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Abstract

Word embeddings are crucial to many nat-
ural language processing tasks. The qual-
ity of embeddings relies on large non-
noisy corpora. Arabic dialects lack large
corpora and are noisy, being linguistically
disparate with no standardized spelling.
We make three contributions to address
this noise. First, we describe simple but
effective adaptations to word embedding
tools to maximize the informative content
leveraged in each training sentence. Sec-
ond, we analyze methods for representing
disparate dialects in one embedding space,
either by mapping individual dialects into
a shared space or learning a joint model of
all dialects. Finally, we evaluate via dic-
tionary induction, showing that two met-
rics not typically reported in the task en-
able us to analyze our contributions’ ef-
fects on low and high frequency words. In
addition to boosting performance between
2-53%, we specifically improve on noisy,
low frequency forms without compromis-
ing accuracy on high frequency forms.

1 Introduction

Many natural language processing tasks require
word embeddings as inputs, yet quality embed-
dings require large, non-noisy corpora. Dialectal
Arabic (DA), the low register of highly diglossic
Arabic (Ferguson, 1959), is problematically noisy.
While the high register, Modern Standard Arabic
(MSA), is uniform across educated circles in the
Arab World, many varieties of DA are not even
mutually intelligible (Chiang et al., 2006). The
lexical correspondences across four Arab city di-

alects in Table 11 demonstrate that this variation is
not limited to sound change among cognate forms,
but involves significant lexical changes due to bor-
rowing, semantic shift, etc.
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Table 1: Lexical correspondences between four ur-
ban Arabic dialects and MSA.

Seldom written previously, DA is becoming the
dominant form of Arabic on social media, yet an-
notated data are still scarce (Muhammad Abdul-
Mageed and Elaraby, 2018; Israa Alsarsour and
Elsayed, 2018; Kareem Darwish and Kallmeyer,
2018). While complex morphology contributes
to sparsity in both MSA and DA (Habash, 2010),
noise from inter-dialect variation and unstandard-
ized spelling further reduces token-to-type ratios
in DA. This limits opportunities to learn accurate
vector representations for any given word. Table
2 shows that the MSA token-to-type ratio is over
three times larger than DA, controlling for corpus
size. This is still not nearly as large as English due
to English’s morphological simplicity.2 Further-
more, the percentage of tokens belonging to low
frequency types is three times greater in DA.

Many previous works ignore inter-dialect vari-
ation, training dialect agnostic embeddings, yet
we show that modeling dialects individually yields

1Examples are drawn from the MADAR lexicon
(Bouamor et al., 2018). Arabic script follows CODA guide-
lines (Habash et al., 2018) and transliteration is presented in
the HSB scheme (Habash et al., 2007).

2Our DA corpora are described in Section 3 whereas the
MSA and English sentences are randomly drawn from the
parallel corpus described in Almahairi et al. (2016).
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Egyptian Levantine MSA English
Tokens per type 20 19 68 128
Tokens with type
frequency < 5

6% 6% 2% 1%

Table 2: Token and type based comparisons be-
tween two dialects of Arabic, MSA, and English
in corpora of 13 million words each.

strong performances in a dictionary induction task
when noise is systematically addressed. To that
end, we make three contributions. First, we de-
scribe simple but effective adaptations to word
embedding tools to maximize the informative con-
tent leveraged in each training sentence. Second,
we compare methods for representing disparate di-
alects in one embedding space, by mapping in-
dividual dialects into shared space or learning a
joint model of all dialects. Finally, we evaluate our
techniques via dictionary induction, showing that
two metrics not typically reported are quite infor-
mative. In addition to improving accuracy 2-53%,
our adaptations specifically boost performance on
noisy, low frequency forms without compromising
accuracy on high frequency forms.

2 Related Work

Common monolingual embedding models are
trained to predict either the target word given
the context (Continuous Bag of Words) or ele-
ments of the context given the target (SkipGram)
(Mikolov et al., 2013a). These have been adapted
to incorporate word order (Trask et al., 2015) or
subword information (Bojanowski et al., 2016) to
model syntax, morphology, etc.

Bilingual embeddings are vector representa-
tions of two languages mapped into shared space,
such that translated word pairs have similar vec-
tors (Gouws et al., 2015; Luong et al., 2015).
They facilitate applications from parallel sentence
extraction (Grover and Mitra, 2017) to machine
translation (Zou et al., 2013; Cholakov and Kor-
doni, 2016; Artetxe et al., 2017b) and can be used
to improve monolingual embeddings (Faruqui and
Dyer, 2014). Bilingual embeddings are learned
via one of three methods: mapping both spaces
into a shared space (Mikolov et al., 2013b), mono-
lingual adaptation of one language’s embedding
space into another’s (Zou et al., 2013), or bilin-
gually training both embeddings simultaneously
(AP et al., 2014; Pham et al., 2015). We com-
pare implementations of two state-of-the-art mod-

els for mapping embeddings that use the monolin-
gual adaptation technique, as these best suited our
data and resources: VECMAP (Artetxe et al., 2016,
2017a) and MUSE (Conneau et al., 2017). Both
are equipped to learn either via supervision or by
iteratively mapping with little or no supervision.
Recently, another unsupervised approach lever-
aging local neighborhood structures was evalu-
ated on French, English, and MSA (Aldarmaki
et al., 2017). Such approaches address seed data
scarcity, but have not previously been applied
to sparse corpora lacking standardized spelling.
While we address unstandardized spelling indi-
rectly by learning better embeddings for low fre-
quency types, Zalmout et al. (2018), Abidi and
Smaïli (2018), and Dasigi and Diab (2011) attempt
to map DA spelling variants to each other.

We are the first to use embeddings for multiple
specific DA dialects, though DA embeddings are
often used for sentiment analysis (Al Sallab et al.,
2015; Altowayan and Tao, 2016). One such work,
Dahou et al. (2016), uses pre-built dictionaries to
deterministically identify phrases in mixed MSA-
DA data before training embeddings. In MSA,
embeddings have been used in additional tasks
like morphological analysis (Zalmout and Habash,
2017) and POS tagging (Darwish et al., 2017).

3 Data

We adopt Zaidan and Callison-Burch (2011)’s
4-way coarse-grained dialect distinction of Gulf
(GLF), Maghrebi (MAG), Egyptian (EGY), and
Levantine (LEV). We collect corpora for each di-
alect by concatenating the relevant dialect identi-
fied portion of the following corpora: Almeman
and Lee (2013)’s web crawl of forums, comments
and blogs, Khalifa et al. (2016)’s Gumar corpus of
internet novels,3 the Broad Operational Language
Translation corpus of primarily blogs described in
Zbib et al. (2012), the dialectal Arabic travel cor-
pus of Bouamor et al. (2018), Zaidan and Callison-
Burch (2011)’s online news commentary corpus,
and Jarrar et al. (2014)’s corpus of subtitles and
tweets. This results in 1.7 million sentences of
EGY, 1.5 million GLF, 1.3 million LEV, and 1.1
million MAG. These corpora are each about 200
times smaller than MSA’s single-domain Giga-
word (Parker et al., 2011), with lack of standard-

3Gumar’s GLF portion is huge, making the GLF corpus
less comparable to other dialects. Thus, we removed GLF
Gumar as its inclusion did not help performance.
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ized spelling and internal domain inconsistency
compounding scarcity with noise.

To map dialects’ embeddings into shared spaces
and evaluate dictionary induction, we generate
seed and test dictionaries similar to Artetxe et al.
(2016). We use MGIZA (Koehn et al., 2007)
to align 8,000 sentences from Bouamor et al.
(2018)’s travel corpus. It contains 12,000 five-
way parallel sentences between the DA varieties
of Beirut (LEV), Cairo (EGY), Doha (GLF), Tu-
nis (MAG), and Rabat (MAG), but we collapse
Tunis and Rabat to match Zaidan and Callison-
Burch (2011)’s granularity and hold out 4,000
sentences for development on downstream tasks.
After alignment, we extract unigram translations
from 2,000 sentences to form a bidialectal evalu-
ation dictionary. This yields between 2,500 and
4,000 word pairs, with 1.3 to 1.7 average trans-
lations per word depending on the dialect pair.
Lastly we realign the remaining 6,000 training
sentences and extract a seed dictionary. Three an-
notators jointly evaluated 400 unigram pairs from
the LEV–EGY evaluation dictionary. 89% were ac-
ceptable translations.

4 Word Embedding Models

We consider the following models for training
word embeddings:

FT refers to a FASTTEXT (Bojanowski et al.,
2016) implementation of SkipGram with 200 di-
mensions and a context window of 5 tokens on ei-
ther side of the target word. A word’s vector is the
sum of its SkipGram vector and that of all its com-
ponent character n-grams between length 2 and 6.
Since short vowels are not typically written in Ara-
bic, many affixes only consist of a word start/end
token and one character. Thus, these character n-
gram parameters outperformed the range of 3 to
6 proposed by Bojanowski et al. (2016) for other
languages. In preliminary experiments, FT out-
performed WORD2VEC models (Mikolov et al.,
2013a; Řehůřek and Sojka, 2010) which lack sub-
word information and hence struggle with Ara-
bic’s morphological complexity. We also com-
pared FT to variant implementations with larger
and smaller context windows, though FT consis-
tently performed the same or better.

EXT refers to an extended FT model where wide
and narrow windowed embeddings, sizes 5 and 1
respectively, are trained separately. Resulting vec-

tors are concatenated to build a 400 dimensional
model. Given much work demonstrating that nar-
row context windows capture more syntactic infor-
mation and wide windows, semantic information
(Pennington et al., 2014; Trask et al., 2015; Gold-
berg, 2016; Tu et al., 2017), component vectors
should complement each other, giving the concate-
nated vector access to a wider range of linguistic
information. To ensure that the improvement came
from vector concatenation and not simply from
having higher dimensional vectors, we built 400
dimension FT models to compare to EXT, but they
did not outperform 200 dimensional FT, likely due
to sparsity.

PP+EXT refers to an EXT model trained on
a preprocessed corpus where phrases have been
probabilistically identified. To identify phrases,
we recurse over each sentence R times, each
time forming bigram phrases from component un-
igrams (which could have been longer n-grams in
previous iterations) depending on the frequencies
of the relevant unigrams and bigrams. We im-
plement this step exactly as described in Mikolov
et al. (2013c), but then we copy each output sen-
tence C times and probabilistically decompose the
deterministically identified phrases into smaller n-
grams.4 More precisely, for each deterministi-
cally identified n-gram phrase, we progress from
the first to the (n − 1)th gram, randomly splitting
the phrase at that point with probability en∑R

r=1
er

.

The final result of the probabilistic phrase iden-
tification is C potentially unique copies of each
sentence containing identified n-gram phrases of
length n ≤ 2R. We experimented with linear dis-
tributions in addition to the exponential one used
for phrase splitting, but the exponential performed
better. The exponential distribution means that it is
less likely to separate at any given potential break
point in longer n-grams than in shorter ones.

Like Mikolov et al. (2013c)’s deterministic
identification of phrases, PP+EXT avoids training
vectors on individual words in non-compositional
phrases, yet PP+EXT’s probabilistic nature lets
the model learn from multiple perspectives of ev-
ery word/phrase’s context, with more informative
phrase distributions more likely to appear more
frequently. Interestingly, identifying phrases can

4Using a development set, we found performance to
plateau around R=5 and C=15 and thus adopt these param-
eters, though higher values of C could in theory marginally
boost performance at the expense of runtime.
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be harmful, as our evaluation is performed on uni-
grams. We implemented a deterministic version of
PP+EXT but it did not outperform the baseline FT
as too many unigrams were lost in longer phrases.
Thus, identifying phrases probabilistically is cru-
cial to PP+EXT’s high performance.

In preliminary experiments, probabilistic phrase
identification improved the FT model without ex-
tending vectors, yet the performance did not ex-
ceed EXT. Hence, we only report PP+EXT scores,
as the technique is far more effective when cou-
pled with EXT. The combination of techniques is
actually designed to be complementary: FT lever-
ages morphology, EXT combines syntax with se-
mantics, and probabilistic phrase identification in-
creases the number of meaningful contexts used
for training. These enable the model to learn bet-
ter representations for noisy, low frequency forms
without requiring additional data.

5 Multidialectal Embedding Space

We consider two options for generating multidi-
alectal embeddings for DA: (a) a dialect agnostic
model trained on all DA corpora, and (b) training
individual dialect models separately before map-
ping them into a shared embedding space. While
(b) leverages less data per model, (a) is subject
to more noise and ambiguity, as many words are
unique to certain dialects or have disparate mean-
ings in different dialects. (b) can be seeded with
a bidialectal dictionary or parallel sentences. We
found the dictionary approach to perform better.

ALLDA is a PP+EXT model trained on a com-
bined corpus of all dialects. To avoid code switch-
ing issues, ALLDA assigns words only to those di-
alects for which its relative frequency in that di-
alect’s corpus is greater than 5% of its maximum
relative frequency in any dialect. Thus, a word as-
signed to multiple dialects will take the same vec-
tor in each dialect and be its own nearest neighbor
for any dialect pairs where it belongs to both.

VECMAP is Artetxe et al. (2016, 2017a)’s tool
that uses a seed dictionary (or shared numerals)
to learn a mapping function which minimizes dis-
tances between seed dictionary unigram pairs. In
data scarce settings, the function can be learned
iteratively, inducing a larger seed dictionary each
round, yet the noise in our DA corpora prevents
this process from getting off the ground, produc-
ing scores of zero after a few iterations.

MUSE is Conneau et al. (2017)’s tool, using
adversarial learning (and optionally a seed) to
identify similarly behaving high frequency anchor
words, bootstrapping into fine tuning the mapping
of less frequent words. MUSE is specifically de-
signed for data scarce and unsupervised settings.
It assumes shared embedding structures to be iden-
tifiable, and the authors demonstrate that domain
differences can strain this assumption.

6 Experiments and Results

To evaluate the quality of our DA word embed-
dings, we use the task of dictionary induction.
Given source dialect words from the evaluation
dictionary, we attempt to recall appropriate trans-
lations in the target dialect based on cosine dis-
tance in multidialectal embedding space. The
standard metric for this task is precision@k=1
(P@1) (Artetxe et al., 2016, 2017a; Conneau et al.,
2017), measuring the fraction of source words in
the evaluation dictionary for which the nearest tar-
get dialect neighbor matches any of the possible
translations in the evaluation dictionary.

We, however, are also concerned with how
well multiple translations are recalled, as many
words become polysemous in DA with short vow-
els omitted and spelling not standardized. For this
reason, many words appearing both in the seed
and evaluation dictionaries do not map to the ex-
act same set of possible translations in each. Thus,
many precision errors may be forgiveable, so we
focus on recall, reporting the metric recall@k=5
(R@5). Lastly, because types appear in a Zipfian
distribution and type-based metrics disproportion-
ately reflect accuracy in the tail, we report a fre-
quency weighted recall@k=5 (WR@5) as well.5

Considering both R@5 and WR@5 avoids the risk
of improving performance on high or low fre-
quency types at the expense of the other.

In Table 3, models FT, EXT, and PP+EXT are
trained on individual dialects, then mapped us-
ing supervised SVECMAP into bidialectal embed-
ding spaces. We experimented with all combina-
tions of mapping algorithms and embedding mod-
els, yet SVECMAP consistently outperformed the
other mapping algorithms. We also report results
for unsupervised UMUSE leveraging PP+EXT em-
beddings. ID is an identity dictionary mapping

5R@5 and WR@5 are normalized by the score of an ora-
cle that correctly recalls up to 5 translations of every source
word, but no more should more exist. Thus, the maximum
score for these metrics is 1, making them comparable to P@1.
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SVECMAP ALLDA UMUSE
Metric ID FT EXT PP+EXT PP+EXT PP+EXT

MAG WR@5 28.9 35.3 42.2 47.0 32.6 26.8
⇓ R@5 24.9 36.2 40.4 51.1 26.2 14.9

LEV P@1 33.6 35.3 39.7 54.0 33.7 12.2
MAG WR@5 37.5 46.9 49.7 50.8 40.5 42.3
⇓ R@5 30.4 36.9 41.2 45.2 29.0 25.4

GLF P@1 35.0 31.1 37.9 40.0 29.6 19.1
MAG WR@5 42.4 48.2 48.3 47.9 45.8 43.1
⇓ R@5 30.7 34.5 39.4 42.9 34.0 25.5

EGY P@1 36.0 29.4 38.0 36.6 36.3 20.9
EGY WR@5 42.9 51.3 51.3 52.8 47.8 40.5
⇓ R@5 40.9 48.2 49.9 52.8 38.4 33.1

GLF P@1 47.7 43.3 48.5 48.3 41.7 24.0
LEV WR@5 43.2 50.6 50.4 51.7 48.5 40.9
⇓ R@5 33.6 37.8 38.9 46.4 31.8 24.7

GLF P@1 39.0 34.1 37.5 41.7 33.1 20.0
LEV WR@5 44.0 50.3 49.8 52.4 50.6 48.1
⇓ R@5 33.0 27.6 39.6 42.3 36.5 31.1

EGY P@1 39.6 33.8 38.8 37.7 39.2 25.9

Table 3: Dictionary induction results comparing
various multidialectal embedding models mapped
via supervised (SVECMAP) and unsupervised
(ALLDA, UMUSE) techniques.

all source words to themselves, thus represent-
ing dialect similarity. PP+EXT or EXT always
outperform the baseline FT, with PP+EXT be-
ing the best model in all but one instance ac-
cording to WR@5 and R@5. PP+EXT success-
fully addresses noise as its gains are larger on
non-frequency weighted R@5 than WR@5; i.e.,
it improves on low frequency words without com-
promising high frequency word accuracy. Addi-
tionally, the consistency in results for WR@5 and
R@5 as compared to P@1 suggests the small k is
contributing to noise in the P@1 metric.

While ALLDA generally performs worse than
the supervised mapping approaches, it typically
performs slightly better on words which were not
found in their seed dictionaries according to R@5,
likely because it can leverage more data to learn
better representations for non-ambiguous, low fre-
quency shared forms. Depending on the intended
application, system combination could be ideal,
querying ALLDA for low frequency forms appear-
ing in multiple dialects, but not the seed.

SVECMAP SMUSE UMUSE ALLDA
WR@5 0.70 0.97 0.90 0.99

R@5 0.24 0.48 0.89 0.86
P@1 0.03 0.18 0.68 0.78

Table 4: Correlation between mapping perfor-
mance and dialect similarity, i.e., the ID baseline,
using PP+EXT embeddings.

As for supervised mapping algorithms, Table 4
shows that, depending on the dialect pair in ques-

tion, SMUSE’s adversarial learning approach cor-
relates with ID’s metric of dialect similarity 20-
30% more strongly than SVECMAP, which takes
greater advantage of seed–evaluation domain sim-
ilarity. Accordingly, SVECMAP beats SMUSE on
in-seed forms by 3-23%. That said, SMUSE is
more robust to seed coverage, slightly outperform-
ing SVECMAP on out-of-seed forms and UMUSE

successfully bootstraps without supervision, un-
like UVECMAP. Still, the best performing option
in the unsupervised set up is ALLDA. UMUSE’s
performance does not approach that of supervised
alternatives as reported in Conneau et al. (2017).
This is likely because they (as do Artetxe et al.
(2017a)) impose bilingual data scarcity constraints
on high resource languages but do not consider the
sparsity effects of noise common in low resource
languages. They use large quantities of domain
consistent, spelling standardized monolingual data
which are not available for DA.

7 Conclusion and Future Work

We presented techniques for generating multidi-
alectal word embeddings from noisy DA corpora.
Due to linguistic differences, modeling dialects in-
dependently and mapping embeddings into multi-
dialectal space generally outperformed training di-
alect agnostic embeddings on combined corpora.
Our novel techniques include concatenating nar-
row and wide windowed vectors and probabilis-
tically identifying phrases before training embed-
dings. These techniques improved performance
on bidialectal dictionary induction 2-53% over
a state-of-the-art baseline, with most of the im-
provement realized on noisy, low frequency word
forms. Our approach can easily be applied to
other, similarly noisy corpora. In future work, we
will improve the handling of orthographically am-
biguous words, which are very prevalent in DA,
and we will evaluate on the downstream appli-
cations of machine translation and morphological
disambiguation.
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