Parser Training with Heterogeneous Treebanks

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and Joakim Nivre
Department of Linguistics and Philology
Uppsala University
firstName.lastName@lingfil.uu.se

Abstract

How to make the most of multiple hetero-
geneous treebanks when training a mono-
lingual dependency parser is an open ques-
tion. We start by investigating previously
suggested, but little evaluated, strategies
for exploiting multiple treebanks based on
concatenating training sets, with or with-
out fine-tuning. We go on to propose a
new method based on treebank embed-
dings. We perform experiments for several
languages and show that in many cases
fine-tuning and treebank embeddings lead
to substantial improvements over single
treebanks or concatenation, with average
gains of 2.0-3.5 LAS points. We argue
that treebank embeddings should be pre-
ferred due to their conceptual simplicity,
flexibility and extensibility.

1 Introduction

In this paper we investigate how to train mono-
lingual parsers in the situation where several tree-
banks are available for a single language. This is
quite a common occurrence; in release 2.1 of the
Universal Dependencies (UD) treebanks (Nivre
et al., 2017), 25 languages have more than one
treebank. These treebanks can differ in several
respects: they can contain material from differ-
ent language variants, domains, or genres, and
written or spoken material. Even though the UD
project provides guidelines for consistent annota-
tion, treebanks can still differ with respect to an-
notation choices, consistency and quality of anno-
tation. Some treebanks are thoroughly checked by
human annotators, whereas others are based en-
tirely on automatic conversions. All this means
that it is often far from trivial to combine multiple
treebanks for the same language.
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The 2017 CoNLL Shared Task on Universal De-
pendency Parsing (Zeman et al., 2017) included
15 languages with multiple treebanks. An addi-
tional parallel test set of 1000 sentences, PUD,
was also made available for a selection of lan-
guages. Most of the participating teams did not
take advantage of the multiple treebanks, however,
and simply trained one model per treebank instead
of one model per language. There were a few ex-
ceptions to this rule, but these teams typically did
not investigate the effect of their proposed strate-
gies in detail.

In this paper we begin by performing a thorough
investigation of previously proposed strategies for
training with multiple treebanks for the same lan-
guage. We then propose a novel method, based on
treebank embeddings. Our new technique has the
advantage of producing a single flexible model for
each language, regardless of the number of tree-
banks. We show that this method leads to sub-
stantial improvements for many languages. Of the
competing methods, training on the concatenation
of treebanks, followed by fine-tuning for each tree-
bank, also performed well, but this method results
in longer training times and necessitates multiple
unwieldy models per language.

2 Training with Multiple Treebanks

The most obvious way to combine treebanks for
a particular language, provided that they use the
same annotation scheme, is simply to concatenate
the training sets. This has the advantage that it
does not require any modifications to the parser
itself, and it produces a single model that can be
directly used for any input from the language in
question. Bjorkelund et al. (2017) and Das et al.
(2017) used this strategy to parse the PUD test sets
in the 2017 CoNLL Shared Task. Little details are
given on the results, but while it was successful on
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dev data for most languages, results were mixed
on the actual PUD test sets. For the two Nor-
wegian language variants, concatenation has been
proposed (Velldal et al., 2017), but it hurts results
unless combined with machine translation.

Training on concatenated treebanks can be im-
proved by a subsequent fine-tuning step. In this
set-up, after training the model on concatenated
data, it is refined for each treebank by training only
on its own training set for a few additional epochs.
This enables the models to learn differences be-
tween treebanks, but it requires more training,
and results in separate models for each treebank.
When the parser is applied to new data, there is
thus a choice of which fine-tuned version to use.
This approach was used by Che et al. (2017) and
Shi et al. (2017) for languages with multiple tree-
banks in the CoNLL 2017 Shared Task. Che et al.
(2017) apply fine-tuning to all but the largest tree-
bank for each language, and show average gains of
1.8 LAS for a subset of nine treebanks. Shi et al.
(2017) show that the choice of treebank for pars-
ing the PUD test set is important, but do not have
any specific evaluation of the effect of fine-tuning.

Another approach, not explored in this paper,
is shared gated adversarial networks, proposed by
Sato et al. (2017) for the CoNLL 2017 Shared
Task. They use treebank prediction as an adver-
sarial task. In this model, treebank-specific Bil-
STMs are constructed for all treebanks in addition
to a shared BiLSTM which is used both for parsing
and for the adversarial task. This method requires
knowing at test time which treebank the input be-
longs to. Sato et al. (2017) show that this strat-
egy can give substantial improvements, especially
for small treebanks. For large treebanks, however,
there are mostly no or only minor improvements.

Our approach for taking advantage of multiple
treebanks is to use a treebank embedding to repre-
sent the treebank to which a sentence belongs. In
our proposed model, all parameters of the model
are shared; the treebank embedding facilitates soft
sharing between treebanks at the word level, and
allows the parser to learn treebank-specific phe-
nomena. At test time, a treebank identifier has
to be given for the input data. A key benefit of
using treebank embeddings is that we can train
a single model for each language using all avail-
able data while remaining sensitive to the differ-
ences between treebanks. The addition of treebank
embeddings requires only minor modifications to
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the parser (see section 3.1). To the best of our
knowledge this approach is novel when applied
to the monolingual case as treebank embeddings.
The most similar approach we have found in the
literature is Lim and Poibeau (2017), who used
one-hot treebank representations to combine data
for improving monolingual parsing for three tiny
treebanks, with improvements of 0.6—1.9 LAS. It
is also related to work on domain embeddings
for machine translation (Kobus et al., 2017), and
language embeddings for parsing (Ammar et al.,
2016).

We previously used a similar architecture for
combining languages with very small training sets
with additional languages (de Lhoneux et al.,
2017a). Language embeddings have also been ex-
plored for other cross-lingual tasks such as lan-
guage modeling (Tsvetkov et al., 2016; Ostling
and Tiedemann, 2017) and POS-tagging (Bjerva
and Augenstein, 2018). Cross-lingual parsing,
however, often requires substantially more com-
plex models. They typically include features such
as multilingual word embeddings (Ammar et al.,
2016), linguistic re-write rules (Aufrant et al.,
2016), or machine translation (Tiedemann, 2015).
Unlike much work on cross-lingual parsing, we do
not focus on a low-resource scenario.

3 Experimental Setup

We perform experiments for 24 treebanks from
9 languages, using UUParser (de Lhoneux et al.,
2017a,b). We compare concatenation (CONCAT),
concatenation with fine-tuning (C+FT), and tree-
bank embeddings (TB-EMB). In addition we com-
pare these results to using only single treebanks
for training (SINGLE). While some of these meth-
ods were previously suggested in the literature, no
proper evaluation and comparison between them
has been performed. For the PUD test data, there
is no corresponding training set, so we need to
choose a model or set a treebank embedding based
on some other treebank. We call this a proxy tree-
bank.

For evaluation we use labeled attachment score
(LAS). Significance testing is performed using
a randomization test, with the script from the
CoNLL 2017 Shared Task.!

"https://github.com/udapi/
udapi-python/blob/master/udapi/block/
eval/conlll7.py
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3.1 The Parser

We use UUParser? (de Lhoneux et al., 2017a),
which is based on the transition-based parser of
Kiperwasser and Goldberg (2016), and adapted
to UD. It uses the arc-hybrid transition system
from Kuhlmann et al. (2011) extended with a
SWAP transition and a static-dynamic oracle, as
described in de Lhoneux et al. (2017b). This
model allows the construction of non-projective
dependency trees (Nivre, 2009).

A configuration c is represented by a feature
function ¢(-) over a subset of its elements and,
for each configuration, transitions are scored by
a classifier. In this case, the classifier is a multi-
layer perceptron (MLP) and ¢(-) is a concatena-
tion of the BiLSTM vectors v; of words on top of
the stack and at the beginning of the buffer. The
MLP scores transitions together with the arc labels
for transitions that involve adding an arc.

For an input sentence of length n with words
wi, ..., Wy, the parser creates a sequence of vec-
tors x1.,, Where the vector x; representing w; is
the concatenation of a word embedding e(w;) and
a character vector, obtained by running a BiLSTM
over the m characters chy, . .., ch,, of w;:

x; = e(w;) o BILSTM(ch1.y,)

Note that no POS-tags or morphological features
are used in this parser.

In the TB-EMB setup, we also concatenate a
treebank embedding tb(w;) to the representation
of w;:

x; = e(w;) o BILSTM(chy.p) o th(w;)

Finally, each input element is represented by a
BiLSTM vector, v;:

v; = BILSTM(21.p,, 1)

All embeddings are initialized randomly, and
trained together with the BiLSTMs and MLP. For
hyperparameter settings we used default values
from de Lhoneux et al. (2017a). The dimension
of the treebank embedding is set to 12 in our ex-
periments; we saw only small and inconsistent
changes when varying the number of dimensions.
We train the parser for 30 epochs per setting. For
C+FT we apply fine-tuning for an additional 10
epochs for each treebank. We pick the best epoch

https://github.com/UppsalaNLP/
uuparser

621

based on LAS score on the dev set, using average
dev scores when training on more than one tree-
bank, and apply the model from this epoch to the
test data.

3.2 Data

We performed all experiments on UD version 2.1
treebanks (Nivre et al., 2017), using gold sentence
and word segmentation. We selected 9 languages,
based on the criteria that they should have at least
two treebanks with fully available training data
and a PUD test set. The sizes of the training cor-
pora for the 9 languages are shown in Table 1.
The situation is quite different across languages
with either treebanks of roughly the same size,
as for Spanish, or very skewed data sizes with a
mix of large and small treebanks, as for Czech.
In all cases we use all available data, except for
Czech, where we randomly choose a maximum of
15,000 sentences per treebank per epoch for effi-
ciency reasons.

4 Results

Table 1 shows the results on the test sets of each
training treebank and on the PUD test sets. Over-
all we observe substantial gains when using either
C+FT or TB-EMB. On average both C+FT and TB-
EMB beat SINGLE by 3.5 LAS points and CON-
CAT by over 2.0 LAS points when testing on the
test sets of the treebanks used for training, and
both methods beat both baselines by over 2.0 LAS
points for the PUD test set, if we consider the best
proxy treebank.

We see positive gains across many scenarios
when using C+FT and TB-EMB. First, there are
gains for both balanced and unbalanced data sizes,
as in the cases of Spanish and French, respectively.
Secondly, there are cases with different language
variants, as for Portuguese, and different domains,
as for Finnish where FTB only contains grammar
examples and TDT contains a mix of domains.
There are also cases of known differences in an-
notation choices, as for the Swedish treebanks.

When the data is very skewed, as for Russian,
the effect of adding a small treebank to a large
one is minor, as expected. While our results are
not directly comparable to the adversarial learning
in Sato et al. (2017) who used a different parser
and test set, the improvements of C+FT and TB-
EMB are typically at least on par with and often
larger than their improvements. While our im-
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Same treebank test set PUD test set
Language  Treebank Size | SINGLE CONCAT C+FT TB-EMB | SINGLE CONCAT C+FT TB-EMB
PDT 68495 | 86.7 87.5T 88.3* 87.2F 81.7 81.6 81.2
Crech CAC 23478 | 86.0 87.8% 88.17  88.5° 75.0 817 81.3 81.1
FicTree 10160 | 84.3 89.3% 89.57 89.2F 66.1 ) 79.8 80.3
CLIT 860 | 72.5 86.2% 8697 86.0" 42.1 80.8 80.9
EWT 12543 | 822 82.1 82.5 83.0 80.7 g1.7° 81.9°
English LinES 2738 | 72.1 76.7% 7737 77.3% 62.6 80.0 75.9 74.5
ParTUT 1781 | 80.5 83.5% 8541 857 68.0 78.1 76.9
Finnish FTB 14981 | 76.4% 744 80.1*  80.6" 46.7 730 546  53.1
TDT 12217 | 78.1% 70.6 80.6*  80.3* 78.6% : 81.3*  80.9*
FIB 14759 | 83.2 83.2 83.9% 84.1° 72.0 76.7 741
F GSD 14554 | 84.5 84.1 85.3 85.6 79.1 80.2*  80.3*
rench . 79.4
Sequoia 2231 | 84.0 86.0" 89.8*  89.1% 69.5 78.1 77.6
ParTUT 803 | 79.8 80.5 89.1*  90.3* 63.4 78.8 77.5
ISDT 12838 | 87.7 87.9 87.7 87.6 85.4 85.7 86.0
Italian PoSTWITA 2808 | 71.4 76.7% 76.8%  77.0T 68.5 86.0 85.7 85.3
ParTUT 1781 | 83.4 89.2% 89.37 88.8T 774 8587  86.1%
Portuguese GSD 9664 | 88.3 87.3 89.07 89.TF 74.0 76.8% 752 749
Bosque 8331 | 84.7 84.2 86.2%  86.3 75.2 ‘ 775t 7716
Russian SynTagRus 48814 | 90.2% 89.4 90.4°  90.4% 66.0 68.7 66.3 66.4
i GSD 3850 | 74.7% 73.4 79.8*  80.8* 70.1% ‘ 77.6%  78.0%
Spanish AnCora 14305 | 87.2% 86.2 87.5%  87.6% 75.2 299 77.7 76.4
GSD 14187 | 84.7 83.0 85.8%  86.2* 79.8 ‘ 80.87  80.9*
Swedish Talbanken 4303 | 79.6 79.1 80.2 80.6° 70.3 720+ 732%  73.6°
LinES 2738 | 74.3 76.8 7737 77.1F 64.0 ) 70.0 69.0
Average 81.4 82.77 84.9"  84.9° 77.9 77.5 80.0  80.1"

Table 1: LAS scores when testing on the training treebank and on the PUD test set with training treebank
as proxy. For each test set, the best result is marked with bold. Treebank size is given as number of
sentences in the training data. Statistically significant differences, at the 0.05-level, from SINGLE are
marked with +, from CONCAT with x and from both these systems with *. For clarity, significance for
PUD is only shown for the proxy treebank with the highest score.

provements are, unsurprisingly, largest for smaller
treebanks, we do also see some improvements for
large treebanks, in contrast to Sato et al. (2017).

Some variation can be observed between lan-
guages. In two cases, Italian ISDT and Czech
PUD, CONCAT performs marginally better than
the more advanced methods, but these differences
are not statistically significant. In several cases,
especially for small treebanks, CONCAT helps no-
ticeably over SINGLE, whereas it actually hurts for
Finnish and Russian. It is, however, nearly always
better to combine treebanks in some way than to
use only a single treebank. The differences be-
tween the two best methods, C+FT and TB-EMB
are typically small and not statistically significant,
with the exception of Czech PDT, and for some of
the small proxy treebanks for PUD.

The PUD test set can be seen as an example
of applying the proposed models to unseen data,
without matching training data. For all languages,
except Czech, the results for C+FT and TB-EMB
with the best proxy treebank are significantly bet-
ter than the equivalent result for SINGLE, and for

six of the nine languages, TB-EMB performs sig-
nificantly better than CONCAT. It is clear that
some treebanks are bad fits to PUD, most notably
Finnish FTB and Russian SynTagRus. However,
even when a treebank is a bad fit, TB-EMB and
C+FT can still improve substantially over using
only the single model for the treebank with the
best fit, as for Russian where there is a gain of
nearly 8 LAS points for TB-EMB over SINGLE,
when using GSD as a proxy. For some languages,
however, most notably Italian, the choice of proxy
treebank makes little difference for TB-EMB and
C+FT. It is also interesting to see that in many
cases it is not the largest treebank that is the best
proxy for PUD. The large difference in results for
PUD, depending on which treebank was used as
proxy, also seems to point at potential inconsisten-
cies in the UD annotation for several languages.

5 Error Analysis

To complement the LAS scores, we performed a
small manual error analysis for Swedish, looking
at the results for the PUD data, when translated
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punct

ccomp @
mark
It | Ha ),
Ett vittne berittade for polisen att  offret  hade attackerat den misstinkte i april .
A witness related for the-police that the-victim had attacked the suspected in April .
\

A

Figure 1: Example sentence from the Swedish PUD treebank with parsing error represented by dashed
arc. Translation: “A witness told the police that the victim had attacked the suspect in April.”

using different methods and proxy treebanks. The
two Swedish treebanks, Talbanken and LinES,
are known to differ in the annotation of a few
constructions, notably relative clauses and prepo-
sitions that take subordinate clauses as comple-
ments. The error analysis reveals that the treebank
embedding approach allows the model to learn the
distinctive “style” of each treebank, while con-
catenation, even with fine-tuning, results in more
inconsistencies in the output. A typical example
is shown in Figure 1. When trained with tree-
bank embeddings (and Talbanken as the proxy
treebank), the parser produces the correct tree de-
picted above the sentence. When trained with fine-
tuning instead, the parser incorrectly analyzes the
subordinate clause as a relative clause (as shown
by the dashed arc below the sentence), because
the mark relation is also used for relative pronouns
in the LinES treebank, despite the fact that such
structures never occur in Talbanken.

6 Conclusion and Future Work

We have conducted the first large-scale study on
how best to combine multiple treebanks for a sin-
gle language, when all treebanks use the same an-
notation scheme but may be heterogeneous with
respect to domain, genre, size, language variant,
annotation style, and quality, as is the case for
many languages in the UD project. We propose
using treebank embeddings, which represent the
treebank a sentence comes from. This method is
simple, effective, and flexible, and performs on par
with a previously suggested method of using con-
catenation in combination with fine-tuning, which,
however, requires longer training, and produces
more models.

We show that both these methods give substan-
tial gains for a variety of languages, including dif-
ferent scenarios with respect to the mix of avail-
able treebanks. Our results are also at least on
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par with a previously proposed, but more complex
model, based on adversarial learning (Sato et al.,
2017). To improve parsing accuracy, it is cer-
tainly worth combining multiple treebanks, when
available, for a language, using more sophisticated
methods than simple concatenation. We recom-
mend the treebank embedding model due to its
simplicity.

The proposed methods work well with a
transition-based parser with BiLSTM feature ex-
tractors without POS-tags or pre-trained embed-
dings. In future work, we want to investigate how
these methods interact with other parsers, and if
the combination methods are useful also for tasks
like POS-tagging and morphology prediction.

We did not yet investigate methods for choos-
ing a proxy treebank when parsing new data. The
results on the PUD test set could indicate which
treebank is likely to be the best proxy for the lan-
guages explored here. Other factors that could be
taken into account when making this choice in-
clude degree of domain match and treebank qual-
ity. The user may also simply choose the de-
sired annotation style by selecting the correspond-
ing proxy treebank. For the TB-EMB approach, in-
terpolation of the various treebank embeddings is
another possibility.

In the current paper, we explore only the mono-
lingual case, using several treebanks for a sin-
gle language. Preliminary experiments show that
we can combine treebank and language embed-
dings and add other languages to the mix. Includ-
ing closely related languages typically gives addi-
tional gains, which we will explore in future work.
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