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Abstract

Robust dialogue belief tracking is a key
component in maintaining good quality di-
alogue systems. The tasks that dialogue
systems are trying to solve are becoming
increasingly complex, requiring scalabil-
ity to multi-domain, semantically rich dia-
logues. However, most current approaches
have difficulty scaling up with domains
because of the dependency of the model
parameters on the dialogue ontology. In
this paper, a novel approach is introduced
that fully utilizes semantic similarity be-
tween dialogue utterances and the ontol-
ogy terms, allowing the information to
be shared across domains. The evalua-
tion is performed on a recently collected
multi-domain dialogues dataset, one order
of magnitude larger than currently avail-
able corpora. Our model demonstrates
great capability in handling multi-domain
dialogues, simultaneously outperforming
existing state-of-the-art models in single-
domain dialogue tracking tasks.

1 Introduction

Spoken Dialogue Systems (SDS) are computer
programs that can hold a conversation with a hu-
man. These can be task-based systems that help
the user achieve specific goals, e.g. finding and
booking hotels or restaurants. In order for the
SDS to infer the user goals/intentions during the
conversation, its Belief Tracking (BT) component
maintains a distribution of states, called a belief
state, across dialogue turns (Young et al., 2010).
The belief state is used by the system to take ac-
tions in each turn until the conversation is con-
cluded and the user goal is achieved. In order to
extract these belief states from the conversation,
traditional approaches use a Spoken Language

Understanding (SLU) unit that utilizes a seman-
tic dictionary to hold all the key terms, rephras-
ings and alternative mentions of a belief state. The
SLU then delexicalises each turn using this seman-
tic dictionary, before it passes it to the BT compo-
nent (Wang and Lemon, 2013; Henderson et al.,
2014b; Williams, 2014; Zilka and Jurcicek, 2015;
Perez and Liu, 2016; Rastogi et al., 2017). How-
ever, this approach is not scalable to multi-domain
dialogues because of the effort required to de-
fine a semantic dictionary for each domain. More
advanced approaches, such as the Neural Belief
Tracker (NBT), use word embeddings to alleviate
the need for delexicalisation and combine the SLU
and BT into one unit, mapping directly from turns
to belief states (Mrkšić et al., 2017). Nevertheless,
the NBT model does not tackle the problem of
mixing different domains in a conversation. More-
over, as each slot is trained independently without
sharing information between different slots, scal-
ing such approaches to large multi-domain sys-
tems is greatly hindered.

In this paper, we propose a model that jointly
identifies the domain and tracks the belief states
corresponding to that domain. It uses semantic
similarity between ontology terms and turn
utterances to allow for parameter sharing between
different slots across domains and within a single
domain. In addition, the model parameters are
independent of the ontology/belief states, thus
the dimensionality of the parameters does not
increase with the size of the ontology, making
the model practically feasible to deploy in multi-
domain environments without any modifications.
Finally, we introduce a new, large-scale corpora
of natural, human-human conversations providing
new possibilities to train complex, neural-based
models. Our model systematically improves upon
state-of-the-art neural approaches both in single
and multi-domain conversations.
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2 Background

The belief states of the BT are defined based
on an ontology - the structured representation of
the database which contains entities the system
can talk about. The ontology defines the terms
over which the distribution is to be tracked in
the dialogue. This ontology is constructed in
terms of slots and values in a single domain set-
ting. Or, alternatively, in terms of domains, slots
and values in a multi-domain environment. Each
domain consists of multiple slots and each slot
contains several values, e.g. domain=hotel,
slot=price, value=expensive. In each
turn, the BT fits a distribution over the values of
each slot in each domain, and a none value is
added to each slot to indicate if the slot is not
mentioned so that the distribution sums up to 1.
The BT then passes these states to the Policy Op-
timization unit as full probability distributions to
take actions. This allows robustness to noisy envi-
ronments (Young et al., 2010). The larger the on-
tology, the more flexible and multi-purposed the
system is, but the harder it is to train and maintain
a good quality BT.

3 Related Work

In recent years, a plethora of research has been
generated on belief tracking (Williams et al.,
2016). For the purposes of this paper, two pre-
viously proposed models are particularly relevant.

3.1 Neural Belief Tracker (NBT)
The main idea behind the NBT (Mrkšić et al.,
2017) is to use semantically specialized pre-
trained word embeddings to encode the user ut-
terance, the system act and the candidate slots and
values taken from the ontology. These are fed to
semantic decoding and context modeling modules
that apply a three-way gating mechanism and pass
the output to a non-linear classifier layer to pro-
duce a distribution over the values for each slot. It
uses a simple update rule, p(st) = βp(st−1)+λy,
where p(st) is the belief state at time step t, y is
the output of the binary decision maker of the NBT
and β and λ are tunable parameters.

The NBT leverages semantic information
from the word embeddings to resolve lexi-
cal/morphological ambiguity and maximize the
shared parameters across the values of each slot.
However, it only applies to a single domain and
does not share parameters across slots.

3.2 Multi-domain Dialogue State Tracking

Recently, Rastogi et al. (2017) proposed a multi-
domain approach using delexicalized utterances
fed to a two layer stacked bi-directional GRU net-
work to extract features from the user and the sys-
tem utterances. These, combined with the candi-
date slots and values, are passed to a feed-forward
neural network with a softmax in the last layer.
The candidate set fed to the network consists of
the selected candidates from the previous turn and
candidates from the ontology to a limit K, which
restricts the maximum size of the chosen set. Con-
sequently, the model does not need an ad-hoc be-
lief state update mechanism like in the NBT.

The parameters of the GRU network are de-
fined for the domain, whereas the parameters of
the feed-forward network are defined per slot, al-
lowing transfer learning across different domains.
However, the model relies on delexicalization to
extract the features, which limits the performance
of the BT, as it does not scale to the rich variety of
the language. Moreover, the number of parameters
increases with the number of slots.

4 Method

The core idea is to leverage semantic similarities
between the utterances and ontology terms to com-
pute the belief state distribution. In this way, the
model parameters only learn to model the interac-
tions between turn utterances and ontology terms
in the semantic space, rather than the mapping
from utterances to states. Consequently, informa-
tion is shared between both slots and across do-
mains. Additionally, the number of parameters
does not increase with the ontology size. Do-
main tracking is considered as a separate task but
is learned jointly with the belief state tracking of
the slots and values. The proposed model uses
semantically specialized pre-trained word embed-
dings (Wieting et al., 2015). To encode the user
and system utterances, we employed 7 indepen-
dent bi-directional LSTMs (Graves and Schmid-
huber, 2005). Three of them are used to encode
the system utterance for domain, slot and value
tracking respectively. Similarly, three Bi-LSTMs
encode the user utterance while and the last one
is used to track the user affirmation. A variant of
the CNNs as a feature extractor, similar to the one
used in the NBT-CNN (Mrkšić et al., 2017) is also
employed.
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Figure 1: The proposed model architecture, using Bi-LSTMs as encoders. Other variants of the model
use CNNs as feature extractors (Kim, 2014; Kalchbrenner et al., 2014).

4.1 Domain Tracking
Figure 1 presents the system architecture with two
bi-directional LSTM networks as information en-
coders running over the word embeddings of the
user and system utterances. The last hidden states
of the forward and backward layers are concate-
nated to produce hd

usr,h
d
sys of size L for the user

and system utterances respectively. In the second
variant of the model, CNNs are used to produce
these vectors (Kim, 2014; Kalchbrenner et al.,
2014). To detect the presence of the domain in the
dialogue turn, element-wise multiplication is used
as a similarity metric between the hidden states
and the ontology embeddings of the domain:

dk = hd
k � tanh(Wd ed + bd),

where k ∈ {usr, sys}, ed is the embedding vector
of the domain and Wd ∈ RL×D transforms the
domain word embeddings of dimension D to the
hidden representation. The information about se-
mantic similarity is held by dusr and dsys, which
are fed to a non-linear layer to output a binary de-
cision:

Pt(d) = σ(wd {dusr ⊕ dsys}+ bd),

where wd ∈ R2L and bd are learnable parameters
that map the semantic similarity to a belief state
probability Pt(d) of a domain d at a turn t.

4.2 Candidate Slots and Values Tracking

Slots and values are tracked using a similar archi-
tecture as for domain tracking (Figure 1). How-
ever, to correctly model the context of the system-
user dialogue at each turn, three different cases are
considered when computing the similarity vectors:

1. Inform: The user is informing the system
about his/her goal, e.g. ’I am looking for a
restaurant that serves Turkish food’.

2. Request: The system is requesting informa-
tion by asking the user about the value of
a specific slot. If the system utterance is:
’When do you want the taxi to arrive?’ and
the user answers with ’19:30’.

3. Confirm: The system wants to confirm in-
formation about the value of a specific slot. If
the system asked: ’Would you like free park-
ing?’, the user can either affirm positively or
negatively. The model detects the user affir-
mation, using a separate bi-directional LSTM
or CNN to output ha

usr.
The three cases are modelled as following:

ys,vinf = winf {susr ⊕ vusr}+ binf ,

ys,vreq = wreq {ssys ⊕ vusr}+ breq,

ys,vaf = waf {ssys ⊕ vsys ⊕ ha
usr}+ baf ,
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where sk,vk for k ∈ {usr, sys} represent seman-
tic similarity between the user and system utter-
ances and the ontology slot and value terms re-
spectively computed as shown in Figure 1, and w
and b are learnable parameters.

The distribution over the values of slot s in do-
main d at turn t can be computed by summing the
unscaled states, yinf , yreq and yaf for each value
v in s, and applying a softmax to normalize the
distribution:

Pt(s, v) = softmax(ys,vinf + ys,vreq + ys,vaf ).

4.3 Belief State Update
Since dialogue systems in the real-world operate
in noisy environments, a robust BT should utilize
the flow of the conversation to reduce the uncer-
tainty in the belief state distribution. This can
be achieved by passing the output of the deci-
sion maker, at each turn, as an input to an RNN
that runs over the dialogue turns as shown in Fig-
ure 1, which allows the gradients to be propagated
across turns. This alleviates the problem of tun-
ing hyper-parameters for rule-based updates. To
avoid the vanishing gradient problem, three net-
works were tested: a simple RNN, an RNN with
a memory cell (Henderson et al., 2014a) and a
LSTM. The RNN with a memory cell proved to
give the best results. In addition to the fact that it
reduces the vanishing gradient problem, this vari-
ant is less complex than an LSTM, which makes
training easier. Furthermore, a variant of RNN
used for domain tracking has all its weights of the
form: Wi = αiI, where αi is a distinct learn-
able parameter for hidden, memory and previous
state layers and I is the identity matrix. Similarly,
weights of the RNN used to track the slots and val-
ues is of the form: Wj = γjI+ λj(1− I), where
γj and λj are the learnable parameters. These two
variants of RNN are a combination of Henderson
et al. (2014a) and Mrkvsić and Vulić (2018) previ-
ous works. The output is P1:T (d) and P1:T (s,v),
which represents the joint probability distribution
of the domains and slots and values respectively
over the complete dialogue. Combining these to-
gether produces the full belief state distribution of
the dialogue:

P1:T (d, s,v) = P1:T (d)P1:T (s,v).

4.4 Training Criteria
Domain tracking and slots and values tracking are
trained disjointly. Belief state labels for each turn

are split into domains and slots and values. Thanks
to the disjoint training, the learning of slot and
value belief states are not restricted to a specific
domain. Therefore, the model shares the knowl-
edge of slots and values across different domains.
The loss function for the domain tracking is:

Ld = −
N∑

n=1

∑
d∈D

tn(d)logPn
1:T (d),

where d is a vector of domains over the dialogue,
tn(d) is the domain label for the dialogue n and
N is the number of dialogues. Similarly, the loss
function for the slots and values tracking is:

Ls,v = −
N∑

n=1

∑
s,v∈S,V

tn(s,v)logPn
1:T (s,v),

where s and v are vectors of slots and values over
the dialogue and tn(s,v) is the joint label vector
for the dialogue n.

5 Datasets and Baselines

Neural approaches to statistical dialogue develop-
ment, especially in a task-oriented paradigm, are
greatly hindered by the lack of large scale datasets.
That is why, following the Wizard-of-Oz (WOZ)
approach (Kelley, 1984; Wen et al., 2017), we
ran text-based multi-domain corpus data collec-
tion scheme through Amazon MTurk. The main
goal of the data collection was to acquire human-
human conversations between a tourist visiting a
city and a clerk from an information center. At the
beginning of each dialogue the user (visitor) was
given explicit instructions about the goal to ful-
fill, which often spanned multiple domains. The
task of the system (wizard) is to assist a visitor
having an access to databases over domains. The
WOZ paradigm allowed us to obtain natural and
semantically rich multi-topic dialogues spanning
over multiple domains such as hotels, attractions,
restaurants, booking trains or taxis. The dialogues
cover from 1 up to 5 domains per dialogue greatly
varying in length and complexity.

5.1 Data Structure

The data consists of 2480 single-domain dialogues
and 7375 multi-domain dialogues usually span-
ning from 2 up to 5 domains. Some domains con-
sists also of sub-domains like booking. The aver-
age sentence lengths are 11.63 and 15.01 for users
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WOZ 2.0 New WOZ (only restaurants)
Slot NBT-CNN Bi-LSTM CNN NBT-CNN Bi-LSTM CNN
Food 88.9 96.1 96.4 78.3 84.7 85.3

Price range 93.7 98.0 97.9 92.6 95.6 93.6
Area 94.3 97.8 98.1 78.3 82.6 86.4

Joint goals 84.2 85.1 85.5 57.7 59.9 63.7

Table 1: WOZ 2.0 and new dataset test set accuracies of the NBT-CNN and the two variants of the
proposed model, for slots food, price range, area and joint goals.

and wizards respectively. The combined ontol-
ogy consists of 5 domains, 27 slots and 663 val-
ues making it significantly larger than observed in
other datasets. To enforce reproducibility of re-
sults, we distribute the corpus with a pre-specified
train/test/development random split. The test and
development sets contain 1k examples each. Each
dialogues consists of a goal, user and system ut-
terances and a belief state per turn. The data and
model is publicly available.1

5.2 Evaluation

We also used the extended WOZ 2.0 dataset (Wen
et al., 2017).2 WOZ2 dataset consists of 1200 sin-
gle topic dialogues constrained to the restaurant
domain. All the weights were initialised using nor-
mal distribution of zero mean and unit variance
and biases were initialised to zero. ADAM op-
timizer (Kingma and Ba, 2014) (with 64 batch
size) is used to train all the models for 600 epochs.
Dropout (Srivastava et al., 2014) was used for reg-
ularisation (50% dropout rate on all the intermedi-
ate representations). For each of the two datasets
we compare our proposed architecture (using ei-
ther Bi-LSTM or CNN as encoders) to the NBT
model3 (Mrkšić et al., 2017).

6 Results

Table 1 shows the performance of our model in
tracking the belief state of single-domain dia-
logues, compared to the NBT-CNN variant of the
NBT discussed in Section 3.1. Our model outper-
forms NBT in all the three slots and the joint goals
for the two datasets. NBT previously achieved
state-of-the-art results (Mrkšić et al., 2017). More-
over, the performance of all models is worse on the
new dataset for restaurant compared to WOZ 2.0.

1http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
2Publicly available at https://mi.eng.cam.ac.

uk/˜nm480/woz_2.0.zip.
3Publicly available at https://github.com/

nmrksic/neural-belief-tracker.

New WOZ (multi-domain)
Model F1 score Accuracy %

Uniform Sampling 0.108 10.8
Bi-LSTM 0.876 93.7

CNN 0.878 93.2

Table 2: The overall F1 score and accuracy for the
multi-domain dialogues test set.4

This is because the dialogues in the new dataset
are richer and more noisier, as a closer resem-
blance to real environment dialogues.

Table 2 presents the results on multi-domain di-
alogues from the new dataset described in Sec-
tion 5. To demonstrate the difficulty of the multi-
domain belief tracking problem, values of a the-
oretical baseline that samples the belief state uni-
formly at random are also presented. Our model
gracefully handles such a difficult task. In most
of the cases, CNNs demonstrate better perfor-
mance than Bi-LSTMs. We hypothesize that this
comes from the effectiveness of extracting local
and position-invariant features, which are crucial
for semantic similarities (Yin et al., 2017).

7 Conclusions

In this paper, we proposed a new approach that
tackles the issue of multi-domain belief tracking,
such as model parameter scalability with the ontol-
ogy size. Our model shows improved performance
in single-domain tasks compared to the state-of-
the-art NBT method. By exploiting semantic sim-
ilarities between dialogue utterances and ontology
terms, the model alleviates the need for ontology-
dependent parameters and maximizes the amount
of information shared between slots and across do-
mains. In future, we intend to investigate introduc-
ing new domains and ontology terms without fur-
ther training thus performing zero-shot learning.

4F1-score is computed by considering all the values in
each slot of each domain as positive and the ”none” state of
the slot as negative.

https://mi.eng.cam.ac.uk/~nm480/woz_2.0.zip
https://mi.eng.cam.ac.uk/~nm480/woz_2.0.zip
https://github.com/nmrksic/neural-belief-tracker
https://github.com/nmrksic/neural-belief-tracker
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