
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 700–705
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

700

Personalized Language Model for Query Auto-Completion

Aaron Jaech and Mari Ostendorf
University of Washington

{ajaech, ostendor}@uw.edu

Abstract

Query auto-completion is a search engine
feature whereby the system suggests com-
pleted queries as the user types. Recently,
the use of a recurrent neural network lan-
guage model was suggested as a method of
generating query completions. We show
how an adaptable language model can be
used to generate personalized completions
and how the model can use online updat-
ing to make predictions for users not seen
during training. The personalized predic-
tions are significantly better than a base-
line that uses no user information.

1 Introduction

Query auto-completion (QAC) is a feature used by
search engines that provides a list of suggested
queries for the user as they are typing. For in-
stance, if the user types the prefix “mete” then the
system might suggest “meters” or “meteorite” as
completions. This feature can save the user time
and reduce cognitive load (Cai et al., 2016).

Most approaches to QAC are extensions of the
Most Popular Completion (MPC) algorithm (Bar-
Yossef and Kraus, 2011). MPC suggests com-
pletions based on the most popular queries in the
training data that match the specified prefix. One
way to improve MPC is to consider additional sig-
nals such as temporal information (Shokouhi and
Radinsky, 2012; Whiting and Jose, 2014) or infor-
mation gleaned from a users’ past queries (Shok-
ouhi, 2013). This paper deals with the latter of
those two signals, i.e. personalization. Personal-
ization relies on the fact that query likelihoods are
drastically different among different people de-
pending on their needs and interests.

Recently, Park and Chiba (2017) suggested a
significantly different approach to QAC. In their

Cold Start Warm Start
1 bank of america bank of america
2 barnes and noble basketball
3 babiesrus baseball
4 baby names barnes and noble
5 bank one baltimore

Table 1: Top five completions for the prefix “ba”
for a cold start model with no user knowledge
and a warm model that has seen the queries espn,
sports news, nascar, yankees, and nba.

work, completions are generated from a charac-
ter LSTM language model instead of by ranking
completions retrieved from a database, as in the
MPC algorithm. This approach is able to com-
plete queries whose prefixes were not seen during
training and has significant memory savings over
having to store a large query database.

Building on this work, we consider the task of
personalized QAC, advancing current methods by
combining the obvious advantages of personaliza-
tion with the effectiveness of a language model in
handling rare and previously unseen prefixes. The
model must learn how to extract information from
a user’s past queries and use it to adapt the gen-
erative model for that person’s future queries. To
do this, we leverage recent advances in context-
adaptive neural language modeling. In particular,
we make use of the recently introduced FactorCell
model that uses an embedding vector to additively
transform the weights of the language model’s re-
current layer with a low-rank matrix (Jaech and
Ostendorf, 2017). By allowing a greater fraction
of the weights to change during personalization,
the FactorCell model has advantages over the tra-
ditional approach to adaptation of concatenating a
context vector to the input of the LSTM (Mikolov
and Zweig, 2012).

Table 1 provides an anecdotal example from



701

the trained FactorCell model to demonstrate the
intended behavior. The table shows the top five
completions for the prefix “ba” in a cold start sce-
nario and again after the user has completed five
sports related queries. In the warm start scenario,
the “baby names” and “babiesrus” completions no
longer appear in the top five and have been re-
placed with “basketball” and “baseball”.

The novel aspects of this work are the appli-
cation of an adaptive language model to the task
of QAC personalization and the demonstration of
how RNN language models can be adapted to con-
texts (users) not seen during training. An addi-
tional contribution is showing that a richer adapta-
tion framework gives added gains with added data.

2 Model

Adaptation depends on learning an embedding for
each user, which we discuss in Section 2.1, and
then using that embedding to adjust the weights of
the recurrent layer, discussed in Section 2.2.

2.1 Learning User Embeddings

During training, we learn an embedding for each
of the users. We think of these embeddings as
holding latent demographic factors for each user.
Users who have less than 15 queries in the train-
ing data (around half the users but less than 13% of
the queries) are grouped together as a single entity,
user1, leaving k users. The user embeddings ma-
trix Uk×m, wherem is the user embedding size, is
learned via back-propagation as part of the end-to-
end model. The embedding for an individual user
is the ith row of U and is denoted by ui.

It is important to be able to apply the model to
users that are not seen during training. This is
done by online updating of the user embeddings
during evaluation. When a new person, userk+1

is seen, a new row is added to U and initialized to
u1. Each person’s user embedding is updated via
back-propagation every time they select a query.
When doing online updating of the user embed-
dings, the rest of the model parameters (everything
except U) are frozen.

2.2 Recurrent Layer Adaptation

We consider three model architectures which dif-
fer only in the method for adapting the recurrent
layer. First is the unadapted LM, analogous to the
model from Park and Chiba (2017), which does
no personalization. The second architecture was

introduced by Mikolov and Zweig (2012) and has
been used multiple times for LM personalization
(Wen et al., 2013; Huang et al., 2014; Li et al.,
2016). It works by concatenating a user embed-
ding to the character embedding at every step of
the input to the recurrent layer. Jaech and Osten-
dorf (2017) refer to this model as the ConcatCell
and show that it is equivalent to adding a term Vu
to adjust the bias of the recurrent layer. The hidden
state of a ConcatCell with embedding size e and
hidden state size h is given in Equation 1 where
σ is the activation function, wt is the character
embedding, ht−1 is the previous hidden state, and
W ∈ Re+h×h and b ∈ Rh are the recurrent layer
weight matrix and bias vector.

ht = σ([wt, ht−1]W + b+Vu) (1)

Adapting just the bias vector is a significant lim-
itation. The FactorCell model, (Jaech and Os-
tendorf, 2017), remedies this by letting the user
embedding transform the weights of the recurrent
layer via the use of a low-rank adaptation ma-
trix. The FactorCell uses a weight matrix W′ =
W +A that has been additively transformed by a
personalized low-rank matrix A. Because the Fac-
torCell weight matrix W′ is different for each user
(See Equation 2), it allows for a much stronger
adaptation than what is possible using the more
standard ConcatCell model.1

ht = σ([wt, ht−1]W
′ + b) (2)

The low-rank adaptation matrix A is generated
by taking the product between a user’s m dimen-
sional embedding and left and right bases tensors,
ZL ∈ Rm×e+h×r and ZR ∈ Rr×h×m as so,

A = (ui ×1 ZL)(ZR ×3 ui) (3)

where ×i denotes the mode-i tensor product. The
above product selects a user specific adaptation
matrix by taking a weighted combination of the
m rank r matrices held between ZL and ZR. The
rank, r, is a hyperparameter which controls the de-
gree of personalization.

3 Data

Our experiments make use of the AOL Query data
collected over three months in 2006 (Pass et al.,
2006). The first six of the ten files were used for

1In the case of an LSTM, W′ is extended to incorporate
all of the gates.



702

training. This contains approximately 12 million
queries from 173,000 users for an average of 70
queries per user (median 15). A set of 240,000
queries from those same users (2% of the data)
was reserved for tuning and validation. From the
remaining files, one million queries from 30,000
users are used to test the models on a disjoint set
of users.

4 Experiments

4.1 Implementation Details

The vocabulary consists of 79 characters including
special start and stop tokens. Models were trained
for six epochs. The Adam optimizer is used dur-
ing training with a learning rate of 10−3 (Kingma
and Ba, 2014). When updating the user embed-
dings during evaluation, we found that it is easier
to use an optimizer without momentum. We use
Adadelta (Zeiler, 2012) and tune the online learn-
ing rate to give the best perplexity on a held-out
set of 12,000 queries, having previously verified
that perplexity is a good indicator of performance
on the QAC task.2

The language model is a single-layer character-
level LSTM with coupled input and forget gates
and layer normalization (Melis et al., 2018; Ba
et al., 2016). We do experiments on two model
configurations: small and large. The small mod-
els use an LSTM hidden state size of 300 and 20
dimensional user embeddings. The large models
use a hidden state size of 600 and 40 dimensional
user embeddings. Both sizes use 24 dimensional
character embeddings. For the small sized mod-
els, we experimented with different values of the
FactorCell rank hyperparameter between 30 and
50 dimensions finding that bigger rank is better.
The large sized models used a fixed value of 60 for
the rank hyperparemeter. During training only and
due to limited computational resources, queries
are truncated to a length of 40 characters.

Prefixes are selected uniformly at random with
the constraint that they contain at least two charac-
ters in the prefix and that there is at least one char-
acter in the completion. To generate completions
using beam search, we use a beam width of 100
and a branching factor of 4. Results are reported
using mean reciprocal rank (MRR), the standard
method of evaluating QAC systems. It is the mean
of the reciprocal rank of the true completion in the

2Code at http://github.com/ajaech/query completion

Size Model Seen Unseen All
MPC .292 .000 .203

Unadapted .292 .256 .267
(S) ConcatCell .296 .263 .273

FactorCell .300 .264 .275
Unadapted .324 .286 .297

(B) ConcatCell .330 .298 .308
FactorCell .335 .298 .309

Table 2: MRR reported for seen and unseen pre-
fixes for small (S) and big (B) models.

Figure 1: Relative improvement in MRR over the
unpersonalized model versus queries seen using
the large size models. Plot uses a moving average
of width 9 to reduce noise.

top ten proposed completions. The reciprocal rank
is zero if the true completion is not in the top ten.

Neural models are compared against an MPC
baseline. Following Park and Chiba (2017), we
remove queries seen less than three times from the
MPC training data.

4.2 Results

Table 2 compares the performance of the differ-
ent models against the MPC baseline on a test set
of one million queries from a user population that
is disjoint with the training set. Results are pre-
sented separately for prefixes that are seen or un-
seen in the training data. Consistent with prior
work, the neural models do better than the MPC
baseline. The personalized models are both bet-
ter than the unadapted one. The FactorCell model
is the best overall in both the big and small sized
experiments, but the gain is mainly for the seen
prefixes.

Figure 1 shows the relative improvement in
MRR over an unpersonalized model versus the
number of queries seen per user. Both the Factor-



703

Figure 2: MRR by prefix and query lengths for the
large FactorCell and unadapted models with the
first 50 queries per user excluded.

Cell and the ConcatCell show continued improve-
ment as more queries from each user are seen, and
the FactorCell outperforms the ConcatCell by an
increasing margin over time. In the long run, we
expect that the system will have seen many queries
from most users. Therefore, the right side of Fig-
ure 1, where the relative gain of FactorCell is up
to 2% better than that of the ConcatCell, is more
indicative of the potential of these models for ac-
tive users. Since the data was collected over a lim-
ited time frame and half of all users have fifteen or
fewer queries, the results in Table 2 do not reflect
the full benefit of personalization.

Figure 2 shows the MRR for different prefix and
query lengths. We find that longer prefixes help
the model make longer completions and (more ob-
viously) shorter completions have higher MRR.
Comparing the personalized model against the
unpersonalized baseline, we see that the biggest
gains are for short queries and prefixes of length
one or two.

We found that one reason why the FactorCell
outperforms the ConcatCell is that it is able to pick
up sooner on the repetitive search behaviors that
some users have. This commonly happens for nav-
igational queries where someone searches for the
name of their favorite website once or more per
day. At the extreme tail there are users who search
for nothing but free online poker. Both models do
well on these highly predictable users but the Fac-
torCell is generally a bit quicker to adapt.

We conducted case studies to better understand
what information is represented in the user em-
beddings and what makes the FactorCell different
from the ConcatCell. From a cold start user em-
bedding we ran two queries and allowed the model
to update the user embedding. Then, we ranked

FactorCell ConcatCell
1 high school musical horoscope
2 chris brown high school musical
3 funnyjunk.com homes for sale
4 funbrain.com modular homes
5 chat room hair styles

Table 3: The five queries that have the great-
est adapted vs. unadapted likelihood ratio after
searching for “high school softball” and “math
homework help”.

the most frequent 1,500 queries based on the ratio
of their likelihood from before and after updating
the user embeddings.

Tables 3 and 4 show the queries with the high-
est relative likelihood of the adapted vs. unadapted
models after two related search queries: “high
school softball” and “math homework help” for
Table 3, and “Prada handbags” and “Versace eye-
wear” for Table 4. In both cases, the Factor-
Cell model examples are more semantically co-
herent than the ConcatCell examples. In the first
case, the FactorCell model identifies queries that a
high school student might make, including enter-
tainment sources and a celebrity entertainer pop-
ular with that demographic. In the second case,
the FactorCell model chooses retailers that carry
woman’s apparel and those that sell home goods.
While these companies’ brands are not as luxu-
rious as Prada or Versace, most of the top luxury
brand names do not appear in the top 1,500 queries
and our model may not be capable of being that
specific. There is no obvious semantic connec-
tion between the highest likelihood ratio phrases
for the ConcatCell; it seems to be focusing more
on orthography than semantics (e.g. “home” in
the first example).. Not shown are the queries
which experienced the greatest decrease in like-
lihood. For the “high school” case, these included
searches for travel agencies and airline tickets—
websites not targeted towards the high school age
demographic.

5 Related Work

While the standard implementation of MPC can
not handle unseen prefixes, there are variants
which do have that ability. Park and Chiba (2017)
find that the neural LM outperforms MPC even
when MPC has been augmented with the approach
from Mitra and Craswell (2015) for handling rare



704

FactorCell ConcatCell
1 neiman marcus craigslist nyc
2 pottery barn myspace layouts
3 jc penney verizon wireless
4 verizon wireless jensen ackles
5 bed bath and beyond webster dictionary

Table 4: The five queries that have the great-
est adapted vs. unadapted likelihood ratio after
searching for “prada handbags” and “versace eye-
wear”.

prefixes. There has also been work on personaliz-
ing MPC (Shokouhi, 2013; Cai et al., 2014). We
did not compare against these specific models be-
cause our goal was to show how personalization
can improve the already-proven generative neural
model approach. RNN’s have also previously been
used for the related task of next query suggestion
(Sordoni et al., 2015).

Our results are not directly comparable to Park
and Chiba (2017) or Mitra and Craswell (2015)
due to differences in the partitioning of the data
and the method for selecting random prefixes.
Prior work partitions the data by time instead of
by user. Splitting by users is necessary in order
to properly test personalization over longer time
ranges.

Wang et al. (2018) show how spelling correction
can be integrated into an RNN language model
query auto-completion system and how the com-
pletions can be generated in real time using a
GPU. Our method of updating the model during
evaluation resembles work on dynamic evaluation
for language modeling (Krause et al., 2017), but
differs in that only the user embeddings (latent de-
mographic factors) are updated.

6 Conclusion and Future Work

Our experiments show that the LSTM model can
be improved using personalization. The method
of adapting the recurrent layer clearly matters and
we obtained an advantage by using the FactorCell
model. The reason the FactorCell does better is
in part attributable to having two to three times as
many parameters in the recurrent layer as either
the ConcatCell or the unadapted models. By de-
sign, the adapted weight matrix W′ only needs to
be computed at most once per query and is reused
many thousands of times during beam search. As
a result, for a given latency budget, the FactorCell

model outperforms the Mikolov and Zweig (2012)
model for LSTM adaptation.

The cost for updating the user embeddings is
similar to the cost of the forward pass and depends
on the size of the user embedding, hidden state
size, FactorCell rank, and query length. In most
cases there will be time between queries for up-
dates, but updates can be less frequent to reduce
computational costs.

We also showed that language model person-
alization can be effective even on users who are
not seen during training. The benefits of person-
alization are immediate and increase over time as
the system continues to leverage the incoming data
to build better user representations. The approach
can easily be extended to include time as an addi-
tional conditioning factor. We leave the question
of whether the results can be improved by com-
bining the language model with MPC for future
work.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Ziv Bar-Yossef and Naama Kraus. 2011. Context-
sensitive query auto-completion. In WWW, pages
107–116. ACM.

Fei Cai, Maarten De Rijke, et al. 2016. A survey
of query auto completion in information retrieval.
Foundations and Trends in Information Retrieval,
10(4):273–363.

Fei Cai, Shangsong Liang, and Maarten De Rijke.
2014. Time-sensitive personalized query auto-
completion. In CIKM, pages 1599–1608. ACM.

Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, and Shou-
De Lin. 2014. Enriching cold start personalized lan-
guage model using social network information. In
ACL, pages 611–617.

Aaron Jaech and Mari Ostendorf. 2017. Low-rank
RNN adaptation for context-aware language model-
ing. arXiv preprint arXiv:1710.02603.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and
Steve Renals. 2017. Dynamic evaluation of neural
sequence models. arXiv preprint arXiv:1709.07432.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A persona-based neural con-
versation model. ACL.



705

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. ICLR.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In SLT, pages 234–239.

Bhaskar Mitra and Nick Craswell. 2015. Query auto-
completion for rare prefixes. In CIKM, pages 1755–
1758. ACM.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In SIGIR,
pages 1189–1192. ACM.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson.
2006. A picture of search. In InfoScale, volume
152, page 1.

Milad Shokouhi. 2013. Learning to personalize query
auto-completion. In SIGIR, pages 103–112. ACM.

Milad Shokouhi and Kira Radinsky. 2012. Time-
sensitive query auto-completion. In SIGIR, pages
601–610. ACM.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In CIKM, pages 553–562. ACM.

Po-Wei Wang, J. Zico Kolter, Vijai Mohan, and Inder-
jit S. Dhillon. 2018. Realtime query completion via
deep language models. ICLR.

Tsung-Hsien Wen, Aaron Heidel, Hung-yi Lee,
Yu Tsao, and Lin-Shan Lee. 2013. Recurrent neural
network based language model personalization by
social network crowdsourcing. In INTERSPEECH,
pages 2703–2707.

Stewart Whiting and Joemon M Jose. 2014. Recent
and robust query auto-completion. In WWW, pages
971–982. ACM.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

