
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 43–49
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

43

NLP Web Services for Resource-Scarce Languages

M.J. Puttkammer*, E.R. Eiselen+, J. Hocking* and F.J. Koen*

*Centre for Text Technology; +South African Centre for Digital Language Resources

North-West University, Potchefstroom Campus, South Africa

{Martin.Puttkammer; Justin.Hocking; Frederik.Koen;

Roald.Eiselen}@nwu.ac.za

Abstract

In this paper, we present a project

where existing text-based core technolo-

gies were ported to Java-based web ser-

vices from various architectures. These

technologies were developed over a period

of eight years through various government

funded projects for 10 resource-scarce

languages spoken in South Africa. We de-

scribe the API and a simple web front-end

capable of completing various predefined

tasks.

1 Introduction

With the establishment of large-scale e-

infrastructures, there has been an international

move towards making software available as a ser-

vice. Web services are a way of exposing the func-

tionality of an information system and making it

available through standard web technologies

(Alonso et al., 2004). A natural language pro-

cessing (NLP) web service refers to one or more

technologies that focus on natural (human) speech

or text and that are exposed programmatically to

allow anyone with internet access, on multiple

platforms, to gain access to the output of the tech-

nology. By hosting NLP web services, the devel-

opment of end-user-facing applications could be

facilitated in the sense that software developers

and researchers get access to the latest versions of

such technologies via simple web queries.

A web service also provides an architecture that

will allow human language technologies (HLTs)

to be integrated into larger software systems. By

adopting a service-orientated architecture, existing

resources and tools can also be used to develop

complex component-based systems (Boehlke,

2010). Several such systems already exist in Eu-

rope and the United States, for example Stanford

CoreNLP1 (Manning et al., 2014), Aylien2, Web-

1 http://nlp.stanford.edu:8080/corenlp/process
2 http://aylien.com/

licht3 (Hinrichs et al., 2010), and Tanl Pipeline4

(Attardi et al., 2010). etc. Furthermore, web ser-

vices can be updated relatively quickly, allowing

users to get the latest version of the technologies

at all times.

In this paper, we describe a project where 61

existing text-based core technologies were ported

to Java-based web services from various architec-

tures. The first part of this paper provides a brief

background and details on the relevant languages

the technologies were developed for. This is fol-

lowed by a short description of three previous pro-

jects in which the technologies were developed, as

well as a description of the technologies them-

selves. We then describe the API and a simple

web front-end capable of completing various pre-

defined tasks in the following sections. We con-

clude with some information on a current project

and future considerations.

2 Background

The South African community, with its rich di-

versity of 11 official languages, is an emerging

market where the development of language re-

sources and HLTs contribute to the promotion of

multilingualism and language development. The

development of language resources for the official

languages contributes significantly to bridging the

divide between the privileged and the marginal-

ised in terms of access to information.

There are 11 official languages in South Africa,

generally categorised into five language family

groups. The conjunctively written Nguni lan-

guages include isiZulu (ZU), isiXhosa (XH),

isiNdebele (NR), and SiSwati (SS). The disjunc-

tively written languages include the Sotho lan-

guages Sesotho (ST), Setswana (TN), Sesotho sa

Leboa (NSO), and Tshivenḓ a (VE) and the dis-

junctively written Tswa-Ronga language, Xitson-

ga (TS). Finally, there are two Germanic lan-

guages, English (EN) and Afrikaans (AF)

3 http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/
4 http://tanl.di.unipi.it/en/api

44

(Prinsloo & de Schryver, 2002). Apart from Eng-

lish, all South African languages are considered

resource-scarce with relatively little data that can

be used to develop NLP applications and technol-

ogies.

Over the past two decades, the South African

government has continuously supported HLT re-

lated text and speech projects. These projects have

generated NLP resources in the form of data, core

technologies, applications and systems that are

immensely valuable for the future development of

the official South African languages. Although

these resources can be obtained in a timely fash-

ion from the Language Resource Management

Agency of the South African Centre for Digital

Language Resources5 (SADiLaR), access to these

resources can still be considered limited, in the

sense that technically proficient persons or organi-

sations are required to utilise these technologies.

One way to improve access to these technologies

is to make them available as web services. At the

Centre for Text Technology, we previously devel-

oped freely available web services for machine

translation between several South African lan-

guage pairs6, and build on this experience to de-

velop the web services.

The web services described in this paper entails

the implementation of existing technologies as

web services that are accessible via an application

programming interface (API) and a user-friendly

web application which leverages the API, de-

scribed in Section 5. These services can process

word lists, running text, documents or scanned

images as input. The following section provides a

brief overview of the individual technologies that

have been implemented in the API.

3 Technologies

All the technologies included in the web ser-

vices were developed over a period of eight years

through three projects, NCHLT Text: Phase I, II

and III. These projects were initiated and funded

by the National Centre for Human Language

Technology (NCHLT) of the Department of Arts

and Culture (South African government). The

technologies and resources described below were

only developed for 10 of the South African lan-

guages, since there are well known and readily

available text-based technologies for English,

5 http://repo.sadilar.org/handle/20.500.12185/7
6 https://mt.nwu.ac.za/

such as the Stanford CoreNLP, that can be used on

South African English. The three projects and the

resulting technologies of each, are briefly de-

scribed in the following subsections.

3.1 NCHLT Text: Phase I

The first phase of the NCHLT Text project fo-

cussed on establishing the foundational resources

and technologies for further development of the

NLP industry in South Africa. For each language,

text corpora from government domain sources

were collected to develop a one-million-word cor-

pus for each language. From these corpora, lan-

guage experts for each of the 10 languages anno-

tated 50,000 tokens per language (and an addi-

tional 5,000 tokens for testing) on three levels,

namely part of speech (POS), lemma, and mor-

phological composition. In addition to the anno-

tated corpora, five core technologies were devel-

oped for each language. These technologies were

sentence separators, tokenisers, lemmatisers, mor-

phological decomposers, and POS taggers. Brief

descriptions of each technology developed during

this phase of the project and ported to web ser-

vices, are provided below. More detailed descrip-

tions of the technologies are available in Eiselen

and Puttkammer (2014).

Sentence separation is a pre-processing step for

tokenisation in a typical NLP pipeline. The sen-

tence separators developed during this project are

rule-based and split sentences based on language

specific characteristics, to ensure that abbrevia-

tions and numbering correctly remain part of dif-

ferent sentences.

The tokenisers are also language-specific, rule-

based technologies that split sentences into tokens,

typically words and punctuation, and are a neces-

sary pre-process for all other NLP tasks.

The POS taggers developed during the project

were trained on the 50,000 POS annotated data

tokens developed in the project. The implementa-

tion uses the open source Hidden Markov Model

(HMM) tagger, HunPos (Halácsy et al., 2007).

Since HunPos is not a Java-compliant library, it

was necessary to port the POS taggers to a Java

library, nlp4j7.

For the initial development and release of the

web services, the lemmatisers and morphological

decomposers were not included as they are rule-

based technologies, with more than 150 rules

7 https://emorynlp.github.io/nlp4j/

45

each. See Section 7 for more detail on a current

project tasked with additional annotation in order

to develop machine learning-based technologies.

3.2 NCHLT Text: Phase II

Building on the resources created during the

first NCHLT Text project, the second phase fo-

cussed on named entity recognition, phrase

chunking and language identification. Named en-

tity recognisers and phrase chunkers were devel-

oped from an additional 15,000 tokens per lan-

guage annotated during the project. The language

identifier (LID), which was developed to classify

text as one of the 11 official languages, was

trained on the text corpora collected during the

first NCHLT Text project along with an English

corpus also collected from government domain

sources.

The named entity recognisers were trained us-

ing linear-chain conditional random fields (CRF)

with L2 regularisation. See Eiselen (2016a) for

details on development, evaluation, and accuracy.

The phrase chunkers were also trained with lin-

ear-chain CRFs from annotated data, and addi-

tionally use the POS tags as a feature by employ-

ing the previously developed POS taggers. Eiselen

(2016b) provides the full details on development,

evaluation, and accuracy of the phrase chunkers.

Both the named entity recognition and phrase

chunking core technologies were implemented in

the web services using the CRF++8 Java library.

LID employs character level n-gram language

models (n=6) and measures the Euclidean dis-

tance between the relative frequencies of a test

model and all language models, selecting the one

with the lowest distance as the probable language.

In the web services, LID is performed on line lev-

el, and returns the probable language for each line

in the input text. The first version of the LID was

implemented in Python, and the web services ver-

sion was implemented in Java. Evaluation results

and implementation details are available in

Hocking (2014).

3.3 NCHLT Text: Phase III

The third phase of the NCHLT Text project saw

the development of Optical Character Recognition

(OCR) models as well as improving access to all

the technologies through the development of the

web services.

8 https://github.com/taku910/crfpp

The OCR models for the South African lan-

guages were developed using Tesseract9 and ac-

commodate the diacritic characters required for

four of the South African languages. See Hocking

and Puttkammer (2016) for the development and

evaluation results of these OCR models. For the

implementation of OCR in the web services,

tess4j10 was used.

4 Implementation

The web services are implemented as a simple

three-tiered Java application, consisting of the

API, a Core Technology Manager (Manager for

the remainder of the paper) and the individual

core technology modules.

The API is responsible for handling all incom-

ing requests, validating parameters and headers,

sending parameter data to the Manager for pro-

cessing and for relaying processing results back to

the requestor. The Manager is responsible for ini-

tialising and loading the technologies, processing

the data from the API, and sending the result back

to the API. The core technology modules process

the input data and perform the various required

analyses. Each of these tiers are described in more

detail below.

4.1 NCHLT web services API

The API is a RESTful web service that is both

maintainable and scalable. The service is based on

the Jersey framework11, as it is an open source,

production quality framework for developing

RESTful services in Java. The API is also de-

signed in such a way that new language and tech-

nologies can be added at any point without affect-

ing existing API calls. The API uses an authentica-

tion process providing restricted access to the

available services of the API. The authentication

process uses token-based authentication and pro-

vides the requestor with a session token that gives

the requestor permission to access any future re-

quests made to the API until the requestor’s ses-

sion expires. The access to the list of languages

and technologies requests is not protected by the

authentication process, and is therefore open to

use without obtaining a session token. The API al-

so allows the requestor to request the progress of a

9 https://github.com/tesseract-ocr/
10 http://tess4j.sourceforge.net
11 https://jersey.github.io/

46

technology that is being used to process the re-

questor’s data.

Four functions are supported by the API, which

can be accessed by either GET or PUT calls, de-

pending on whether a string of text or a file is sent

for processing. The first two calls do not require

authentication as described above, and return ei-

ther the set of languages that are supported for a

particular core technology, or a list of core tech-

nologies that are supported for a particular lan-

guage. These two functions ensure that callers can

correctly access those technologies that are avail-

able for particular languages.

The two functions that require authentication

are the call to a specific core technology, and the

progress call, which provides progress infor-

mation on a user’s call to a specific technology.

Most of the technologies available via the API

require a language parameter in the form of an

ISO-639 abbreviation of two or three letters, and

some form of textual input in the form of either a

list, running text or a file. The OCR module does

require a language to be specified, but can only

process image files in one of the standard image

formats (.png, .jpg, .tiff, or .pdf), while LID only

needs text or a file as it returns the language for

each line in the input.

The API is called using a GET call12 and should

always consist of the following information:

• the server (and optional port number) on

which the service is being hosted;

• the technology, either by number or short-

ened name;

• the ISO-639 two-letter language code;

• Unicode text that should be processed by

the technology; and

• the authentication token included in the re-

quest header as the authToken property.

Upon receiving a request, the API validates the

parameters and the session token to ensure that all

the information needed to use the relevant tech-

nology is present. If the request passes the valida-

tion, the input and language information is sub-

mitted to the Manager that handles the initialisa-

tion of the requested core technology module. The

Manager then validates the parameter data once

again, sends the data for processing by the rele-

vant core technology and returns the result back to

the API.

12 http://{server:port}/CTexTWebAPI/services?

core={technology}&lang={code}&text={text}

4.2 Core technology manager

The Manager is tasked with handling the dif-

ferent core technology modules that are loaded for

different languages across one or more threads or

servers. The Manager controls this by keeping a

register of all the modules that have been

launched, as well as progress information to de-

termine whether any given module is available for

processing when a new request is received from

the API. Technologies are loaded in memory as

they are requested by the Manager. This allows

the technologies to process the data more effi-

ciently and in effect improves the response times

to the requestor. Since many of the modules load-

ed by the Manager require relatively large statisti-

cal models to process data, and many of the mod-

ules are reused in several of the module pipelines,

modules are not immediately discarded. Rather

than destroying the loaded module, it is kept in

memory to be available for a new call, which sig-

nificantly reduces the processing time, since it is

not necessary to reload the module or its underly-

ing models for each new API call.

In addition to managing the individual modules

that are loaded at any given time, the Manager al-

so manages shared tasks, such as file handles and

error handling, which can be reused by any of the

core technology modules as necessary. This simp-

ly ensures that all file upload and download pro-

cedures are managed in a consistent, reusable

fashion. Finally, it is also important to note that all

the modules reuse models and attributes that are

shared between multiple instances of the class and

are thread-safe. Consequently, running multiple

instances simultaneously does not cause any in-

formation corruption, race conditions, or related

multithreading problems, while limiting the load

time and memory required to process data.

4.3 Core technology modules

As mentioned earlier, the development of the

web services focussed on transferring existing lin-

guistic core technologies for South African lan-

guages to a shared code base that was accessible

via a RESTful API. Over the course of the previ-

ous projects, various developers used different

underlying technologies and programming lan-

guages to implement the core technologies. Dur-

ing this project, it was decided to consolidate

these disparate technologies into a single code

base, with various shared components that will

47

make maintenance and updates of these technolo-

gies significantly more efficient.

During the design phase it was decided to port

all core technologies to Java, for three reasons.

First, Java is supported across most operating sys-

tems, allowing the deployment of the technologies

and services across many different architectures.

Second, Java provides a wide array of freely

available and well tested libraries to facilitate the

development and distribution of the technologies

and web services. A third factor that was taken in-

to consideration is that the core technology mod-

ules developed for the web service could also be

reused in other user-facing applications, specifi-

cally an offline corpus search and processing envi-

ronment developed in parallel to the web services,

CTexTools, version 213. To facilitate distributed

computing across multiple servers, each of the

core technology modules are also implemented as

servlets, which can be initialised by the manager.

This allows for multiple versions of the same

technology to be run on multiple threads and serv-

ers as necessary.

Although the primary focus of transferring the

modules was for inclusion in the web services,

this transfer also allowed for better integration be-

tween the different modules that have been devel-

oped at the Centre for Text Technology. All the

transferred modules are based on a shared inter-

face class, ICoreTechnology, which in turn im-

plements a shared abstract class CoreTechnology.

These are relatively simple shared classes, but

have the significant benefit that all the core tech-

nologies can be called and handled by the Manag-

er in a systematic, consequent manner. This in

turn means that adding technologies to the set of

available modules is relatively straightforward,

and would immediately iterate through the rest of

the API architecture, without requiring updates to

the API or Manager itself.

Another consideration in the transfer of the

technologies to a shared code base, is the fact that

most of the technologies have an interdependence,

typically forming pipelines that are required to

process a string. As an example, the phrase

chunker for a particular language is dependent on

the output of the POS tagger as one of its features.

The POS tagger in turn is dependent on tokenisa-

tion for that language, and tokenisation is depend-

ent on sentence separation to complete its pro-

cessing. This means that for phrase chunking to be

13 https://hdl.handle.net/20.500.12185/480

performed, first sentence separation must be per-

formed, then tokenisation, then POS tagging, and

only then can the feature set be created for the

string that must be phrase chunked. In the current

architecture, this entire chain is inherently imple-

mented, and the phrase chunker only needs to call

the POS tagging module for the specific language,

which then in turn calls the module(s) that are

necessary for tagging to be performed. See Figure

1.

The modules required for each technology

module are entirely handled by the Manager,

which means that core technologies that are typi-

cally used in most modules, such as tokenisation,

can effectively be reused by various instances of

modules that require the shared module.

Due to several factors, the web services are cur-

rently only deployed on a single 12 core virtual

server with 32Gb memory. In order to test the re-

liability of the technologies and the responsive-

ness of the service, a set of load tests were per-

formed on the web services, simulating 70 users

simultaneously processing text files of approxi-

mately 100,000 tokens, with different technolo-

gies in different languages. The entire scenario of

processing the approximately 7 million tokens

completes within 10 minutes, equating to a pro-

cessing rate of around 11,700 tokens per second.

In a secondary test on the slowest of the technolo-

gies, i.e. named entity recognition, for 10 concur-

rent users, each processing 100,000 words, the

service completes in 3.5 minutes, for a rate of

1,400 tokens per second. This is primarily due to

the fact that named entity recognition uses the

most intricate pipeline, including tokenisation,

Figure 1: Example of system workflow

48

sentence separation, part of speech tagging, and

extended feature extraction.

5 Web application

To make the technologies developed during the

various phases of the NCHLT project more acces-

sible, a simple web application was also created.

This application specifically aims to accommo-

date users who are unaccustomed to service-

orientated architectures, and for whom using these

types of architectures can be quite challenging. As

such, it was prudent to develop a basic interface to

assist users in using the services to complete cer-

tain tasks. Thus, we developed a web-based, user-

friendly graphical user interface capable of com-

pleting various tasks by providing predefined

chains of the web services detailed above. For ex-

ample, if a user needs to perform POS tagging on

a document, the user can upload the document and

select POS tagging and the relevant language. The

system will automatically perform tokenisation

and sentence separation before using the POS tag-

ging service to tag the user’s document. To facili-

tate easy and quick processing, a user can provide

text, select the required options, process the text,

and view or download the results. Detailed docu-

mentation on using the API, as well as the web

application, is also provided. The tag sets used for

all annotation are provided in the help page. The

web application is available at

http://hlt.nwu.ac.za/.

6 Conclusion and future work

In this paper, we provided an overview of a

new web service and application that provides ac-

cess to 61 different text technologies for South Af-

rican languages. This implementation allows any

developer to access and integrate one of these lan-

guage technologies in their own environment,

while ensuring that the latest versions of these

technologies are used at any time. Finally, a sim-

ple, user-friendly, web application was described

that provides access to predefined chains of NLP

technologies for use by end-users who are not as

technically proficient, but can use the technologies

in their own research work.

Given the flexible nature of the web services

and underlying infrastructure, it is foreseen that

other language technologies will be included in

the service as they become available. The South

African government also recently established

SADiLaR, a national research infrastructure fo-

cussing on the development and distribution of

linguistic and natural language processing re-

sources.

There is currently a project underway to ex-

tend the set of annotated text corpora from

50,000 to approximately 100,000 tokens. These

extended annotated data sets could then be used

to create improved core technologies for the

South African languages.

7 Acknowledgements

The NCHLT web services project was funded

by the Department of Arts and Culture, Govern-

ment of South Africa. The expansion of the anno-

tated data is funded as a specialisation project by

SADiLaR.

References

Alonso, G., Casati, F., Kuno, H. & Machiraju, V.

2004. Web services. Springer-Verlag, Berlin.

Attardi, G., Dei Rossi, S. & Simi, M. 2010. The

TANL Pipeline. In Proceedings of the Seventh

International Conference on Language Resources

and Evaluation (LREC 2010): Workshop on Web

Services and Processing Pipelines in HLT.

European Language Resources Association

(ELRA), p. 15-21.

Boehlke, V. 2010. A generic chaining algorithm for

NLP webservices. In Proceedings of the Seventh

International Conference on Language Resources

and Evaluation (LREC 2010): Workshop on Web

Services and Processing Pipelines in HLT.

European Language Resources Association

(ELRA), p. 30-36.

Eiselen, R. 2016a. Government Domain Named

Entity Recognition for South African Languages.

In Proceedings of the Tenth International

Conference on Language Resources and

Evaluation (LREC 2016). European Language

Resources Association (ELRA), p. 3344-3348.

Eiselen, R. 2016b. South African Language

Resources: Phrase Chunking. In Proceedings of the

Tenth International Conference on Language

Resources and Evaluation (LREC 2016). European

Language Resources Association (ELRA), p. 689-

693.

Eiselen, R. & Puttkammer, M.J. 2014. Developing

Text Resources for Ten South African Languages.

In Proceedings of the Ninth International

Conference on Language Resources and

Evaluation (LREC 2014). European Language

Resources Association (ELRA), p. 3698-3703.

http://hlt.nwu.ac.za/

49

Halácsy, P., Kornai, A. & Oravecz, C. 2007. HunPos:

an open source trigram tagger. In Proceedings of

the 45th Annual Meeting of the Association for

Computational Linguistics, Companion Volume:

Proceedings of the Demo and Poster Sessions.

Association for Computational Linguistics, p. 209-

212.

Hinrichs, E., Hinrichs, M. & Zastrow, T. 2010.

WebLicht: Web-based LRT services for German. In

Proceedings of 48th Annual Meeting of the

Association for Computational Linguistics: System

Demonstrations. Association for Computational

Linguistics, p. 25-29.

Hocking, J. 2014. Language identification for South

African languages. In Proceedings of the Annual

Pattern Recognition Association of South Africa

and Robotics and Mechatronics International

Conference (PRASA-RobMech): Poster session.

Pattern Recognition Association of South Africa, p.

307.

Hocking, J. & Puttkammer, M.J. 2016. Optical

character recognition for South African languages.

In Pattern Recognition Association of South Africa

and Robotics and Mechatronics International

Conference (PRASA-RobMech), 2016. IEEE, p. 1-

5.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. & Mcclosky, D. 2014. The Stanford

CoreNLP natural language processing toolkit. In

Proceedings of 52nd Annual Meeting of the

Association for Computational Linguistics: System

Demonstrations. The Association for

Computational Linguistics, p. 55-60.

Prinsloo, D. & De Schryver, G.-M. 2002. Towards an

11 x 11 array for the degree of

conjunctivism/disjunctivism of the South African

languages. Nordic Journal of African Studies,

11(2):249-265.

