.87 0.86 4.90
Human - - - 4.97

Table 7: Recall, Precision, F1 score on information
completion and Human evaluation results on fluency.

Information Completion Similar as corefer-
ence resolution, we evaluate the quality of infor-
mation completeness separately. One omitted in-
formation is considered as properly completed if
the rewritten utterance recovers the omitted words.
Since it inserts new words to the original utter-
ance, we further conduct a human evaluation to
measure the fluency of rewritten utterances. We
randomly sample 600 samples from our positive
test set. Three participants were asked to judge
whether the rewritten utterance is a fluent sentence
with the score 1(not fluent)-5(fluent). The fluency
score for each model is averaged over all human
evaluated scores.

The results are shown in Table 7. Basically
the condition is similar as in Table 5. T-Ptr-A
achieves the best performance, with the F1 score
of 0.86. The performance is slightly worse than
coreference resolution since information omission
is more implicit. Retrieving all hidden informa-
tion is sometimes difficult even for humans. More-
over, the fluency of our model’s generations is
very good, only slightly worse than the human ref-
erence (4.90 vs 4.97). Information completeness
does not have much effects on the fluency. Exam-



Task-Oriented Chatbot

Ul: How is the weather in Beijing U2: The weather is fine and the temperature is suitable

U3: AL KA AfiE
U3: What clothes are suitable for weather in Beijing

Context Ul LR KRB AR U2 REIER, EEEE
(Translation)
Utterance U3: IREEAT AR A&

U3: Then what clothes are suitable to wear
Intention AETENE )

Life Shopping
TAR N K AT 4 KT RI A R
What type of clothes do you want to buy

Chatbot Answer

WHRS
City Weather
RIER S F— I E

You’d better wear a coat according to the weather

Chit-Chat Chatbot

Ul: Curry’s 3-pointer is really good U2: The Warriors are the champion again this year

U3: BB R
U3: I agree that the Warriors are the champion again this year

BRME =M

Context Ul: ERR=EMEN U2: 5455 e %E
Utterance U3: W15

U3: I agree
Chatbot Answer 154

agree what

The Warriors are so strong

Table 8: Examples of integrated test. Left column is the original system and right is the one with utterance rewriter.
Blue words denote completed information by the utterance rewriter.

Model Intention Precision CPS

Original 80.77 6.3

With Rewrite 89.91 7.7
Table 9: Results of integrated testing. Intention

precision for task-oriented and conversation-turns-per-
session (CPS) for chitchat.

ples of rewritten utterances are shown in Table 6.

5.4 Integration Testing

In this section, we study how the proposed utter-
ance rewriter can be integrated into off-the-shelf
online chatbots to improve the quality of gener-
ated responses. We use our best model T-Ptr-) to
rewrite each utterance based on the dialogue con-
text. The rewritten utterance is then forwarded to
the system for response generation. We apply on
both a task-oriented and chitchat setting. The re-
sults are compared with the original system having
no utterance rewriter.

Task-oriented Our task-oriented dialogue sys-
tem contains an intention classifier built on Fast-
Text(Bojanowski et al., 2017) and a set of tem-
plates that perform policy decision and slot-value
filling sequentially. Intention detection is a most
important component in task-oriented dialogues
and its accuracy will affect all the following steps.
We define 30 intention classes like weather, ho-
tel booking and shopping. The training data con-
tains 35,447 human annotations. With the combi-
nation of our rewriter, the intention classier is able
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to achieve a precision of 89.91%, outperforming
the original system by over 9%. The improved in-
tention classification further lead to better conver-
sations. An example is shown in Table 8, a multi-
turn conversation about the weather. The user first
asks “How is the weather in Beijing”, then follows
with a further question about “Then what clothes
are suitable to wear”. The original system wrongly
classified the user intention as shopping since this
is a common conversational pattern in shopping.
In contrast, our utterance rewriter is able to re-
cover the omitted information “under the weather
in Beijing”. Based on the rewritten utterance, the
classifier is able to correctly detect the intention
and provide proper responses.

Chitchat Our social chatbot contains two sep-
arate engines for multi-turn and single-turn dia-
logues. Each engine is a hybrid retrieval and gen-
eration model. In real-life applications, a user
query would be simultaneously distributed to these
two engines. The returned candidate responses
are then reranked to provide the final response.
Generally the model is already able to provide
rather high-quality responses under the single-turn
condition, but under multi-turn conversations, the
complex context dependency makes the genera-
tion difficult. We integrate our utterance rewriter
into the single-turn engine and compare with the
original model by conducting the online A/B test.
Specifically, we randomly split the users into two
groups. One talks with the original system and the
other talks with the system integrated with the ut-
terance rewriter. All users are unconscious of the



details about our system. The whole test lasted
one month. Table 9 shows the Conversation-turns
Per Session (CPS), which is the average num-
ber of conversation-turns between the chatbot and
the user in a session. The utterance rewriter in-
creases the average CPS from 6.3 to 7.7, indicat-
ing the user is more engaged with the integrated
model. Table 8 shows an example of how the ut-
terance rewriter helps with the generation. After
the rewriting, the model can better understand the
dialogue is about the NBA team Warriors, but the
original model feels confused and only provides a
generic response.

6 Conclusion

In this paper, we propose improving multi-turn di-
alogue modelling by imposing a separate utterance
rewriter. The rewriter is trained to recover the
coreferred and omitted information of user utter-
ances. We collect a high-quality manually anno-
tated dataset and designed a Transformer-pointer
based architecture to train the utterance rewriter.
The trained utterance rewriter performs remark-
ably well and, when integrated into two online
chatbot applications, significantly improves the in-
tention detection and user engagement. We hope
the collected dataset and proposed model can ben-
efit future related research.
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