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Abstract

A long-term goal of Al research is to
build intelligent agents that can see the
rich visual environment around us, com-
municate this understanding in natural lan-
guage to humans and other agents, and
act in a physical or embodied environ-
ment. To this end, recent advances at the
intersection of language and vision have
made incredible progress — from being
able to generate natural language descrip-
tions of images/videos, to answering ques-
tions about them, to even holding free-
form conversations about visual content!
However, while these agents can passively
describe images or answer (a sequence
of) questions about them, they cannot act
in the world (what if I cannot answer a
question from my current view, or I am
asked to move or manipulate something?).
Thus, the challenge now is to extend this
progress in language and vision to embod-
ied agents that take actions and actively in-
teract with their visual environments.

1 Tutorial Overview

This tutorial will provide an overview of the
growing number of multimodal tasks and datasets
that combine textual and visual understanding.
We will comprehensively review existing state-
of-the-art approaches to selected tasks such as
image captioning (Chen et al., 2015), visual
question answering (VQA) (Antol et al., 2015;
Goyal et al., 2017) and visual dialog (Das et al.,
2017a,b), presenting the key architectural building
blocks (such as co-attention (Lu et al., 2016)) and
novel algorithms (such as cooperative/adversarial
games (Das et al., 2017b)) used to train models
for these tasks. We will then discuss some of
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the current and upcoming challenges of combin-
ing language, vision and actions, and introduce
some recently-released interactive 3D simulation
environments designed for this purpose (Anderson
et al., 2018b; Wu et al., 2018b; Das et al., 2018).
The goal of this tutorial is to provide a comprehen-
sive yet accessible overview of existing work and
to reduce the entry barrier for new researchers.

In detail, we will first review the building blocks
of the neural network architectures used for these
tasks, starting from variants of recurrent sequence-
to-sequence language models (Ilya Sutskever,
2014), applied to image captioning (Vinyals et al.,
2015), optionally with visual attentional mecha-
nisms (Bahdanau et al., 2015; Xu et al., 2015;
You et al., 2016; Anderson et al., 2018a). We
will then look at evaluation metrics for image cap-
tioning (Vedantam et al., 2015; Anderson et al.,
2016), before reviewing how these metrics can
be optimized directly using reinforcement learn-
ing (RL) (Williams, 1992; Rennie et al., 2017).

Next, on the topic of visual question answer-
ing, we will look at more sophisticated multi-
modal attention mechanisms, wherein the net-
work simultaneously attends to visual and tex-
tual features (Fukui et al., 2016; Lu et al., 2016).
We will see how to combine factual and com-
monsense reasoning from learnt memory repre-
sentations (Sukhbaatar et al., 2015) and external
knowledge bases (Wang et al., 2016; Wu et al.,
2016), and approaches that use the question to dy-
namically compose the answering neural network
from specialized modules (Andreas et al., 2016a,b;
Johnson et al., 2017a,b; Hu et al., 2017).

Following the success of adversarial learning
in visual recognition (Goodfellow et al., 2014),
it has recently been gaining momentum in lan-
guage modeling (Yu et al., 2016) and in multi-
modal tasks such as captioning (Dai et al., 2017)
and dialog (Wu et al., 2018a). Within visual dia-
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log, we will look at recent work that uses coopera-
tive multi-agent tasks as a proxy for training effec-
tive visual conversational models via RL (Kottur
et al., 2017; Das et al., 2017b).

Finally, as a move away from static datasets, we
will cover recent work on building active RL en-
vironments for language-vision tasks. Although
models that link vision, language and actions have
a rich history (Tellex et al., 2011; Paul et al,,
2016; Misra et al., 2017), we will focus primarily
on embodied 3D environments (Anderson et al.,
2018b; Wu et al., 2018b), considering tasks such
as visual navigation from natural language instruc-
tions (Anderson et al., 2018b), and question an-
swering (Das et al., 2018; Gordon et al., 2018).
We will position this work in context of related
simulators that also offer significant potential for
grounded language learning (Beattie et al., 2016;
Zhu et al., 2017). To finish, we will discuss
some of the challenges in developing agents for
these tasks, as they need to be able to combine
active perception, language grounding, common-
sense reasoning and appropriate long-term credit
assignment to succeed.

2 Structure

The following structure is based on an approxi-
mately 3 hour timeframe with a break.

1. Introduction (20 min)

(a) Language, vision and actions
(b) Overview of relevant tasks and datasets

i. Historical progression:
see — communicate — act

2. Image Captioning (30 min)

(a) Encoder-decoder for image captioning
(b) Visual attention mechanisms
i. Soft and hard visual attention
ii. Semantic attention
iii. Bottom-up and top-down attention
(c) Evaluation
i. CIDEr metric
ii. SPICE metric
(d) Reinforcement learning
1. Policy gradient optimization
ii. Self-critical sequence training

3. Visual Question Answering (VQA) (30 min)

(a) Basic VQA architecture

11

(b) Multimodal pooling

1. Hierarchical co-attention

ii. Compact bilinear pooling (MCB)
(¢) Dynamic network composition

1. Neural module networks

ii. Dynamic memory networks
(d) Incorporating external knowledge

i. FVQA

ii. Ask me anything

BREAK

4. Visual Dialog (20 min)

(a) Task, datasets and evaluation metrics
(b) Architectures
i. Hierarchical RNNs
(c) Cooperative self-talk
(d) Adversarial learning

5. Static datasets — Active environments
(50 min)

(a) Interactive 3D datasets and simulators
i. DeepMind Lab
ii. AI2-THOR
SUNCG (House3D / MINOS /
HoME)
iv. Matterport3D (Matterport3D Simu-
lator / MINOS)
(b) Embodied vision-and-language tasks

iil.

i. Interactive Question Answering
ii. Embodied Question Answering
iii. Vision-and-Language Navigation

6. Future directions & conclusion (10 min)



3 Presenters

3.1 Peter Anderson

Peter Anderson is a final year PhD candidate in
Computer Science at the Australian National Uni-
versity, supervised by Dr Stephen Gould, and a re-
searcher within the Australian Centre for Robotic
Vision (ACRV). His PhD focuses on deep learn-
ing for visual understanding in natural language.
He was an integral member of the team that won
first place in the 2017 Visual Question Answer-
ing (VQA) challenge at CVPR, and he has made
several contributions in image captioning, includ-
ing achieving first place on the COCO leader-
board in July 2017. He has published at CVPR,
ECCV, EMNLP and ICRA, and spent time at nu-
merous universities and research labs including
Adelaide University, Macquarie University, and
Microsoft Research. His research is currently
focused on vision-and-language understanding in
complex 3D environments.

3.2 Abhishek Das

Abhishek Das is a Computer Science PhD stu-
dent at Georgia Institute of Technology, advised
by Dhruv Batra, and working closely with Devi
Parikh. He is interested in deep learning and its
applications in building agents that can see (com-
puter vision), think (reasoning and interpretabil-
ity), talk (language modeling) and act (reinforce-
ment learning). He is a recipient of an Adobe Re-
search Fellowship and a Snap Research Fellow-
ship. He has published at CVPR, ICCV, EMNLP,
HCOMP and CVIU, co-organized the NIPS 2017
workshop on Visually-Grounded Interaction and
Language, and has held visiting positions at Vir-
ginia Tech, Queensland Brain Institute and Face-
book Al Research. He graduated from Indian
Institute of Technology Roorkee in 2015 with a
Bachelor’s in Electrical Engineering.

3.3 Qi Wu

Dr. Qi Wu, is a research fellow in the Australia
Centre for Robotic Vision (ACRV) in the Univer-
sity of Adelaide. Before that, he was a postdoc
researcher in the Australia Centre for Visual Tech-
nologies (ACVT) in the University of Adelaide.
He obtained his PhD degree in 2015 and MSc de-
gree in 2011, in Computer Science from Univer-
sity of Bath, United Kingdom. His research inter-
ests are mainly in Computer Vision and Machine
Learning. Currently, he is working on the vision-
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to-language problem and he is especially an expert
in the area of Image Captioning and Visual Ques-
tion Answering (VQA). His attributes-based im-
age captioning model got first place on the COCO
Image Captioning Challenge Leader Board in the
October of 2015. He has published several papers
in prestigious conferences and journals, such as
TPAMI, CVPR, ICCV, ECCV, IJCAI and AAAL
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