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Abstract

A sentence can be translated into more
than one correct sentences. However, most
of the existing neural machine translation
models only use one of the correct trans-
lations as the targets, and the other cor-
rect sentences are punished as the incor-
rect sentences in the training stage. Since
most of the correct translations for one
sentence share the similar bag-of-words,
it is possible to distinguish the correct
translations from the incorrect ones by
the bag-of-words. In this paper, we pro-
pose an approach that uses both the sen-
tences and the bag-of-words as targets in
the training stage, in order to encourage
the model to generate the potentially cor-
rect sentences that are not appeared in the
training set. We evaluate our model on
a Chinese-English translation dataset, and
experiments show our model outperforms
the strong baselines by the BLEU score of
4.55.!

1 Introduction

Neural Machine Translation (NMT) has achieve
success in generating coherent and reasonable
translations. Most of the existing neural machine
translation systems are based on the sequence-
to-sequence model (Sutskever et al., 2014). The
sequence-to-sequence model (Seq2Seq) regards
the translation problem as the mapping from the
source sequences to the target sequences. The en-
coder of Seq2Seq compresses the source sentences
into the latent representation, and the decoder of
Seq2Seq generates the target sentences from the
source representations. The cross-entropy loss,

'The code is available at https://github.com/
lancopku/bag-of-words
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Source: 4 FEHIF H AR m B SO T f
H37.6/(CFETC

Reference: Export of high - tech products
in guangdong in first two months this year
reached 3.76 billion us dollars .

Translation 1: Guangdong ’s export of new
high technology products amounts to us $3.76
billion in first two months of this year .
Translation 2: Export of high - tech products
has frequently been in the spotlight , making a
significant contribution to the growth of foreign
trade in guangdong .

Table 1: An example of two generated transla-
tions. Although Translation 1 is much more rea-
sonable, it is punished more severely than Trans-
lation 2 by Seq2Seq.

which measures the distance of the generated dis-
tribution and the target distribution, is minimized
in the training stage, so that the generated sen-
tences are as similar as the target sentences.

Due to the limitation of the training set, most
of the existing neural machine translation models
only have one reference sentences as the targets.
However, a sentence can be translated into more
than one correct sentences, which have different
syntax structures and expressions but share the
same meaning. The correct translations that are
not appeared in the training set will be punished
as the incorrect translation by Seq2Seq, which is
a potential harm to the model. Table 1 shows an
example of two generated translations from Chi-
nese to English. Translation 1 is apparently more
proper as the translation of the source sentence
than Translation 2, but it is punished even more
severely than Translation 2 by Seq2Seq.

Because most of the correct translations for one
source sentence share the similar bag-of-words, it
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is possible to distinguish the correct translations
from the incorrect ones by the bag-of-words in
most cases. In this paper, we propose an approach
that uses both sentences and bag-of-words as the
targets. In this way, the generated sentences which
cover more words in the bag-of-words (e.g. Trans-
lation 1 in Table 1) are encouraged, while the in-
correct sentences (e.g. Translation 2) are pun-
ished more severely. We perform experiments on
a popular Chinese-English translation dataset. Ex-
periments show our model outperforms the strong
baselines by the BLEU score of 4.55.

2 Bag-of-Words as Target

In this section, we describe the proposed approach
in detail.

2.1 Notation

Given a translation dataset that consists of N data
samples, the i-th data sample (z°, ') contains a
source sentence z°, and a target sentence y°. The
bag-of-words of 4° is denoted as b*. The source
sentence ', the target sentence 4°, and the bag-of-
words b are all sequences of words:

}

%

i god
r' = {z], x5, ..., 07,

y' = {yi, 5 Vs, }
b = {b},bh, ..., b, }
where L;, M;, and K; denote the number of words
in 2%, 3%, and b’, respectively.
The target of our model is to generate both the
target sequence v’ and the corresponding bag-of-
words b’. For the purpose of simplicity, (x, y, b)

is used to denote each data pair in the rest of this
section.

2.2 Bag-of-Words Generation

We regard the bag-of-words generation as the
multi-label classification problem. We first per-
form the encoding and decoding to obtain the
scores of words at each position of the generated
sentence. Then, we sum the scores of all positions
as the sentence-level score. Finally, the sentence-
level score is used for multi-label classification,
which identifies whether the word appears in the
translation.

In our model, the encoder is a bi-directional
Long Short-term Memory Network (BilL-
STM), which produces the representation
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Figure 1: The overview of our model. The en-
coder inputs the source sentence, and the decoder
outputs the word distribution at each position. The
distribution of all position is summed up to a
sentence-level score, which can be used to gen-
erate the bag-of-words.

h = {hy, ha, ..., hr} from the source text x:
hi = flae, hia) (1)
hy = f (w1, higa) )
he = hy + hy 3)

where f and } are the forward and the backward
functions of LSTM for one time step, Et and 7Lt
are the forward and the backward hidden outputs
respectively, x; is the input at the ¢-th time step,
and L is the number of words in sequence .

The decoder consists of a uni-directional
LSTM, with an attention, and a word generator.
The LSTM generates the hidden output g;:

4

where f is the function of LSTM for one time step,
and y;_ is the last generated words at ¢-th time
step. The attention mechanism (Luong and Man-
ning, 2015) is used to capture the source informa-

tion:
N
v = E ayih;
i=1

a4 = f(Ye—1,q-1)

6))



e9(at,hi)
e Z;V:1 e9(at:h;) ©
9(gt, h;) = tanh (¢f W;h;) (7)

where W, is a trainable parameter matrix. Then,
the word generator is used to compute the proba-
bility of each output word at ¢-th time step:

®)

Pw, = softmax(sy)

st = Wyue + by ©)

where W, and b, are parameters of the generator.

To get a sentence-level score for the generated
sentence, we generate a sequence of word-level
score vectors s; at all positions with the output
layer of decoder, and then we sum up the word-
level score vectors to obtain a sentence-level score
vector. Each value in the vector represents the
sentence-level score of the corresponding word,
and the index of the value is the index of the word
in the dictionary. After normalizing the sentence-
level score with sigmoid function, we get the prob-
ability for each word, which represents how possi-
ble the word appears in the generated sentence re-
gardless of the position in the sentence. Compared
with the word-level probability p,,, the sentence-
level probability py, of each word is independent of
the position in the sentence.

More specifically, the sentence-level probability
of the generated bag-of-words p;, can be written as:

M
Py = sigmoid(z St) (10)
t=1
where M is the number of words in the target sen-

tence.

2.3 Targets and Loss Function

We have two targets at the training stage: the ref-
erence translation (appears in the training set) and
the bag-of-words. The bag-of-words is used as the
approximate representation of the correct transla-
tions that do not appear in the training set. For the
targets, we have two parts of loss functions:

M
h=- Zyt log pu, (yt)

(11)
t=1
K

ly=—) bilogpy(b;) (12)
i=1
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The total loss function can be written as:

L=11+ Nl (13)

where ); is the coefficient to balance two loss
functions at i-th epoch. Since the bag-of-words
generation module is built on the top of the word
generation, we assign a small weight for the bag-
of-words training at the initial time, and gradually
increase the weight until a certain value A:

Ai = min(\ k + «i) (14)

In our experiments, we set the A\ = 1.0, £ = 0.1,
and a = 0.1, based on the performance on the
validation set.

3 Experiments

This section introduces the details of our experi-
ments, including datasets, setups, baseline models
as well as results.

3.1 Datasets

We evaluated our proposed model on the NIST
translation task for Chinese-English translation
and provided the analysis on the same task. We
trained our model on 1.25M sentence pairs ex-
tracted from LDC corpora 2, with 27.9M Chinese
words and 34.5M English words. We validated
our model on the dataset for the NIST 2002 trans-
lation task and tested our model on that for the
NIST 2003, 2004, 2005, 2006, 2008 translation
tasks. We used the most frequent 50,000 words
for both the Chinese vocabulary and the English
vocabulary. The evaluation metric is BLEU (Pap-
ineni et al., 2002).

3.2 Setting

We implement the models using PyTorch, and the
experiments are conducted on an NVIDIA 1080Ti
GPU. Both the size of word embedding and hid-
den size are 512, and the batch size is 64. We
use Adam optimizer (Kingma and Ba, 2014) to
train the model with the default setting 81 = 0.9,
Bz = 0.999 and € = 1 x 10~%, and we initialize
the learning rate to 0.0003.

Based on the performance on the development
sets, we use a 3-layer LSTM as the encoder and a
2-layer LSTM as the decoder. We clip the gradi-
ents (Pascanu et al., 2013) to the maximum norm

>The corpora include LDC2002E18, LDC2003E07,

LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.



Model \ MT-02 | MT-03 MT-04 MT-05 MT-06 MT-08 | All
Moses (Su et al., 2016) 33.19 | 3243 3414 3147 30.81 23.85 | 31.04
RNNSearch (Su et al., 2016) 34.68 | 33.08 3532 3142 31.61 23.58 | 31.76
Lattice (Su et al., 2016) 3594 | 3432 3650 3240 3277 24.84 | 32.95
CPR (Zhang et al., 2017) 33.84 | 31.18 3326 30.67 29.63 2238 | 29.72
POSTREG (Zhang et al., 2017) 3437 | 3142 3418 3099 2990 22.87 | 30.20
PKI (Zhang et al., 2017) 36.10 | 33.64 3648 33.08 3290 24.63 | 32.51
Bi-Tree-LSTM (Chen et al., 2017) 36.57 | 35.64 36.63 3435 30.57 - -
Mixed RNN (Li et al., 2017) 37.70 | 3490 38.60 3550  35.60 - -
Seq2Seq+Attn (our implementation) | 34.71 | 33.15 3526 3236 3245 2396 | 31.96
+Bag-of-Words (this paper) 39.77 | 3891 40.02 36.82 3593 27.61 | 36.51

Table 2: Results of our model and the baselines (directly reported in the referred articles) on the Chinese-

@ 9

English translation.

of 10.0. Dropout is used with the dropout rate set
to 0.2. Following Xiong et al. (2017), we use beam
search with a beam width of 10 to generate transla-
tion for the evaluation and test, and we normalize
the log-likelihood scores by sentence length.

3.3 Baselines

We compare our model with several NMT sys-
tems, and the results are directly reported in their
articles.

e Moses is an open source phrase-based trans-
lation system with default configurations and
a4-gram language model trained on the train-

ing data for the target language.

RNNSearch (Bahdanau et al.,, 2014) is a
bidirectional GRU based model with the at-
tention mechanism. The results of Moses,
and RNNSearch come from Su et al. (2016).

Lattice (Su et al., 2016) is a Seq2Seq model
which encodes the sentences with multiple
tokenizations.

Bi-Tree-LSTM (Chen et al., 2017) is a tree-
structured model which models source-side
syntax.

Mixed RNN (Li et al., 2017) extends
RNNSearch with a mixed RNN as the en-
coder.

CPR (Wu et al., 2016) extends RNNSearch
with a coverage penalty.

POSTREG (Ganchev et al., 2010) extends
RNNSearch with posterior regularization
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means that the studies did not test the models on the corresponding datasets.

with a constrained posterior set. The results
of CPR, and POSTREG come from Zhang
et al. (2017).

e PKI (Zhang et al., 2017) extends RNNSearch
with posterior regularization to integrate
prior knowledge.

3.4 Results

Table 2 shows the overall results of the sys-
tems on the Chinese-English translation task. We
compare our model with our implementation of
Seq2Seq+Attention model. For fair comparison,
the experimental setting of Seq2Seq+Attention is
the same as BAT, so that we can regard it as our
proposed model removing the bag-of-words tar-
get. The results show that our model achieves the
BLEU score of 36.51 on the total test sets, which
outperforms the Seq2Seq baseline by the BLEU of
4.55.

In order to further evaluate the performance of
our model, we compare our model with the recent
NMT systems which have been evaluated on the
same training set and the test sets as ours. Their
results are directly reported in the referred arti-
cles. As shown in Table 2, our model achieves
high BLEU scores on all of the NIST Machine
Translation test sets, which demonstrates the ef-
ficiency of our model.

We also give two translation examples of our
model. As shown in Table 3, The translations
of Seq2Seq+Attn omit some words, such as “of”,
“committee”, and “protection”, and contain some
redundant words, like “human chromosome” and
“<unk>". Compared with Seq2Seq, the transla-
tions of our model is more informative and ade-



Source: ARIH = XFfAE .
Reference: Humans have a total of 23 pairs of
chromosomes .

Seq2Seq+Attn: Humans have 23 pairs chro-
mosomes in human chromosome .
+Bag-of-Words: There are 23 pairs of chro-
mosomes in mankind .

Source: —ZENKIL W EFLZHSE R
Yo [IXTAB WAL 3 B 2 & X B0 AR B BURE

.o |

Reference: An official from the olympics or-
ganization committee said : “ this proposal rep-
resents the committee ’s sensitivity to environ-
mental protection . ”’

Seq2Seq+Attn: An official of the olympic
preparatory committee said : “ this proposal
represents the <unk> of environmental sensi-
tivity . 7

+Bag-of-Words: An official of the olympic
preparatory committee said : “ this proposal
represents the sensitivity of the preparatory
committee on environmental protection . ”

Table 3: Two translation examples of our model,
compared with the Seq2Seq+Attn baseline.

quate, with a better coverage of the bag-of-words
of the references.

4 Related Work

The studies of encoder-decoder framework
(Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014) for this task launched
the Neural Machine Translation. To improve the
focus on the information in the encoder, Bahdanau
et al. (2014) proposed the attention mechanism,
which greatly improved the performance of the
Seq2Seq model on NMT. Most of the existing
NMT systems are based on the Seq2Seq model
and the attention mechanism. Some of them have
variant architectures to capture more information
from the inputs (Su et al., 2016; Xiong et al.,
2017; Tu et al., 2016), and some improve the
attention mechanism (Luong et al., 2015; Meng
et al., 2016; Mi et al., 2016; Jean et al., 2015;
Feng et al., 2016; Calixto et al., 2017), which also
enhanced the performance of the NMT model.
There are also some effective neural networks
other RNN. Gehring et al. (2017) turned the
RNN-based model into CNN-based model, which

336

greatly improves the computation speed. Vaswani
et al. (2017) only used attention mechanism to
build the model and showed outstanding perfor-
mance. Also, some researches incorporated ex-
ternal knowledge and also achieved obvious im-
provement (Li et al., 2017; Chen et al., 2017).

There is also a study (Zhao et al., 2017) shares a
similar name with this work, i.e. bag-of-word loss,
our work has significant difference with this study.
First, the methods are very different. The previous
work uses the bag-of-word to constraint the latent
variable, and the latent variable is the output of
the encoder. However, we use the bag-of-word to
supervise the distribution of the generated words,
which is the output of the decoder. Compared with
the previous work, our method directly supervises
the predicted distribution to improve the whole
model, including the encoder, the decoder and the
output layer. On the contrary, the previous work
only supervises the output of the encoder, and only
the encoder is trained. Second, the motivations are
quite different. The bag-of-word loss in the previ-
ous work is an assistant component, while the bag
of word in this paper is a direct target. For exam-
ple, in the paper you mentioned, the bag-of-word
loss is a component of variational autoencoder to
tackle the vanishing latent variable problem. In
our paper, the bag of word is the representation of
the unseen correct translations to tackle the data
sparseness problem.

5 Conclusions and Future Work

We propose a method that regard both the refer-
ence translation (appears in the training set) and
the bag-of-words as the targets of Seq2Seq at the
training stage. Experimental results show that our
model obtains better performance than the strong
baseline models on a popular Chinese-English
translation dataset. In the future, we will explore
how to apply our method to other language pairs,
especially the morphologically richer languages
than English, and the low-resources languages.
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