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Abstract

Ranking functions in information retrieval
are often used in search engines to recom-
mend the relevant answers to the query.
This paper makes use of this notion of
information retrieval and applies onto the
problem domain of cognate detection. The
main contributions of this paper are: (1)
positional segmentation, which incorpo-
rates the sequential notion; (2) graphical
error modelling, which deduces the trans-
formations. The current research work
focuses on classification problem; which
is distinguishing whether a pair of words
are cognates. This paper focuses on a
harder problem, whether we could predict
a possible cognate from the given input.
Our study shows that when language mod-
elling smoothing methods are applied as
the retrieval functions and used in con-
junction with positional segmentation and
error modelling gives better results than
competing baselines, in both classification
and prediction of cognates.

1 Introduction

Cognates are a collection of words in different lan-
guages deriving from the same origin. The study
of cognates plays a crucial role in applying com-
parative approaches for historical linguistics, in
particular, solving language relatedness and track-
ing the interaction and evolvement of multiple lan-
guages over time. A cognate instance in Indo-
European languages is given as the word group:
night (English), nuit (French), noche (Spanish)
and nacht (German).

The existing studies on cognate detection in-
volve experiments which distinguish between a
pair of words whether they are cognates or non-
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cognates (Ciobanu and Dinu, 2014; List, 2012a).
These studies do not approach the problem of pre-
dicting the possible cognate of the target language,
if the cognate of the source language is given. For
example, given the word nuit, could the algorithm
predict the appropriate German cognate within the
huge German wordlist? This paper tackles this
problem by incorporating heuristics of the prob-
abilistic ranking functions from information re-
trieval. Information retrieval addresses the prob-
lem of scoring a document with a given query,
which is used in every search engine. One can
view the above problem as the construction of a
suitable search engine, through which we want to
find the cognate counterpart of a word (query) in a
lexicon of another language (documents).

This paper deals with the intersection between
the areas of information retrieval and approximate
string similarity (like the cognate detection prob-
lem), which is largely under-explored in the liter-
ature. Retrieval methods also provide a variety of
alternative heuristics which can be chosen for the
desired application areas (Fang et al., 2011). Tak-
ing such advantage of the flexibility of these mod-
els, the combination of approximate string simi-
larity operations with an information retrieval sys-
tem could be beneficial in many cases. We demon-
strate how the notion of information retrieval can
be incorporated into the approximate string sim-
ilarity problem by breaking a word into smaller
units. Regarding this, Nguyen et al. (2016) has
argued that segmented words are a more practi-
cal way to query large databases of sequences,
in comparison with conventional query methods.
This further encourages the heuristic attempt at
imposing an information retrieval model on the
cognate detection problem in this paper.

Our main contribution is to design an informa-
tion retrieval based scoring function (see section
4) which can capture the complex morphological
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shifts between the cognates. We tackled this by
proposing a shingling (chunking) scheme which
incorporates positional information (see section 2)
and a graph-based error modelling scheme to un-
derstand the transformations (see section 3). Our
test harness focuses not only on distinguishing be-
tween a pair of cognates, but also the ability to pre-
dict the cognate for a target language (see section
5).

2 Positional Character-based Shingling

This section examines on converting a string into
a shingle-set which includes the encodings of the
positional information. In this paper, we notify,
S as the shingle-set of cognate from the source
language and 7' as the shingle-set of cognate for
the target language. The similarity between these
split-sets is denoted by S N T. An example of
cognate from the source language, S (Romanian)
could be shingle set of the word rosmarin and T'
(Italian) could be romarin.

K-gram shingling: Usually, set based string
similarity measures are based on comparing over-
lap between the shingles of two strings. Shingling
is a way of viewing a string as a document by con-
sidering k characters at a time. For example, the
shingle of the word rosmarin is created with k = 2
as: S = {(s) ro, os, sm, ma, ar, ri, in, n(/s)}.
Here, (s) is the start sentinel token and (/s) is
the stop sentinel token. For the sake of simplic-
ity, we have ignored sentinel tokens; which trans-
forms into: S = {1 ro, os, sm, ma, ar, ri, in, n}.
This method splits the strings into smaller k-grams
without any positional information.

2.1 Positional Shingling from 1 End

We argue that the unordered k-grams splitting
could lead to an inefficient matching of strings
since a shingle set is visualized as the bag-of-
words method. Given this, we propose a po-
sitional k-gram shingling technique, which in-
troduces position number in the splits to incor-
porate the notion of the sequence of the to-
kens. For example, the word rosmarin could
be position-wise split with &k = 2 as: S =
{]1: 2ro, 3o0s, 4sm, Sma, 6ar, 7ri, 8in, 9n}.

Thus, the member 4sm means that it is the
fourth member of the set. The motivation behind
this modification is that it retains the positional in-
formation which is useful in probabilistic retrieval
ranking functions.

2.2 Positional Shingling from 2 Ends

The main disadvantage of the positional shin-
gling from single end is that any mismatch
can completely disturb the order of the rest,
leading to low similarity. For example,
if the query is rosmarin with cognate ro-
marin, the corresponding split sets would be
{11, 2ro, 30s, 4sm, Sma, 6ar, 7ri, 8in, 9n} and
{Ir, 2ro, 3om, 4ma, Sar, 6ri, 7in, 8n}. The order
of the members after 2ro is misplaced, thus this
will lead to low similarity between two cognates.
Only {Ir, 2ro} is common between the cognates.
Considering this, we propose positional shingling
from both ends, which is robust against such
displacements.

We attach a position number to the left if the
numbering begins from the start, and to the right
if the numbering begins from the end. Then the
smallest position number is selected between the
two position numbers. If the position numbers are
equal, then we select the left position number as
a convention. Figure 1 gives an exemplification
of this algorithm illustrated with splits of romarin
and rosmarin.

rosmarin

..........

romarin

.........
— .

.........
..........

.........

.........

........
.........

.........

Figure 1: The process of positional tokeni-
sation from both ends. On the left, algo-
rithm segments the Romanian word romarin into
the split-set {11, 2ro, 3om, 4ma, ar4, ri3, in2, nl}.
On the right, the algorithm segments rosmarin into
{]r, 2ro, 3os, 4sm, Sma, ar4, ri3, in2, nl}.

In Figure 1, split sets of rosmarin and romarin
are shown. After taking intersection of them, we
get {1, 2ro, ard, ri3, in2, nl}, indicating a higher
similarity.



3 Graphical Error Modelling

Once shingle sets are created, common overlap
set measures like set intersection, Jaccard (Jarvelin
et al., 2007), XDice (Brew et al., 1996) or TF-IDF
(Wu et al., 2008) could be used to measure simi-
larities between two sets. However, these methods
only focus on similarity of the two strings. For
cognate detection, it is crucial to understand how
substrings are transformed from source language
to target language. This section discusses on how
to view this “dissimilarity” by creating a graphical
error model.

Algorithm 1 explicates the process of graphical
error modelling. For illustration purposes, we vi-
sualize the procedure via a Romanian-Italian cog-
nate pair (mesia, messia). If the source language is
Romanian, then S = {Im, 2me, 3es, si3, ia2, al},
which is the split-set of mesia. Let the tar-
get language by Italian. Then the split-set of
the Italian word messia, denoted as 7', will be
{Im, 2me, 3es, 4ss, si3, ia2, al}. Thus |[S N T
is the number of common terms. Thus the term
matches are, SNT = {Im, 2me, 3es, si3, ia2, al}.
We are interested in examining the “dissimilar-
ity”, which are the leftover terms in the sets. That
means, we need to infer a certain pattern from left-
over sets, whichare S —{SNT'}and T'—{SNT'}.
Thus we can draw mappings to gather informa-
tion of the corrections. Let top and bottom be
the ordered sets referring to S — {S N T} and
T — {S N T} respectively. Referring to the exam-
ple, T'— SNT = {4ss}, a bottom set. Similarly,
S —SNT = {}, atop set. Then we follow in-
structions given in algorithm 1.

Algorithm 1: Graphical Error Model

Graphical Error Model takes two split sets
generated by the shingling variants, namely fop
and bottom. The objective is to output a graphical
structure showing connections between members
of the top and the bottom sets.

1. Initialization of the top and bottom: If the

given sets fop and bottom are empty, we ini-
tialize them by inserting an empty token (¢)
into those sets.

Running example: This step transforms top
set as {¢} and bottom as {4ss}.

. Equalization of the set cardinalities: The
cardinalities of the sets top and botfom made
equal by inserting empty tokens (¢) into the
middle of the sets.
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Running example: The set cardinalities of
top and bottom were already equal. Thus the
output of this step are rop set as {¢} and bot-
tom as {4ss}.

. Inserting the mappings of the set members
into the graph: The empty graph is initial-
ized as graph = {}. The directed edges are
generated, originating from every set member
of fop to every set member of bottom. This
results in a complete directed bipartite graph
between fop and bottom sets. Each edge is as-
signed a probability P(e) which is discussed
in a later section.

Running example: The output of this
step would be complete directed bipartite
graph between fop and bottom sets which is

{¢ — 4ss}

One more example is provided in figure 2.

Intuition: The edges created as the result of
this graph could be used for probabilistic calcula-
tions which are detailed more in section 4.2. Intu-
itively, ¢ — 4ss means that if the letter s is added
at position 4 of the word of the source mesia, then
one could get the target word messia.

{po3, ¢, or2}

{pe4, euld, ur2}

Figure 2: The figure shows the bipartite graph out-
put of the algorithm when the source cognate is
stupor and the target cognate is stupeur.

4 Evaluation Function

The design of our evaluation function focuses on
two main properties: set based similarity (see
section 4.1) and probabilistic calculation through
graphical model (see section 4.2)

4.1 Similarity Function

Usually, the computation of similarity between
two sets is done by metrics like Jaccard, Dice
and XDice (Brew et al., 1996). Dynamic pro-
gramming based methods like edit distance and
LCSR (Longest Common Subsequence Ratio,



(Melamed, 1999)) are also often used to calculate
similarity between two strings. Ranking functions
incorporate more complex but necessary features
which are needed to distinguish between the doc-
uments.

In this paper, we use BM25 and a Dirichlet
smoothing based ranking function to compute the
similarity. BM25 considers term-frequency, in-
verse document frequency and length normaliza-
tion based penalization features for similarity cal-
culations. Dirichlet smoothing function (Robert-
son and Zaragoza, 2009) makes use of language
modelling features and tunable parameter which
aids in Bayesian smoothing of unseen shingles in
the split sets (Blei et al., 2003).

4.2 Error Modelling Function

The information of the common morphological
transformations for cognates between two differ-
ent languages helps in determining if a pair of
words could be cognates. Based on the graphs of
cognate pairs between Italian and Romanian (sec-
tion 3), which models the morphological shifts be-
tween the cognates in the two languages, we define
an error modelling function on any pair of words
from the two languages. The split set from the
source language is denoted by S and target lan-
guage by T, then probabilistic function would be:

1
7T(S, T):m Z P(e)q

e€G(S,T)

where G(S,T) is the constructed graph of S and
T, the strength parameter is called ¢ here with the
range of (0,00), and P(e) is the probability of
edge e to occur in between two cognates, which
is estimated by its frequency of being observed in
the graphs of cognate pairs in the training set.

Figure 3 illustrates the aggregation of edges in
the graph and figure 4 shows the final output of the
error modelling function after normalizing.

7(S, T) is called the error modelling function
defined for the word pair, which is an intuitive
calculation of probabilty between a pair of cog-
nates through estimating their transformations. ¢
is a tunable parameter that controls the effect of
the probabilistic frequencies P(e) observed in the
training set, often useful in avoiding overfitting.

L is the normalization factor to allow us to

1G(S,1)] . . -
compare the quantity across different word pairs.
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po3 pe4d
po3 euld
po3 ——— ur2
¢ ped
O] euld
O ur2
or2 pe4
or2 euld
or2 ur2

[
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Y

aggregate the
edge probabilities

Figure 3: From the graph created in figure 2, we
calculate the probabilities of each edge (by com-
puting frequencies and smoothing) and then ag-
gregate all the probabilities of edges in the graph.

po3
¢

or2

pe4
eu3
ur2

normalizing
after aggregation

Figure 4: After aggregating, we normalize the sum
and the graph conversion score is outputted.

4.3 Combining Error Modelling and
Similarity Function metrics

In this subsection, we merge the notion of sim-
ilarity and dissimilarity together. We combine a
set-based similarity function (discussed in section
4.1) and the error modelling function (discussed
in section 4.2) into a score function by a weighted
sum of them, which is,

score(S,T) = X x sim(S, T) + (1 — \) x «(S, T)

where A € [0, 1] is a weight based hyperparameter,
sim(S, T is a set-based similarity between S and



T, and 7(S,T) is the graphical error modelling
function defined above.

5 Test Harness

Table 1 summarizes the results of the experimental
setup. The elements of test harness are mentioned
as following:

5.1 Setup Description

Dataset: The experiments in this paper are per-

formed on the dataset used by Ciobanu et al

(2014). The dataset consists 400 pairs of cognates

and non-cognates for Romanian-French (Ro - Fr),

Romanian-Italian (Ro - It), Romanian-Spanish

(Ro - Es) and Romanian-Portuguese (Ro - Pt). The

dataset is divided into a 3:1 ratio for training and

testing purposes. Using cross-validation, hyperpa-
rameters and thresholds for all the algorithms and
baselines were tuned accordingly in a fair manner.

Experiments: Two experiments are included in

test harness.

1. We provide a pair of words and the algo-
rithms would aim to detect whether they are
cognates. Accuracy on the test set is used as
a metric for evaluation.

. We provide a source cognate as the input and
the algorithm would return a ranked list as the
output. The efficiency of the algorithm would
depend on the rank of the desired target cog-
nate. This is measured by MRR (Mean Re-

ciprocal Rank), which is defined as, M RR =

|dataset| 1 .
ie1 rank;» Where rank; is the rank of

the true cognate in the ranked list returned to
the i*" query.

5.2 Baselines

String Similarity Baselines: It is intuitive to
compare our methods with the prevalent string
similarity baselines since the notions behind cog-
nate detection and string similarity are almost sim-
ilar. Edit Distance is often used as the baseline
in the cognate detection papers (Melamed, 1999).
This computes the number of operations required
to transform from source to target cognate. We
have also incorporated XDice (Brew et al., 1996),
which is a set based similarity measure that oper-
ates between shingle set between two strings. Hid-
den alignment conditional random fields (CRF)
are often used in transliteration which serves as the
generative sequential model to compute the prob-
abilities between the cognates, which is analogous
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to learnable edit distance (McCallum et al., 2012).
Among these baselines, CRF performs the best in
accuracy and MRR.

Orthographic Cognate Detection: Papers re-
lated to this notion usually take alignment of sub-
strings which in classifier like support vector ma-
chines (Ciobanu and Dinu, 2015, 2014) or hidden
markov models (Bhargava and Kondrak, 2009).
We included Alina et al as the baseline (2014),
which employs the dynamic programming based
methods for sequence alignment following which
features were extracted from the mismatches in the
word alignments. These features are plugged into
the classifier like SVM which results in decent per-
formance on accuracy with an average of 84%, but
only 16% on MRR. This result is due to the fact
that a large number of features leads to overfitting
and scoring function is not able to distinguish the
appropriate cognate.

Phonetic Cognate Detection: Research in au-
tomatic cognate identification using phonetic as-
pects involve computation of similarity by de-
composing phonetically transcribed words (Kon-
drak, 2000), acoustic models (Mielke, 2012), pho-
netic encodings (Rama, 2015), aligned segments
of transcribed phonemes (List, 2012b). We im-
plemented Rama’s research (2015), which em-
ploys a Siamese convolutional neural network to
learn the phonetic features jointly with language
relatedness for cognate identification, which was
achieved through phoneme encodings. Although
it performs well on accuracy, it shows poor results
with MRR, possibly the reason as same as SVM
performance.

5.3 Ablation experiments

We experiment with the variables like length
of substrings, ranking functions, shingling tech-
niques, and graphical error model, which are de-
tailed in the Table 1. Amongst the shingling tech-
niques, we found that character bigrams with 2-
ended positioning give better results. Adding tri-
grams to the database does not give major effect
on the results. The results clearly indicate that
adding graphical error model features greatly im-
prove the test results. Amongst the ranking func-
tions, Dirichlet smoothing tends to give better re-
sults, possibly due to the fact that it requires fewer
parameters to tune and is able to capture the se-
quential data (like substrings) better than other
ranking functions (Fang et al., 2011). The hy-



. Ro-1It Ro - Fr Ro - Es Ro - Pt
Algorithms
Acc MRR Acc MRR Acc MRR Acc MRR
Edit Distance (Melamed, 1999) 053 0.11 052 013 0.58 0.15 054 0.13
XDice (Brew et al., 1996) 054 0.19 053 0.14 059 0.16 053 0.14
SVM with Orthographic Aligment (Ciobanu and Dinu, 2014)  0.81 0.18 0.87 0.15 086 0.16 0.73 0.14
Phonetic Encodings in CNN (Rama, 2016) 069 021 078 0.17 077 0.19 0.66 0.15

Hidden alignment CRF (McCallum et al., 2012)

0.84 051 085 048 0.84 050 071 045

Shingling Technique Ranking Function
Bigram, 0-ended TF-IDF

Bigram, 1-ended TF-IDF

Bigram, 2-ended TF-IDF

(Bi + Tri)-gram, 2-ended TF-IDF

Bigram, 2-ended BM25

Bigram, 2-ended Dirichlet

Bigram, 2-ended
Bigram, 2-ended

BM25 + Graphical Error Model
Dirichlet + Graphical Error Model

054 0.18 052 0.14 059 0.15 055 0.11
059 0.19 054 0.18 060 0.18 057 0.12
064 025 063 021 068 022 065 0.17
064 025 064 021 057 022 065 0.18

084 040 087 037 086 034 073 035
084 041 086 038 086 039 074 036
087 0.64 089 051 086 054 0.78 0.55
088 0.67 0.89 059 087 0.60 0.80 0.58

Table 1: Results on the test dataset. The upper half denotes the baselines used and the lower half de-
scribes our ablation experiments. For the experiment 1, we evaluate using the accuracy (Acc) met-
ric. We used MRR (Mean Reciprocal Rank) for describing the second experiment. Higher scores
signify the better performance. The maximum value possible is 1.0. It is worth noting that for the
classification problem (experiment 1), our algorithm has slight improvement. However for the rec-
ommendation problem (experiment 2), our algorithm shows massive improvement. The thresholds,
hyper-parameters, source code and sample Python notebooks are available at our github repository:
https://github.com/pranav-ust/cognates

perparameter A mentioned in the section 4.3, was
tuned around 0.6, which shows the 60% contribu-
tion by the similarity function and 40% contribu-
tion by the dissimilarity. Overall, the combina-
tion of bigrams with 2-ended positional shingling,
graphical error modelling with Dirichlet ranking
function gives the best performance with an aver-
age of 86% on accuracy metric and 60% on MRR.

6 Conclusions

We approach towards the harder problem where
the algorithm aims to find a target cognate when a
source cognate is given. Positional shingling out-
performed non-positional shingling based meth-
ods, which demonstrates that inclusion of posi-
tional information of substrings is rather impor-
tant. Addition of graphical error model boosted
the test results which shows that it is crucial to add
dissimilarity information in order to capture the
transformations of the substrings. Methods whose
scoring functions rely only on complex machine
learning algorithms like CNN or SVM tend to give
worse results when searching for a cognate.
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