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Abstract

While growing code-mixed content on
Online Social Networks (OSNs) provides
a fertile ground for studying various as-
pects of code-mixing, the lack of auto-
mated text analysis tools render such stud-
ies challenging. To meet this challenge, a
family of tools for analyzing code-mixed
data such as language identifiers, parts-
of-speech (POS) taggers, chunkers have
been developed. Named Entity Recogni-
tion (NER) is an important text analysis
task which is not only informative by it-
self, but is also needed for downstream
NLP tasks such as semantic role labeling.
In this work, we present an exploration of
automatic NER of code-mixed data. We
compare our method with existing off-the-
shelf NER tools for social media content,
and find that our systems outperforms the
best baseline by 33.18 % (F1 score).

1 Introduction

Code-switching or code-mixing occurs when
“lexical items and grammatical features from two
languages appear in one sentence” (Muysken,
2000). 1 It is frequently seen in multilingual com-
munities and is of interest to linguists due to its
complex relationship with societal factors (Sridhar
and Sridhar, 1980).

With the rise of Web 2.0, the volume of text
on online social networks (OSN) such as Twitter,
Facebook, Reddit has grown. It is estimated that
around 240 Million Indian users, alone, are active
on Twitter 2. A significant fraction of these users

1Many researchers use code-mixing and code-switching
interchangeably, which we follow in this work

2https://www.statista.com/statistics/381832/twitter-users-
india/

are bilingual, or even trilingual, and their tweets
can be monolingual in English or their vernacular,
or code-mixed. Past research has looked at multi-
ple dimensions of this behaviour such as its rela-
tionship to emotion expression (Rudra et al., 2016)
and identity. Code-mixing or multilingualism of
tweets poses a significant problem to both the
OSNs’ underlying text mining algorithms as well
as researchers trying to study online discourse,
since most existing tools for analyzing OSN text
content caters to monolingual data. For exam-
ple, Twitter’s abuse detection systems fail to flag
code-mixed tweets as offensive. 3 Recent efforts
to build tools for code-mixed content include lan-
guage identifiers (Solorio and Liu, 2008), parts-
of-speech(POS) taggers (Vyas et al., 2014), and
chunking (Sharma et al., 2016). A natural exten-
sion of these set of automated natural language
processing (NLP) tools is a Named Entity Rec-
ognizer (NER) for code-mixed social media data,
which we present in this paper. Additionally, as
language tags are an essential feature for NLP
tasks, including NER, we also present a neural net-
work based language identifier.

Our main contributions are:

1. Building a token-level language identifica-
tion system for Hindi-English (Hi-En) code
mixed tweets, described in detail in Section 3.

2. Building an NER for En-Hi code-mixed
tweets, which we explain in Section 4. We
also show, in Section 5, that our NER per-
forms better than existing baselines.

2 Related Work

In this section we briefly describe the approaches
for automatic language identification and extrac-

3http://timesofindia.indiatimes.com/india/to-
avoid-social-media-police-indian-trolls-go-
vernacular/articleshow/60139671.cms
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tion of named entities.
Language Identification for code-mixed content

has been previously explored in Barman et al.
(2014). Particularly close to our work is the use
of deep-learning approaches for detecting token-
level language tags for code-mixed content (Jaech
et al., 2016).

We particularly focus on efforts to building
NERs for social media content and, NERs for
Indian languages and code-mixed corpora. So-
cial Media text, including and especially tweets,
have subtle variations from written and spoken
text. These include slacker grammatical struc-
ture, spelling variations, ad-hoc abbreviations and
more. See Ritter et al. (2011) for detailed dif-
ferences between tweets and traditional textual
sources. Monolingual NER for tweets include
(Ritter et al., 2011; Li et al., 2012). We build on
these approaches to account for code-mixing and
use the former as a baseline to test our method
against.

3 Language Identification using
Transliteration

We build a token level language identification
model (LIDF) for code-mixed tweets using mono-
lingual corpora available for both the languages,
supplemented by a small set of annotated code-
mixed tweets. We hypothesize that words or char-
acter sequences of different languages encode dif-
ferent structures. Therefore, we aim to capture
this character structure for both languages. Sub-
sequently, given a token, we try to see which lan-
guage fits better. Our LIDF algorithm comprises
of multiple steps, described in Figure 1. Each of
the steps have been explained in detail below.

3.1 Roman-Devanagari transliteration

We restrict ourselves to instances of En-Hi code-
mixing where the Hindi component is written in
Roman script. 4 Therefore, any model trained on
Hindi corpora (which will be in Devanagari) is not
directly usable. To make use of such a corpus, we
first transliterate words written in Roman to De-
vanagari script.

We train a model T , that takes a token writ-
ten in Roman characters and generates its Devana-
gari equivalent (given token school, T generates
-k� l). We follow an approach used by (Rosca

4This is followed in previous studies since the quantity of
code-mixed content with non-Roman Hindi is negligible.

Figure 1: Different steps of our language identi-
fication pipeline. We extract features using lan-
guage models trained on monolingual corpora,
and train a classifier based on these features.

and Breuel, 2016) for English-Arabic translitera-
tion and, and train an Attention Sequence to Se-
quence (Seq2Seq) model (Bahdanau et al., 2014).
Given an input sequence of Roman characters, T
generates a sequence of Devanagari characters.

We train T using Roman-Devanagari translit-
eration pairs mined by (Gupta et al., 2012) and
(Khapra et al., 2014). After combining the two
sets and removing duplicates, we were left with
41,383 unique pairs.

We explore multiple Seq2Seq models, experi-
menting with different RNN cells, encoder and de-
coder depths, output activation functions and the
number of RNN cells in each layer. We evalu-
ate their performance using the character error rate
metric, comparing with LITCM (Bhat et al., 2015)
as a baseline. We report the performance of our
top five models in Table 1, all of which perform
better than the baseline.

Our best model comprises of a 2 layer bidi-
rectional RNN encoder and a 2 layer RNN de-
coder, each layer comprising of 128 GRU units
with ReLU activation. We use the Adagrad op-
timizer to train T , adding a dropout of 0.5 after
each layer and use the early stopping technique to
prevent over fitting. Larger and deeper networks
perform relatively poorer since they start overfit-
ting quickly.

We observe that Hindi words which have mul-
tiple spellings when written in Roman script are
all transliterated to the same Hindi token. There-
fore, T could also be used for normalization and
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Model Depth # Units Cell CER

LITCM – – – 18.88
Seq2Seq 3 256 LSTM 17.23
Seq2Seq 2 64 GRU 17.09
Seq2Seq 3 128 GRU 16.99
Seq2Seq 2 128 LSTM 16.67
Seq2Seq 2 128 GRU 16.54

Table 1: Performance of different transliteration
models. Reported CER is in percentage and was
calculated after a 5-fold cross validation. Depth
was kept the same for both encoding and decoding
layers.

we hope to investigate this in more detail in future.

3.2 Extracting features using monolingual
corpora

For both languages, we learn the structure of the
language at a character level. We do this by train-
ing a model which for a token of length n, learns
to predict the last character given the first n − 1
characters as input. More formally, for each to-
ken {c1, c2, ..., cn}, the model learns to predict cn
given the input sequence {c1, c2, ..., cn−1}. We
model this as a sequence classification problem us-
ing LSTM RNNs (Hochreiter and Schmidhuber,
1997). We use ELM to refer to the English lan-
guage model, and HLM to refer to the Hindi lan-
guage model.

The same architecture is used for both ELM and
HLM, as shown in Figure 1. Both comprise of
two RNN layers with 128 LSTM cells each, using
ReLU activation. The output of the second RNN
layer at the last time step is connected to a fully
connected (FC) layer with softmax activation. The
size of this FC layer is equal to the character vo-
cabulary V of the language. We take a softmax
over the FC layer to predict cn. The normalized
outputs from the FC layer can be thought of as a
probability distribution over V , the ith normalized
output being equal to P (Vi|c1, c2, ..., cn−1), where
Vi is the ith character in the vocabulary. We re-
fer to the normalized outputs from the FC layer of
ELM and HLM as PELM and PHLM respectively,
and use them as features for our language detec-
tion classifier.

For training ELM, we use the News Crawl
dataset provided as a part of the WMT 2014 trans-

lation task.5 As a preprocessing step, we re-
move all non-alphabetic characters (such as num-
bers and punctuations), and convert all upper-
case alphabets to lowercase. After preprocess-
ing, we were left with a total of 98,565,179 to-
kens, 189,267 of which were unique. For HLM,
we use the IIT Bombay Hindi corpus (Kunchukut-
tan et al., 2017). We follow the same preprocess-
ing steps, except for converting to lowercase (since
there is no concept of case in Hindi). This yielded
59,494,325 tokens, of which 161,020 were unique.

The input sequence is encoded into a sequence
of one hot vectors before feeding it to the network.
We use categorical cross-entropy as the loss func-
tion, optimizing the model using gradient descent
(Adagrad). 20% of the unique tokens are held out
and used to validate the performance of our model.
Once again, we use the early stopping technique
and add a dropout of 0.5 after each layer to avoid
over-fitting.

Figure 2: Architecture for ELM and HLM. The
figure shows one cell in each LSTM layer unrolled
over time.

3.3 Predicting language tag using PELM and
PHLM

Given a word {c1, c2, ..., cn} we first translit-
erate it to Devanagari using T , generating
{c′1, c′2, ..., c′k}. Then by passing {c1, c2, ..., cn−1}
and {c′1, c′2, ..., c′k−1} through ELM and HLM re-
spectively, we obtain PELM and PHLM. Our hy-
pothesis is that we can differentiate PELM of a
Hindi word from the PELM of an English word,

5http://statmt.org/wmt14/translation-task.html
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since the character sequence structure of a Hindi
word is different from that of English words
(which are used to train ELM). Similarly, we can
differentiate PHLM of an English word from the
PHLM of a Hindi word.

We use a set of tweets curated by Sakshi Gupta
and Radhika (2016) which are annotated for lan-
guage at a token level (each token is either En-
glish, Hindi or Rest) to train a three class clas-
sifier using (i) PELM (ii) PHLM, (iii) ratio of non-
alphabetic characters in W , (iv) ratio of capital-
ization in W and (v) Binary feature indicating
whether W is title-case as features. The last three
features help identify the Rest tokens. Our 3-class
classifier is a fully connected neural network with
2 hidden layers using ReLU activation. On 5-
fold cross validation, our model achieves an av-
erage F1 score of 0.934 and an average accuracy
of 0.961 across the three classes. This is a slight
improvement over the model proposed by Sharma
et al. (2016), which had an accuracy of 0.938 on
the same dataset (as reported by reported by Sak-
shi Gupta and Radhika (2016)).

4 Named Entity Recognition

Named entity recognition typically comprises of
two components, (i) entity segmentation and (ii)
entity classification. Both these components can
either be modeled separately as done by Ritter
et al. (2011), or they can be combined and tackled
together like the model proposed by Finkel et al.
(2005). We adopt the latter approach, modeling
both components together as a sequence labeling
task. Our hypothesis is that named entities can
be identified using features extracted from words
surrounding it. We explore models using Con-
ditional Random Fields and LSTM RNNs using
handcrafted features described below.

4.1 Features

Our hand-crafted features are described below.

• Token based features : The current token
T , T after stripping all characters which are
not in the Roman alphabet (Tclean), and con-
verting all characters in Tclean to lowercase
(Tnorm) generates three different features.
We create Twordhsape by replacing all upper-
case letters in T with X , all lowercase let-
ters with x, all numerals with o and leave all
other characters as they are. For example,

Adam123 becomes Xxxxooo. We also use
token length TL as as feature.

• Affixes : Prefixes and suffixes of length 1 to
5 extracted from T , padded with whitespace
if needed. These help in identifying phrases
that are not entities. For example, an English
token ending in ing is highly unlikely to be a
named entity.

• Character based features : Binary fea-
tures indicating (i) whether T is title case,
(ii) whether T has an uppercase letter, (iii)
whether T has all uppercase characters, (iv)
whether T has a non-alphanumeric character
and (v) whether T is a hashtag. We also cal-
culate the fraction of characters in T which
are ASCII

• Language based features : The language
which T belongs to, as predicted by the
model proposed in section 3. For the LSTM
model, we also use PELM and PHLM generated
for T .

• Syntactic features : POS tag for T as pre-
dicted by the model trained by Owoputi et al.
(2013), POS tag and chunk tag for T and
as predicted by the shallow parser trained
by Sharma et al. (2016)

• Tweet capitalization features : From the
tweet that T belongs to, we extract (i) fraction
of characters that are uppercase, (ii) fraction
of characters that are lowercase, (iii) fraction
of tokens that are title case.6

4.2 Proposed Models

Our LSTM model (Figure 3) comprises of two
bidirectional RNN layers using LSTM cells and
ReLU activation. The input at the time step t is
Ft, i.e. the feature vector for the token at position t
in the tweet. Ft is generated by concatenating the
extracted features for the token at position t. T ,
Tclean, Tnorm, Twordhsape and affixes are passed
through embedding layers which are randomly ini-
tialized and learnt during the training phase. All
real-valued features are encoded into one-hot vec-
tors of length 10, using percentile binning.

The output (ht) of the second RNN layer at each
time step is passed to a separate fully connected

6Using the output of the T cap classifier trained by Ritter
et al reduces accuracy.
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Type Lample Ritter LSTM CRF N

PER 38.73 38.45 65.47 72.23 1644
LOC 38.35 46.84 67.53 72.50 744
ORG 16.99 13.54 50.94 70.35 375

All 33.77 36.88 64.64 72.06 2763

Table 2: Performance (F1 scores) of different mod-
els on segmentation and classification. N is the
total number of entities in the entire dataset. Re-
ported numbers are in percentages. Results of
CRF and LSTM are on 5-fold cross validation.

layer FCt. We take a softmax over the output of
FCt to predict the label (Lt) for the token at po-
sition t. While training, we use the Adagrad opti-
mizer and add a dropout of 0.5 after each layer.

Figure 3: LSTM NER architecture. The figure
shows one cell in each LSTM layer unrolled over
time

Our CRF model is the standard generalized
CRF proposed by Lafferty et al. (2001), which al-
lows a flow of information across the sequence in
both directions. We add L1 and L2 regularization
to prevent over-fitting, and do an extensive grid
search to come up with optimum values for these
constants.

5 Experiments and Results

5.1 Data collection and annotation
We randomly sampled 50,000 tweets from the
code mixed tweet dataset collected by (Patro et al.,
2017). On this set, we ran our language detection
algorithm and filtered tweets which had at least
five Hi tokens. The filtered data also had tweets
containing Roman tokens belonging to languages

other than English and Hindi (like transliterated
Telugu), such tweets were removed during the an-
notation process.

The final dataset comprised of 2079 tweets
(35,374 tokens). 13,860 (39.18 %) of the to-
kens were En, 11,391 (32.2 %) Hi and 10,123
(28.61 %) Rest. Each tweet was annotated at a
token level for three classical named entity types
Person, Location and Organisation, using the
IOB format. The annotation process was carried
out by three linguists proficient in both English
and Hindi. The final label was decided based
on majority vote and any instance (around 2%)
where all three annotators disagreed was resolved
through discussion. In all, the annotators identi-
fied 2763 entity phrases (3751 tokens) which in-
cluded 1,644 Person entities, 744 Location enti-
ties and 375 Organisation entities.

5.2 Baselines and Results

We compare our proposed models (LSTM and
CRF) with two baseline systems, (i) a state of the
art English NER model proposed by Lample et al.
(2016) and (ii) a state of the art NER model for
tweets proposed by Ritter et al. (2011). Named
Entities do not have belong to one particular lan-
guage though the same NE might have different
forms in different languages, such as Cologne in
English, is Kln in German. For the purpose of this
study, we do not assign NEs any language tags and
leave the detection and mapping of multiple NE
forms as future work.

The results are summarized in Table 2 (segmen-
tation) and Table 3 (segmentation and classifica-
tion). All metrics are calculated on a phrase level,
no partial credit is awarded. An incorrectly identi-
fied boundary is penalized as both, a false positive
and a false negative. For computing Table 2, we
generalize entity tags (B-PER, B-LOC, B-ORG
become B-ENT, I-PER, I-LOC, I-ORG become I-
ENT). As expected, both these systems fare poorly
on our data at both entity segmentation and entity
classification. We believe this is due to the high
number of out of vocabulary tokens (belonging to
Hindi) in the data.

6 Discussion

In this paper, we present a Named Entity Recog-
nition tool specifically targeting Hindi-English
code-mixed content. To build our NER model, we
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Model Precision Recall F1 score

Lample 36.55 46.59 40.97
Ritter 64.64 34.24 44.77
LSTM 74.45 64.87 69.33
CRF 84.95 69.91 76.70

Table 3: Performance of different models at entity
segmentation. All numbers are in percentages.

also present a unique semi-supervised language
identifier which exploits the character-level differ-
ences in languages. We validate the performance
of our NER against off-the-shelf NER for Twitter
and observe that our model outperforms them.

In future, we plan to explore building other
downstream NLP tools such as Semantic Role
Labeling or Entity-specific Sentiment Analyzers
which make use of NER for code-mixed data.
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