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1 Overall

We live in a golden age of information, where
we have access to vast amount of data in vari-
ous forms: text, video and audio. Over the last
few years, one of the key task that has been stud-
ied in support of natural language understanding
and information extraction from text, is the task
of Entity Linking (previously studied as Wikifica-
tion). Entity Linking (henceforth, EL) (Bunescu
and Pasca, 2006; Cucerzan, 2007; Ratinov et al.,
2011) is the task of mapping mentions of entities
in a text document to an entry in a large catalog
of entities such as Wikipedia or another knowl-
edge base (KB). It has also been one of the major
tasks in the Knowledge-Base Population track at
the Text Analysis Conference (TAC) (McNamee
and Dang, 2009b; Ji and Grishman, 2011; Ji et al.,
2014). Most works in the literature have used
Wikipedia as this target catalog of entities because
of its wide coverage and its frequent updates made
by the community. The previous Entity Linking
tutorial in ACL 2014 (Roth et al., 2014) addressed
mostly EL research which have focused on En-
glish, the most prevalent language on the web and
the one with the largest Wikipedia datasets. How-
ever, in the last few years research has shifted to
address the EL task in other languages, some of
which have very large web presence, such as Span-
ish (Fahrni et al., 2013; Ji et al., 2014), and Chi-
nese (Cao et al., 2014; Shi et al., 2014) but also
in others. In particular, there has been interest
in cross-lingual EL (Tsai and Roth, 2016; Sil and
Florian, 2016): given a mention in a foreign lan-
guage document, map it to the corresponding page
in the English Wikipedia. Beyond the motivation
that drives the English EL task – knowledge ac-
quisition and information extraction – in the cross-
lingual case and especially when dealing with low
resource languages, the hope is to provide im-
proved natural language understanding capabili-
ties for the many languages for which we have

few linguistic resources and annotation and no ma-
chine translation technology. The LoreHLT2016-
2017 evaluation1 and TAC 2017 pilot evaluation
2 target really low-resource languages like North-
ern Sotho or Kikuyu which only have about 4000
Wikipedia pages (about 1/1000 the size of the En-
glish wikipedia).

The primary goals of this tutorial are to review
the framework of cross-lingual EL and motivate it
as a broad paradigm for the Information Extraction
task. We will start by discussing the traditional EL
techniques and metrics and address questions rel-
evant to the adequacy of these to across domains
and languages. We will then present more recent
approaches such as Neural EL, discuss the basic
building blocks of a state-of-the-art neural EL sys-
tem and analyze some of the current results on En-
glish EL. We will then proceed to Cross-lingual
EL and discuss methods that work across lan-
guages. In particular, we will discuss and compare
multiple methods that make use of multi-lingual
word embeddings. We will also present EL meth-
ods that work for both name tagging and linking
in very low resource languages. Finally, we will
discuss the uses of cross-lingual EL in a variety
of applications like search engines and commer-
cial product selling applications. Also, contrary to
the 2014 EL tutorial, we will also focus on Entity
Discovery which is an essential component of EL.

The tutorial will be useful for both senior and
junior researchers (in academia and industry) with
interests in cross-source information extraction
and linking, knowledge acquisition, and the use of
acquired knowledge in natural language process-
ing and information extraction. We will try to pro-
vide a concise road-map of recent approaches, per-
spectives, and results, as well as point to some of
our EL resources that are available to the research
community.

1https://lorehlt.nist.gov/
2http://nlp.cs.rpi.edu/kbp/2017/taskspec pilot.pdf
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2 Brief Tutorial Outline

2.1 Motivation and Overview [20 mins]
We will motivate the general EL problem (for En-
glish) by teaching the general methods that in-
corporate distance measures (Ratinov et al., 2011;
Sil and Yates, 2013; Cheng and Roth, 2013). We
will then briefly discuss multi-lingual IE problems
and motivate cross-lingual EL (Ji et al., 2014; Sil
and Florian, 2016). Then we will motivate the
new trend of modeling distributional representa-
tions instead of distance.

2.2 Key Challenges and Multi-lingual
Embeddings [20 mins]

We will present some key challenges daunting
high-performing traditional EL systems and can-
didate generation and transliteration (Tsai and
Roth, 2018) from a knowledge-base. We will also
present the models for traditional cross-lingual
EL (Sil and Florian, 2016; Tsai and Roth, 2016)
and discuss some of their challenges: matching
context between non-English documents with the
English Wikipedia. Recently, neural Entity Dis-
covery and Linking (henceforth, EDL) techniques
have combated some of these challenges. These
systems use multi-lingual embeddings which are
essential building blocks for these neural archi-
tectures. Hence, before diving into the archi-
tectures we will survey multi-lingual embedding
techniques (Mikolov et al., 2013c; Faruqui and
Dyer, 2014; Ammar et al., 2016) and which ones
work best for neural EL systems and motivate neu-
ral EL.

2.3 Neural Methods for EDL [30 mins]
Various shared tasks such as TAC-KBP, ACE
and CONLL, along with corpora like OntoNotes
and ERE have provided the community substan-
tial amount of annotations for both entity men-
tion extraction (1,500+ documents) and entity
linking (5,000+ query entities). Therefore su-
pervised models have become popular again for
each step of EDL. Among all of the super-
vised learning frameworks for mention extrac-
tion, the most popular one is a combined Deep
Neural Networks architecture consisted of Bi-
directional Long Short-Term Memory networks
(Bi-LSTM) (Graves et al., 2013) and CRFs (Lam-
ple et al., 2016). In TAC-KBP2017 many teams
trained this framework from the same training
data (KBP2015 and KBP2016 EDL corpora) and
the same set of features (word and entity embed-
dings), but got very different results. The men-

tion extraction F-score gap between the best sys-
tem and the worst system is about 24%. We will
provide a systematic comparison and analysis on
reasons that cause this big gap. We will also in-
troduce techniques to make the framework more
robust to noise in low-resource settings.

We will then teach neural EL architectures
(Globerson et al., 2016; Gupta et al., 2017a; Sil
et al., 2018) that can tackle some of the challenges
of the traditional systems. Then we will proceed
to cross-lingual neural EL and survey the pipelines
that most of these EL systems employ: cross-
lingual NER and in-document coreference resolu-
tion. We will talk about how to model the con-
texts using various neural techniques like CNNs,
LSTMs etc. and how systems compute similar-
ity metrics of varying granularity (Francis-Landau
et al., 2016; Sil et al., 2018).

2.4 Coffee break: [30 minutes]

2.5 Language Universal Methods for
Cross-lingual EDL [30 mins]

We will then present some recent advances at de-
veloping low-cost approaches to perform cross-
lingual EL for 282 Wikipedia languages, such as
deriving silver-standard annotations by transfer-
ring annotations from English to other languages
through cross-lingual links and KB properties, re-
fining annotations through self-training and topic
selection, deriving language-specific morphology
features from anchor links, and mining word trans-
lation pairs from cross-lingual links (Pan et al.,
2017a). We will also introduce some recent exten-
sions along this line of work, including extending
the number of entity types from five to thousands,
and its impact on other NLP applications such as
Machine Translation.

2.6 Multiple Knowledge Bases [25 mins]

A task that is similar to multi-lingual EL in both
definition and approaches is domain-specific link-
ing of entities in documents based on a given set
of domains/corresponding knowledge repositories
(Gao and Cucerzan, 2017). This task is important
for applications such as the analysis and index-
ing of corporate document repositories, in which
many of the entities of interest are not part of
the general-knowledge but are rather company-
specific and may need to be kept private. Con-
flating such terminologies and knowledge into one
single knowledge model would be both daunt-
ing and undesirable. Thus, similarly to handling
multiple languages, a system built for multiple-
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domain linking, has to model each domain sepa-
rately. We will discuss a multi-KB entity linking
framework that employs one general-knowledge
KB and a large set of domain-specific KBs as link-
ing targets that extends the work from (Cucerzan,
2007, 2014a), as well as a supervised model with
a large and diverse set of features to detect when a
domain-specific KB matches a document targeted
for entity analysis (Gao and Cucerzan, 2017).

2.7 New Tasks, Trends and Open Questions
[15 mins]

Here, we will address some of the new settings:
multi-lingual EL for search engines (Pappu et al.,
2017; Tan et al., 2017). We will discuss some open
questions such as improving the title candidate
generation process for situations where the corre-
sponding titles only exist in the English Wikipedia
and also investigate the topological structure of re-
lated languages and exploit cross-lingual knowl-
edge transfer to enhance the quality of extraction
and linking (Tsai and Roth, 2018). We will also
discuss EL for noisy data like social media (Meij
et al., 2012; Guo et al., 2013). Finally, we will dis-
cuss the possibilities of extending the ideas taught
in this EL tutorial to other multi-lingual IE tasks.

2.8 System Demos and Resources [10 mins]

Finally, we will show some demos of multi-lingual
EL systems from the industry and academia. We
will also provide pointers to resources, including
data sets and software.
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and IR with concrete applications to industry,
including multilingual spelling correction,
question answering, entity recognition and
linking, query suggestion, vertical search,
and ads selection. Many of the technologies
developed by Silviu have been shipped with
Microsoft products. The NEMO entity link-
ing system developed by Silviu has scored
the top performance during the four consec-
utive years it participated in the TAC-KBP
evaluations organized by NIST and LDC.
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