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Abstract

Feed-forward networks are widely used in
cross-modal applications to bridge modal-
ities by mapping distributed vectors of one
modality to the other, or to a shared space.
The predicted vectors are then used to
perform e.g., retrieval or labeling. Thus,
the success of the whole system relies on
the ability of the mapping to make the
neighborhood structure (i.e., the pairwise
similarities) of the predicted vectors akin
to that of the target vectors. However,
whether this is achieved has not been in-
vestigated yet. Here, we propose a new
similarity measure and two ad hoc experi-
ments to shed light on this issue. In three
cross-modal benchmarks we learn a large
number of language-to-vision and vision-
to-language neural network mappings (up
to five layers) using a rich diversity of im-
age and text features and loss functions.
Our results reveal that, surprisingly, the
neighborhood structure of the predicted
vectors consistently resembles more that
of the input vectors than that of the target
vectors. In a second experiment, we fur-
ther show that untrained nets do not signif-
icantly disrupt the neighborhood (i.e., se-
mantic) structure of the input vectors.

1 Introduction

Neural network mappings are widely used to
bridge modalities or spaces in cross-modal re-
trieval (Qiao et al., 2017; Wang et al., 2016; Zhang
et al., 2016), zero-shot learning (Lazaridou et al.,
2015b, 2014; Socher et al., 2013) in building mul-
timodal representations (Collell et al., 2017) or in
word translation (Lazaridou et al., 2015a), to name
a few. Typically, a neural network is firstly trained

to predict the distributed vectors of one modality
(or space) from the other. At test time, some op-
eration such as retrieval or labeling is performed
based on the nearest neighbors of the predicted
(mapped) vectors. For instance, in zero-shot im-
age classification, image features are mapped to
the text space and the label of the nearest neigh-
bor word is assigned. Thus, the success of such
systems relies entirely on the ability of the map
to make the predicted vectors similar to the tar-
get vectors in terms of semantic or neighborhood
structure.1 However, whether neural nets achieve
this goal in general has not been investigated yet.
In fact, recent work evidences that considerable
information about the input modality propagates
into the predicted modality (Collell et al., 2017;
Lazaridou et al., 2015b; Frome et al., 2013).

To shed light on these questions, we first in-
troduce the (to the best of our knowledge) first
existing measure to quantify similarity between
the neighborhood structures of two sets of vec-
tors. Second, we perform extensive experiments
in three benchmarks where we learn image-to-text
and text-to-image neural net mappings using a rich
variety of state-of-the-art text and image features
and loss functions. Our results reveal that, con-
trary to expectation, the semantic structure of the
mapped vectors consistently resembles more that
of the input vectors than that of the target vectors
of interest. In a second experiment, by using six
concept similarity tasks we show that the seman-
tic structure of the input vectors is preserved after
mapping them with an untrained network, further
evidencing that feed-forward nets naturally pre-
serve semantic information about the input. Over-
all, we uncover and rise awareness of a largely

1We indistinctly use the terms semantic structure, neigh-
borhood structure and similarity structure. They refer to all
pairwise similarities of a set of N vectors, for some similarity
measure (e.g., Euclidean or cosine).
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Figure 1: Effect of applying a mapping f to a (dis-
connected) manifold M with three hypothetical
classes (�, N and •).

ignored phenomenon relevant to a wide range of
cross-modal / cross-space applications such as re-
trieval, zero-shot learning or image annotation.

Ultimately, this paper aims at: (1) Encouraging
the development of better architectures to bridge
modalities / spaces; (2) Advocating for the use of
semantic-based criteria to evaluate the quality of
predicted vectors such as the neighborhood-based
measure proposed here, instead of purely geomet-
ric measures such as mean squared error (MSE).

2 Related Work and Motivation

Neural network and linear mappings are popu-
lar tools to bridge modalities in cross-modal re-
trieval systems. Lazaridou et al. (2015b) leverage
a text-to-image linear mapping to retrieve images
given text queries. Weston et al. (2011) map la-
bel and image features into a shared space with a
linear mapping to perform image annotation. Al-
ternatively, Frome et al. (2013), Lazaridou et al.
(2014) and Socher et al. (2013) perform zero-shot
image classification with an image-to-text neural
network mapping. Instead of mapping to latent
features, Collell et al. (2018) use a 2-layer feed-
forward network to map word embeddings directly
to image pixels in order to visualize spatial ar-
rangements of objects. Neural networks are also
popular in other cross-space applications such as
cross-lingual tasks. Lazaridou et al. (2015a) learn
a linear map from language A to language B and
then translate new words by returning the nearest
neighbor of the mapped vector in the B space.

In the context of zero-shot learning, short-
comings of cross-space neural mappings have
also been identified. For instance, “hub-
ness” (Radovanović et al., 2010) and “pollu-

tion” (Lazaridou et al., 2015a) relate to the high-
dimensionality of the feature spaces and to overfit-
ting respectively. Crucially, we do not assume that
our cross-modal problem has any class labels, and
we study the similarity between input and mapped
vectors and between output and mapped vectors.

Recent work evidences that the predicted vec-
tors of cross-modal neural net mappings are
still largely informative about the input vectors.
Lazaridou et al. (2015b) qualitatively observe that
abstract textual concepts are grounded with the
visual input modality. Counterintuitively, Collell
et al. (2017) find that the vectors “imagined” from
a language-to-vision neural map, outperform the
original visual vectors in concept similarity tasks.
The paper argued that the reconstructed visual
vectors become grounded with language because
the map preserves topological properties of the in-
put. Here, we go one step further and show that
the mapped vectors often resemble the input vec-
tors more than the target vectors in semantic terms,
which goes against the goal of a cross-modal map.

Well-known theoretical work shows that net-
works with as few as one hidden layer are able
to approximate any function (Hornik et al., 1989).
However, this result does not reveal much nei-
ther about test performance nor about the semantic
structure of the mapped vectors. Instead, the phe-
nomenon described is more closely tied to other
properties of neural networks. In particular, conti-
nuity guarantees that topological properties of the
input, such as connectedness, are preserved (Arm-
strong, 2013). Furthermore, continuity in a topol-
ogy induced by a metric also ensures that points
that are close together are mapped close together.
As a toy example, Fig. 1 illustrates the distortion
of a manifold after being mapped by a neural net.2

In a noiseless world with fully statistically de-
pendent modalities, the vectors of one modality
could be perfectly predicted from those of the
other. However, in real-world problems this is
unrealistic given the noise of the features and
the fact that modalities encode complementary
information (Collell and Moens, 2016). Such
unpredictability combined with continuity and
topology-preserving properties of neural nets pro-
pel the phenomenon identified, namely mapped
vectors resembling more the input than the target
vectors, in nearest neighbors terms.

2Parameters of these mappings were generated at random.
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3 Proposed Approach

To bridge modalities X and Y , we consider two
popular cross-modal mappings f : X → Y .

(i) Linear mapping (lin):

f(x) =W0x+ b0

with W0 ∈ Rdy×dx , b0 ∈ Rdy , where dx and dy
are the input and output dimensions respectively.

(ii) Feed-forward neural network (nn):

f(x) =W1σ(W0x+ b0) + b1

with W1 ∈ Rdy×dh , W0 ∈ Rdh×dx , b0 ∈ Rdh ,
b1 ∈ Rdy where dh is the number of hidden units
and σ() the non-linearity (e.g., tanh or sigmoid).
Although single hidden layer networks are already
universal approximators (Hornik et al., 1989), we
explored whether deeper nets with 3 and 5 hid-
den layers could improve the fit (see Supplement).

Loss: Our primary choice is the MSE:
1
2‖f(x) − y‖2, where y is the target vector.
We also tested other losses such as the co-
sine: 1 − cos(f(x), y) and the max-margin:
max{0, γ + ‖f(x) − y‖ − ‖f(x̃) − y‖}, where
x̃ belongs to a different class than (x, y), and
γ is the margin. As in Lazaridou et al. (2015a)
and Weston et al. (2011), we choose the first x̃
that violates the constraint. Notice that losses
that do not require class labels such as MSE are
suitable for a wider, more general set of tasks than
discriminative losses (e.g., cross-entropy). In fact,
cross-modal retrieval tasks often do not exhibit
any class labels. Additionally, our research ques-
tion concerns the cross-space mapping problem in
isolation (independently of class labels).

Let us denote a set of N input and output vec-
tors by X ∈ RN×dx and Y ∈ RN×dy respectively.
Each input vector xi is paired to the output vec-
tor yi of the same index (i = 1, · · · , N ). Let
us henceforth denote the mapped input vectors by
f(X) ∈ RN×dy . In order to explore the similarity
between f(X) and X , and between f(X) and Y ,
we propose two ad hoc settings below.

3.1 Neighborhood Structure of Mapped
Vectors (Experiment 1)

To measure the similarity between the neighbor-
hood structure of two sets of paired vectors V and

Z, we propose the mean nearest neighbor overlap
measure (mNNOK(V,Z)). We define the near-
est neighbor overlap NNOK(vi, zi) as the num-
ber of K nearest neighbors that two paired vec-
tors vi, zi share in their respective spaces. E.g.,
if the 3 (= K) nearest neighbors of vcat in V
are {vdog, vtiger, vlion} and those of zcat in Z are
{zmouse, ztiger, zlion}, the NNO3(vcat, zcat) is 2.

Definition 1 Let V = {vi}Ni=1 and Z = {zi}Ni=1

be two sets of N paired vectors. We define:

mNNOK(V,Z) =
1

KN

N∑
i=1

NNOK(vi, zi) (1)

with NNOK(vi, zi) = |NNK(vi) ∩ NNK(zi)|,
where NNK(vi) and NNK(zi) are the indexes of
the K nearest neighbors of vi and zi, respectively.

The normalizing constant K simply scales
mNNOK(V,Z) between 0 and 1, making it
independent of the choice of K. Thus, a
mNNOK(V,Z) = 0.7 means that the vectors in
V and Z share, on average, 70% of their near-
est neighbors. Notice that mNNO implicitly per-
forms retrieval for some similarity measure (e.g.,
Euclidean or cosine), and quantifies how semanti-
cally similar two sets of paired vectors are.

3.2 Mapping with Untrained Networks
(Experiment 2)

To complement the setting above (Sect. 3.1), it
is instructive to consider the limit case of an un-
trained network. Concept similarity tasks provide
a suitable setting to study the semantic structure
of distributed representations (Pennington et al.,
2014). That is, semantically similar concepts
should ideally be close together. In particular,
our interest is in comparing X with its projection
f(X) through a mapping with random parameters,
to understand the extent to which the mapping may
disrupt or preserve the semantic structure of X .

4 Experimental Setup

4.1 Experiment 1
4.1.1 Datasets
To test the generality of our claims, we select a
rich diversity of cross-modal tasks involving texts
at three levels: word level (ImageNet), sentence
level (IAPR TC-12), and document level (Wiki).
ImageNet (Russakovsky et al., 2015). Consists of
∼14M images, covering ∼22K WordNet synsets
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(or meanings). Following Collell et al. (2017), we
take the most relevant word for each synset and
keep only synsets with more than 50 images. This
yields 9,251 different words (or instances).
IAPR TC-12 (Grubinger et al., 2006). Contains
20K images (18K train / 2K test) annotated with
255 labels. Each image is accompanied with a
short description of one to three sentences.
Wikipedia (Pereira et al., 2014). Has 2,866 sam-
ples (2,173 train / 693 test). Each sample is a sec-
tion of a Wikipedia article paired with one image.

4.1.2 Hyperparameters and Implementation
See the Supplement (Sect. 1) for details.

4.1.3 Image and Text Features
To ensure that results are independent of the
choice of image and text features, we use 5 (2 im-
age + 3 text) features of varied dimensionality (64-
d, 128-d, 300-d, 2,048-d) and two directions, text-
to-image (T → I) and image-to-text (I → T ). We
make our extracted features publicly available.3

Text. In ImageNet we use 300-dimensional
GloVe4 (Pennington et al., 2014) and 300-d
word2vec (Mikolov et al., 2013) word embed-
dings. In IAPR TC-12 and Wiki, we employ state-
of-the-art bidirectional gated recurrent unit (bi-
GRU) features (Cho et al., 2014) that we learn with
a classification task (see Sect. 2 of Supplement).
Image. For ImageNet, we use the publicly
available5 VGG-128 (Chatfield et al., 2014) and
ResNet (He et al., 2015) visual features from
Collell et al. (2017), where we obtained 128-
dimensional VGG-128 and 2,048-d ResNet fea-
tures from the last layer (before the softmax) of
the forward pass of each image. The final repre-
sentation for a word is the average feature vector
(centroid) of all available images for this word. In
IAPR TC-12 and Wiki, features for individual im-
ages are obtained similarly from the last layer of a
ResNet and a VGG-128 model.

4.2 Experiment 2

4.2.1 Datasets
We include six benchmarks, comprising three
types of concept similarity: (i) Semantic simi-
larity: SemSim (Silberer and Lapata, 2014), Sim-
lex999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016); (ii) Relatedness: MEN (Bruni et al.,

3http://liir.cs.kuleuven.be/software.html
4http://nlp.stanford.edu/projects/glove
5http://liir.cs.kuleuven.be/software.html

2014) and WordSim-353 (Finkelstein et al., 2001);
(iii) Visual similarity: VisSim (Silberer and Lap-
ata, 2014) which includes the same word pairs as
SemSim, rated for visual similarity instead of se-
mantic. All six test sets contain human ratings of
similarity for word pairs, e.g., (‘cat’,‘dog’).

4.2.2 Hyperparameters and Implementation
The parameters in W0,W1 are drawn from a ran-
dom uniform distribution [−1, 1] and b0, b1 are set
to zero. We use a tanh activation σ().6 The output
dimension dy is set to 2,048 for all embeddings.

4.2.3 Image and Text Features
Textual and visual features are the same as de-
scribed in Sect. 4.1.3 for the ImageNet dataset.

4.2.4 Similarity Predictions
We compute the prediction of similarity between
two vectors z1, z2 with both the cosine z1z2

‖z1‖‖z2‖
and the Euclidean similarity 1

1+‖z1−z2‖ .
7

4.2.5 Performance Metrics
As is common practice, we evaluate the predic-
tions of similarity of the embeddings (Sect. 4.2.4)
against the human similarity ratings with the
Spearman correlation ρ. We report the average of
10 sets of randomly generated parameters.

5 Results and Discussion

We test statistical significance with a two-sided
Wilcoxon rank sum test adjusted with Bonferroni.
The null hypothesis is that a compared pair is
equal. In Tab. 1, ∗ indicates that mNNO(X, f(X))
differs from mNNO(Y, f(X)) (p < 0.001) on
the same mapping, embedding and direction. In
Tab. 2, ∗ indicates that performance of mapped and
input vectors differs (p < 0.05) in the 10 runs.

5.1 Experiment 1

Results below are with cosine neighbors and K =
10. Euclidean neighbors yield similar results and
are thus left to the Supplement. Similarly, results
in ImageNet with GloVe embeddings are shown
below and word2vec results in the Supplement.
The choice ofK = {5, 10, 30} had no visible effect
on results. Results with 3- and 5-layer nets did not
show big differences with the results below (see
Supplement). The cosine and max-margin losses

6We find that sigmoid and ReLu yield similar results.
7Notice that papers generally use only cosine similarity

(Lazaridou et al., 2015b; Pennington et al., 2014).
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Figure 2: Learning a nn model in Wiki (left),
IAPR TC-12 (middle) and ImageNet (right).

performed slightly worse than MSE (see Supple-
ment). Although Lazaridou et al. (2015a) and We-
ston et al. (2011) find that max-margin performs
the best in their tasks, we do not find our result en-
tirely surprising given that max-margin focuses on
inter-class differences while we look also at intra-
class neighbors (in fact, we do not require classes).

Tab. 1 shows our core finding, namely that the
semantic structure of f(X) resembles more that of
X than that of Y , for both lin and nn maps.

ResNet VGG-128

X, f(X) Y, f(X) X, f(X) Y, f(X)

Im
ag

eN
et I → T

lin 0.681∗ 0.262 0.723∗ 0.236
nn 0.622∗ 0.273 0.682∗ 0.246

T → I
lin 0.379∗ 0.241 0.339∗ 0.229
nn 0.354∗ 0.27 0.326∗ 0.256

IA
PR

T
C

-1
2

I → T
lin 0.358∗ 0.214 0.382∗ 0.163
nn 0.336∗ 0.219 0.331∗ 0.18

T → I
lin 0.48∗ 0.2 0.419∗ 0.167
nn 0.413∗ 0.225 0.372∗ 0.182

W
ik

ip
ed

ia I → T
lin 0.235∗ 0.156 0.235∗ 0.143
nn 0.269∗ 0.161 0.282∗ 0.148

T → I
lin 0.574∗ 0.156 0.6∗ 0.148
nn 0.521∗ 0.156 0.511∗ 0.151

Table 1: Test mean nearest neighbor over-
lap. Boldface indicates the largest score at each
mNNO10(X, f(X)) and mNNO10(Y, f(X)) pair,
which are abbreviated by X, f(X) and Y, f(X).

Fig. 2 is particularly revealing. If we would
only look at train performance (and allow train
MSE to reach 0) then f(X) = Y and clearly train
mNNO(f(X), Y ) = 1 while mNNO(f(X), X)
can only be smaller than 1. However, the inter-
est is always on test samples, and (near-)perfect
test prediction is unrealistic. Notice in fact in
Fig. 2 that even if we look at train fit, MSE
needs to be close to 0 for mNNO(f(X), Y ) to be

reasonably large. In all the combinations from
Tab. 1, the test mNNO(f(X), Y ) never surpasses
test mNNO(f(X), X) for any number of epochs,
even with an oracle (not shown).

5.2 Experiment 2
Tab. 2 shows that untrained linear (flin) and neural
net (fnn) mappings preserve the semantic structure
of the input X , complementing thus the findings
of Experiment 1. Experiment 1 concerns learning,
while, by “ablating” the learning part and random-
izing weights, Experiment 2 is revealing about the
natural tendency of neural nets to preserve seman-
tic information about the input, regardless of the
choice of the target vectors and loss function.

WS-353 Men SemSim

Cos Eucl Cos Eucl Cos Eucl

fnn(GloVe) 0.632 0.634∗ 0.795 0.791∗ 0.75∗ 0.744∗
flin(GloVe) 0.63 0.606 0.798 0.781 0.763 0.712
GloVe 0.632 0.601 0.801 0.782 0.768 0.716

fnn(ResNet) 0.402 0.408∗ 0.556 0.554∗ 0.512 0.513
flin(ResNet) 0.425 0.449 0.566 0.534 0.533 0.514
ResNet 0.423 0.457 0.567 0.535 0.534 0.516

VisSim SimLex SimVerb

Cos Eucl Cos Eucl Cos Eucl

fnn(GloVe) 0.594∗ 0.59∗ 0.369 0.363∗ 0.313 0.301∗
flin(GloVe) 0.602∗ 0.576 0.369 0.341 0.326 0.23
GloVe 0.606 0.58 0.371 0.34 0.32 0.235

fnn(ResNet) 0.527∗ 0.526∗ 0.405 0.406 0.178 0.169
flin(ResNet) 0.541 0.498 0.409 0.404 0.198 0.182
ResNet 0.543 0.501 0.409 0.403 0.211 0.199

Table 2: Spearman correlations between human
ratings and the similarities (cosine or Euclidean)
predicted from the embeddings. Boldface denotes
best performance per input embedding type.

6 Conclusions

Overall, we uncovered a phenomenon neglected
so far, namely that neural net cross-modal map-
pings can produce mapped vectors more akin to
the input vectors than the target vectors, in terms
of semantic structure. Such finding has been pos-
sible thanks to the proposed measure that explic-
itly quantifies similarity between the neighbor-
hood structure of two sets of vectors. While other
measures such as mean squared error can be mis-
leading, our measure provides a more realistic
estimate of the semantic similarity between pre-
dicted and target vectors. In fact, it is the semantic
structure (or pairwise similarities) what ultimately
matters in cross-modal applications.



467

Acknowledgments

This work has been supported by the CHIST-ERA
EU project MUSTER8 and by the KU Leuven
grant RUN/15/005.

References
Mark Anthony Armstrong. 2013. Basic topology.

Springer Science & Business Media.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. JAIR 49(1-
47).

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman. 2014. Return of the devil in the
details: Delving deep into convolutional nets. In
BMVC.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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