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Abstract

In NMT, words are sometimes dropped
from the source or generated repeatedly in
the translation. We explore novel strate-
gies to address the coverage problem that
change only the attention transformation.
Our approach allocates fertilities to source
words, used to bound the attention each
word can receive. We experiment with
various sparse and constrained attention
transformations and propose a new one,
constrained sparsemax, shown to be differ-
entiable and sparse. Empirical evaluation
is provided in three languages pairs.

1 Introduction

Neural machine translation (NMT) emerged in
the last few years as a very successful paradigm
(Sutskever et al., 2014; Bahdanau et al., 2014;
Gehring et al., 2017; Vaswani et al., 2017). While
NMT is generally more fluent than previous sta-
tistical systems, adequacy is still a major con-
cern (Koehn and Knowles, 2017): common mis-
takes include dropping source words and repeating
words in the generated translation.

Previous work has attempted to mitigate this
problem in various ways. Wu et al. (2016) incor-
porate coverage and length penalties during beam
search—a simple yet limited solution, since it only
affects the scores of translation hypotheses that are
already in the beam. Other approaches involve ar-
chitectural changes: providing coverage vectors
to track the attention history (Mi et al., 2016; Tu
et al., 2016), using gating architectures and adap-
tive attention to control the amount of source con-
text provided (Tu et al., 2017a; Li and Zhu, 2017),
or adding a reconstruction loss (Tu et al., 2017b).
Feng et al. (2016) also use the notion of fertility

∗Work done during an internship at Unbabel.

implicitly in their proposed model. Their fertility
conditioned decoder uses a coverage vector and an
extract gate which are incorporated in the decod-
ing recurrent unit, increasing the number of pa-
rameters.

In this paper, we propose a different solution
that does not change the overall architecture, but
only the attention transformation. Namely, we
replace the traditional softmax by other recently
proposed transformations that either promote at-
tention sparsity (Martins and Astudillo, 2016) or
upper bound the amount of attention a word can
receive (Martins and Kreutzer, 2017). The bounds
are determined by the fertility values of the source
words. While these transformations have given
encouraging results in various NLP problems, they
have never been applied to NMT, to the best of
our knowledge. Furthermore, we combine these
two ideas and propose a novel attention transfor-
mation, constrained sparsemax, which produces
both sparse and bounded attention weights, yield-
ing a compact and interpretable set of alignments.
While being in-between soft and hard alignments
(Figure 2), the constrained sparsemax transforma-
tion is end-to-end differentiable, hence amenable
for training with gradient backpropagation.

To sum up, our contributions are as follows:1

• We formulate constrained sparsemax and de-
rive efficient linear and sublinear-time algo-
rithms for running forward and backward prop-
agation. This transformation has two levels of
sparsity: over time steps, and over the attended
words at each step.

• We provide a detailed empirical comparison
of various attention transformations, includ-
ing softmax (Bahdanau et al., 2014), sparse-
1Our software code is available at the OpenNMT fork

www.github.com/Unbabel/OpenNMT-py/tree/dev
and the running scripts at www.github.com/Unbabel/
sparse constrained attention.
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max (Martins and Astudillo, 2016), constrained
softmax (Martins and Kreutzer, 2017), and our
newly proposed constrained sparsemax. We
provide error analysis including two new met-
rics targeted at detecting coverage problems.

2 Preliminaries

Our underlying model architecture is a standard at-
tentional encoder-decoder (Bahdanau et al., 2014).
Let x := x1:J and y := y1:T denote the source and
target sentences, respectively. We use a Bi-LSTM
encoder to represent the source words as a matrix
H := [h1, . . . ,hJ ] ∈ R2D×J . The conditional
probability of the target sentence is given as

p(y | x) :=
∏T
t=1 p(yt | y1:(t−1), x), (1)

where p(yt | y1:(t−1), x) is computed by a softmax
output layer that receives a decoder state st as in-
put. This state is updated by an auto-regressive
LSTM, st = RNN(embed(yt−1), st−1, ct), where
ct is an input context vector. This vector is com-
puted as ct := Hαt, where αt is a probability
distribution that represents the attention over the
source words, commonly obtained as

αt = softmax(zt), (2)

where zt ∈ RJ is a vector of scores. We follow
Luong et al. (2015) and define zt,j := s>t−1Whj
as a bilinear transformation of encoder and de-
coder states, whereW is a model parameter.2

3 Sparse and Constrained Attention

In this work, we consider alternatives to Eq. 2.
Since the softmax is strictly positive, it forces all
words in the source to receive some probability
mass in the resulting attention distribution, which
can be wasteful. Moreover, it may happen that
the decoder attends repeatedly to the same source
words across time steps, causing repetitions in the
generated translation, as Tu et al. (2016) observed.

With this in mind, we replace Eq. 2 by αt =
ρ(zt,ut), where ρ is a transformation that may de-
pend both on the scores zt ∈ RJ and on upper
bounds ut ∈ RJ that limit the amount of atten-
tion that each word can receive. We consider three
alternatives to softmax, described next.

2This is the default implementation in the OpenNMT
package. In preliminary experiments, feedforward attention
(Bahdanau et al., 2014) did not show improvements.

Sparsemax. The sparsemax transformation
(Martins and Astudillo, 2016) is defined as:

sparsemax(z) := argmin
α∈∆J

‖α− z‖2, (3)

where ∆J := {α ∈ RJ | α ≥ 0,
∑

j αj = 1}. In
words, it is the Euclidean projection of the scores
z onto the probability simplex. These projections
tend to hit the boundary of the simplex, yielding a
sparse probability distribution. This allows the de-
coder to attend only to a few words in the source,
assigning zero probability mass to all other words.
Martins and Astudillo (2016) have shown that the
sparsemax can be evaluated in O(J) time (same
asymptotic cost as softmax) and gradient back-
propagation takes sublinear time (faster than soft-
max), by exploiting the sparsity of the solution.

Constrained softmax. The constrained softmax
transformation was recently proposed by Martins
and Kreutzer (2017) in the context of easy-first se-
quence tagging, being defined as follows:

csoftmax(z;u) := argmin
α∈∆J

KL(α‖ softmax(z))

s.t. α ≤ u, (4)

where u is a vector of upper bounds, and
KL(.‖.) is the Kullback-Leibler divergence. In
other words, it returns the distribution closest
to softmax(z) whose attention probabilities are
bounded by u. Martins and Kreutzer (2017) have
shown that this transformation can be evaluated in
O(J log J) time and its gradients backpropagated
in O(J) time.

To use this transformation in the attention
mechanism, we make use of the idea of fertil-
ity (Brown et al., 1993). Namely, let βt−1 :=∑t−1

τ=1ατ denote the cumulative attention that
each source word has received up to time step t,
and let f := (fj)

J
j=1 be a vector containing fertil-

ity upper bounds for each source word. The atten-
tion at step t is computed as

αt = csoftmax(zt,f − βt−1). (5)

Intuitively, each source word j gets a credit of fj
units of attention, which are consumed along the
decoding process. If all the credit is exhausted,
it receives zero attention from then on. Unlike
the sparsemax transformation, which places sparse
attention over the source words, the constrained
softmax leads to sparsity over time steps.
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Figure 1: Illustration of the different attention transformations for a toy example with three source
words. We show the attention values on the probability simplex. In the first row we assume scores
z = (1.2, 0.8,−0.2), and in the second and third rows z = (0.7, 0.9, 0.1) and z = (−0.2, 0.2, 0.9),
respectively. For constrained softmax/sparsemax, we set unit fertilities to every word; for each row the
upper bounds (represented as green dashed lines) are set as the difference between these fertilities and
the cumulative attention each word has received. The last row illustrates the cumulative attention for the
three words after all rounds.

Constrained sparsemax. In this work, we pro-
pose a novel transformation which shares the two
properties above: it provides both sparse and
bounded probabilities. It is defined as:

csparsemax(z;u) := argmin
α∈∆J

‖α− z‖2

s.t. α ≤ u. (6)

The following result, whose detailed proof we in-
clude as supplementary material (Appendix A), is
key for enabling the use of the constrained sparse-
max transformation in neural networks.

Proposition 1 Let α? = csparsemax(z;u) be the
solution of Eq. 6, and define the sets A = {j ∈
[J ] | 0 < α?j < uj}, AL = {j ∈ [J ] | α?j = 0},
and AR = {j ∈ [J ] | α?j = uj}. Then:

• Forward propagation. α? can be com-
puted in O(J) time with the algorithm of
Pardalos and Kovoor (1990) (Alg. 1 in Ap-
pendix A). The solution takes the form α?j =
max{0,min{uj , zj − τ}}, where τ is a nor-
malization constant.

• Gradient backpropagation. Backpropagation
takes sublinear time O(|A| + |AR|). Let L(θ)

be a loss function, dα = ∇αL(θ) be the out-
put gradient, and dz = ∇zL(θ) and du =
∇uL(θ) be the input gradients. Then, we have:

dzj = 1(j ∈ A)(dαj −m) (7)

duj = 1(j ∈ AR)(dαj −m), (8)

where m = 1
|A|
∑

j∈A dαj .

4 Fertility Bounds

We experiment with three ways of setting the fer-
tility of the source words: CONSTANT, GUIDED,
and PREDICTED. With CONSTANT, we set the
fertilities of all source words to a fixed integer
value f . With GUIDED, we train a word aligner
based on IBM Model 2 (we used fast align
in our experiments, Dyer et al. (2013)) and, for
each word in the vocabulary, we set the fertilities
to the maximal observed value in the training data
(or 1 if no alignment was observed). With the PRE-
DICTED strategy, we train a separate fertility pre-
dictor model using a bi-LSTM tagger.3 At training
time, we provide as supervision the fertility esti-
mated by fast align. Since our model works

3A similar strategy was recently used by Gu et al. (2018)
as a component of their non-autoregressive NMT model.
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Figure 2: Attention maps for softmax and
csparsemax for two DE-EN sentence pairs (white
means zero attention). Repeated words are high-
lighted. The reference translations are “This is
Moore’s law over the last hundred years” and “I
am going to go ahead and select government.”

with fertility upper bounds and the word aligner
may miss some word pairs, we found it beneficial
to add a constant to this number (1 in our experi-
ments). At test time, we use the expected fertilities
according to our model.

Sink token. We append an additional <SINK>
token to the end of the source sentence, to which
we assign unbounded fertility (fJ+1 = ∞). The
token is akin to the null alignment in IBM mod-
els. The reason we add this token is the following:
without the sink token, the length of the generated
target sentence can never exceed

∑
j fj words if

we use constrained softmax/sparsemax. At train-
ing time this may be problematic, since the target
length is fixed and the problems in Eqs. 4–6 can
become infeasible. By adding the sink token we
guarantee

∑
j fj =∞, eliminating the problem.

Exhaustion strategies. To avoid missing source
words, we implemented a simple strategy to en-
courage more attention to words with larger credit:
we redefine the pre-attention word scores as z′t =
zt + cut, where c is a constant (c = 0.2 in our
experiments). This increases the score of words
which have not yet exhausted their fertility (we
may regard it as a “soft” lower bound in Eqs. 4–6).

5 Experiments

We evaluated our attention transformations on
three language pairs. We focused on small
datasets, as they are the most affected by cover-
age mistakes. We use the IWSLT 2014 corpus
for DE-EN, the KFTT corpus for JA-EN (Neu-
big, 2011), and the WMT 2016 dataset for RO-
EN. The training sets have 153,326, 329,882, and
560,767 parallel sentences, respectively. Our rea-
son to prefer smaller datasets is that this regime
is what brings more adequacy issues and demands
more structural biases, hence it is a good test bed
for our methods. We tokenized the data using the
Moses scripts and preprocessed it with subword
units (Sennrich et al., 2016) with a joint vocab-
ulary and 32k merge operations. Our implemen-
tation was done on a fork of the OpenNMT-py
toolkit (Klein et al., 2017) with the default param-
eters 4. We used a validation set to tune hyperpa-
rameters introduced by our model. Even though
our attention implementations are CPU-based us-
ing NumPy (unlike the rest of the computation
which is done on the GPU), we did not observe
any noticeable slowdown using multiple devices.

As baselines, we use softmax attention, as well
as two recently proposed coverage models:
• COVPENALTY (Wu et al., 2016, §7). At test

time, the hypotheses in the beam are rescored
with a global score that includes a length and a
coverage penalty.5 We tuned α and β with grid
search on {0.2k}5k=0, as in Wu et al. (2016).

• COVVECTOR (Tu et al., 2016). At training and
test time, coverage vectors β and additional pa-
rameters v are used to condition the next atten-
tion step. We adapted this to our bilinear atten-
tion by defining zt,j = s>t−1(Whj + vβt−1,j).

We also experimented combining the strategies
above with the sparsemax transformation.

As evaluation metrics, we report tokenized
BLEU, METEOR (Denkowski and Lavie (2014),
as well as two new metrics that we describe next
to account for over and under-translation.6

4We used a 2-layer LSTM, embedding and hidden size
of 500, dropout 0.3, and the SGD optimizer for 13 epochs.

5Since our sparse attention can become 0 for some
words, we extended the original coverage penalty by
adding another parameter ε, set to 0.1: cp(x; y) :=

β
∑J

j=1 logmax{ε,min{1,
∑|y|

t=1 αjt}}.
6Both evaluation metrics are included in our software

package at www.github.com/Unbabel/
sparse constrained attention.
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De-En Ja-En Ro-En
BLEU METEOR REP DROP BLEU METEOR REP DROP BLEU METEOR REP DROP

softmax 29.51 31.43 3.37 5.89 20.36 23.83 13.48 23.30 29.67 32.05 2.45 5.59
softmax + COVPENALTY 29.69 31.53 3.47 5.74 20.70 24.12 14.12 22.79 29.81 32.15 2.48 5.49
softmax + COVVECTOR 29.63 31.54 2.93 5.65 21.53 24.50 11.07 22.18 30.08 32.22 2.42 5.47
sparsemax 29.73 31.54 3.18 5.90 21.28 24.25 13.09 22.40 29.97 32.12 2.19 5.60
sparsemax + COVPENALTY 29.83 31.60 3.24 5.79 21.64 24.49 13.36 21.91 30.07 32.20 2.20 5.47
sparsemax + COVVECTOR 29.22 31.18 3.13 6.15 21.35 24.74 10.11 21.25 29.30 31.84 2.18 5.87
csoftmax (c = 0.2) 29.39 31.33 3.29 5.86 20.71 24.00 12.38 22.73 29.39 31.83 2.37 5.64
csparsemax (c = 0.2) 29.85 31.76 2.67 5.23 21.31 24.51 11.40 21.59 29.77 32.10 1.98 5.44

Table 1: BLEU, METEOR, REP and DROP scores on the test sets for different attention transformations.

BLEU METEOR
CONSTANT, f = 2 29.66 31.60
CONSTANT, f = 3 29.64 31.56
GUIDED, 29.56 31.45
PREDICTED, c = 0 29.78 31.60
PREDICTED, c = 0.2 29.85 31.76

Table 2: Impact of various fertility strategies for
the csparsemax attention model (DE-EN).

REP-score: a new metric to count repetitions.
Formally, given an n-gram s ∈ V n, let t(s) and
r(s) be the its frequency in the model translation
and reference. We first compute a sentence-level
score

σ(t, r) = λ1
∑

s∈V n, t(s)≥2 max{0, t(s)− r(s)}
+ λ2

∑
w∈V max{0, t(ww)− r(ww)}.

The REP-score is then given by summing σ(t, r)
over sentences, normalizing by the number of
words on the reference corpus, and multiplying by
100. We used n = 2, λ1 = 1 and λ2 = 2.

DROP-score: a new metric that accounts for
possibly dropped words. To compute it, we
first compute two sets of word alignments: from
source to reference translation, and from source
to the predicted translation. In our experiments,
the alignments were obtained with fast align
(Dyer et al., 2013), trained on the training partition
of the data. Then, the DROP-score computes the
percentage of source words that aligned with some
word from the reference translation, but not with
any word from the predicted translation.

Table 1 shows the results. We can see that on
average, the sparse models (csparsemax as well
as sparsemax combined with coverage models)
have higher scores on both BLEU and METEOR.
Generally, they also obtain better REP and DROP
scores than csoftmax and softmax, which suggests
that sparse attention alleviates the problem of cov-
erage to some extent.

To compare different fertility strategies, we ran
experiments on the DE-EN for the csparsemax
transformation (Table 2). We see that the PRE-
DICTED strategy outperforms the others both in
terms of BLEU and METEOR, albeit slightly.

Figure 2 shows examples of sentences for which
the csparsemax fixed repetitions, along with the
corresponding attention maps. We see that in the
case of softmax repetitions, the decoder attends
repeatedly to the same portion of the source sen-
tence (the expression “letzten hundert” in the first
sentence and “regierung” in the second sentence).
Not only did csparsemax avoid repetitions, but
it also yielded a sparse set of alignments, as ex-
pected. Appendix B provides more examples of
translations from all models in discussion.

6 Conclusions

We proposed a new approach to address the cover-
age problem in NMT, by replacing the softmax at-
tentional transformation by sparse and constrained
alternatives: sparsemax, constrained softmax, and
the newly proposed constrained sparsemax. For
the latter, we derived efficient forward and back-
ward propagation algorithms. By incorporating a
model for fertility prediction, our attention trans-
formations led to sparse alignments, avoiding re-
peated words in the translation.
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