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Abstract

Traditional Neural machine translation
(NMT) involves a fixed training procedure
where each sentence is sampled once
during each epoch. In reality, some
sentences are well-learned during the
initial few epochs; however, using this
approach, the well-learned sentences
would continue to be trained along with
those sentences that were not well learned
for 10-30 epochs, which results in a
wastage of time. Here, we propose an
efficient method to dynamically sample
the sentences in order to accelerate the
NMT training. In this approach, a weight
is assigned to each sentence based on the
measured difference between the training
costs of two iterations. Further, in each
epoch, a certain percentage of sentences
are dynamically sampled according to
their weights. Empirical results based
on the NIST Chinese-to-English and the
WMT English-to-German tasks show that
the proposed method can significantly
accelerate the NMT training and improve
the NMT performance.

1 Introduction

Recently neural machine translation (NMT)
has been prominently used to perform various
translation tasks (Luong and Manning, 2015;
Bojar et al., 2017). However, NMT is much
more time-consuming than traditional phrase-
based statistical machine translation (PBSMT) due
to its deep neural network structure. To improve
the efficiency of NMT training, most of the studies
focus on reducing the number of parameters in
the model (See et al., 2016; Crego et al., 2016;
Hubara et al., 2016) and implementing parallelism

in the data or in the model (Wu et al., 2016;
Kalchbrenner et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017).

Although these technologies have been adopted,
deep networks have to be improved to achieve
state-of-the-art performance in order to handle
very large datasets and several training iterations.
Therefore, some researchers have proposed to
accelerate the NMT training by resampling a
smaller subset of the data that makes a relatively
high contribution, to improve the training
efficiency of NMT. Specifically, Kocmi and
Bojar (2017) empirically investigated curriculum
learning based on the sentence length and word
rank. Wang et al. (2017a) proposed a static
sentence-selection method for domain adaptation
using the internal sentence embedding of NMT.
They also proposed a sentence weighting method
with dynamic weight adjustment (Wang et al.,
2017b). Wees et al. (2017) used domain-based
cross-entropy as a criterion to gradually fine-tune
the NMT training in a dynamical manner. All of
these criteria (Wang et al., 2017a,b; Wees et al.,
2017) are calculated before performing the NMT
training based on the domain information and are
fixed while performing the complete procedure.
Zhang et al. (2017) adopted the sentence-level
training cost as a dynamic criterion to gradually
fine-tune the NMT training. This approach was
developed based on the idea that the training cost
is a useful measure to determine the translation
quality of a sentence. However, some of the
sentences that can be potentially improved by
training may be deleted using this method. In
addition, all of the above works primarily focused
on NMT translation performance, instead of
training efficiency.

In this study, we propose a method of dynamic
sentence sampling (DSS) to improve the NMT
training efficiency. First, the differences between
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the training costs of two iterations, which is
a measure of whether the translation quality
of a sentence can be potentially improved, is
measured to be the criterion. We further proposed
two sentence resampling strategies, i.e., weighted
sampling and review mechanism to help NMT
focus on the not well-learned sentences as well
as remember the knowledge from the well-learned
sentences.

The remainder of this paper is organized as
follows. In Section 2, we introduce the dynamic
sentence sampling method. Experiments are
described and analyzed in Section 3. We discussed
some other effects of the proposed methods in
Section 4. We conclude our paper in the last
section.

2 Dynamic Sentence Sampling (DSS)

2.1 NMT Background

An attention-based NMT system uses a
bidirectional RNN as an encoder and a decoder
that emulates the search through a source sentence
during the decoding process (Bahdanau et al.,
2015; Luong et al., 2015). The training objective
function to be minimized can be formulated as:

J =
∑
〈x,y〉∈D

− logP (y|x,θ), (1)

where 〈x, y〉 is the parallel sentence pair
from the training corpus D, P (y|x) is the
translation probability, and θ is the neural network
parameters.

2.2 Criteria

The key to perform sentence sampling is to
measure the criteria. As we know, the NMT
system continually alters throughout the training
procedure. However, most of the criteria described
in the introduction remain constant during the
NMT training process. Zhang et al. (2017)
adopted the sentence-level training cost to be a
dynamic criterion; further, the training cost of a
sentence pair 〈x, y〉 during the ith iteration can be
calculated as:

costi〈x,y〉 = − logP (y|x,θ). (2)

Directly adopting training cost as the criterion
to select the top-ranked sentences that represent
the largest training costs has two drawbacks:
1) The translation qualities of sentences with

small training costs may be further improved
during the succeeding epochs. 2) If the training
corpus become smaller after each iteration, the
knowledge associated with the removed sentences
may be lost over the course of the NMT process.

Therefore, we adopt the ratio of differences
(dif ) between training costs of two training
iterations to be the criterion,

dif i〈x,y〉 =
costi−1〈x,y〉 − cost

i
〈x,y〉

costi−1〈x,y〉
. (3)

It should be noted that some of dif〈x,y〉 are
negative. That is, the costs of some sentence pairs
even increase after one epoch training. Therefore,
the difference is normalized into [0, 1] as the final
criterion:

criterioni〈x,y〉 =
dif i〈x,y〉 −min(dif

i)

max(dif i)−min(dif i)
. (4)

This criterion indicates the likelihood of a
sentence to be further improved in the next
iteration; low values indicate that the training cost
of a sentence is unlikely to change and that it
would not significantly contribute to the NMT
training even if the sentence was trained further.

2.3 Dynamic Sampling
As we know, the NMT performance improves
significantly during the initial several epochs and
less significantly thereafter. This is partially
because that some of the sentences have been
learned sufficiently (i.e., low criterioni〈x,y〉
values). However, they are kept further training
with the ones which have not been learned enough
(i.e., high criterioni〈x,y〉 values). Therefore, in
this approach, these sentences are deleted for the
subsequent iterations. To ensure that knowledge
from the deleted sentences is retained, we propose
two mechanisms for dynamic sampling, which are
described in the succeeding sections.

2.3.1 Weighted Sampling (WS)
We assign a normalized weight to each sentence
according to the criterion that can be given as:

weighti〈x,y〉 =
criterioni〈x,y〉∑

〈x,y〉∈D criterion
i
〈x,y〉

. (5)

Further, weighted sampling without any
replacement was used to select a small subset,
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such as 80%1 of the entire corpus, as the corpus
Di+1

ws to perform the subsequent iteration. The
updated objective function using weighted
sampling Jws can be formulated as follows:

Jws =
∑

〈x,y〉∈Dws

− logP (y|x,θ). (6)

Thus only 80% of the entire corpus is
used to perform the NMT training during each
iteration (for the first two iteration, all of
the sentences should be sampled). Because
the criterion continually changes, the sentence
selection procedure also changes during the NMT
training. Those that are not selected in an epoch
still have a chance to be selected in the subsequent
epoch2.

2.3.2 Review Mechanism (RM)
We further propose an alternate sentence sampling
mechanism. After performing an iteration during
training, 80% of the top-ranked sentences are
selected to act as the training data for the
subsequent iteration. Each sentence that is not
selected is classified into the low-criterion group
Dlow and does not have a chance to be sampled
again. In this case, the Dlow will become larger
and larger, and Dhigh will becomes smaller and
smaller. To prevent the loss of the knowledge
that was obtained from the Dlow group during
NMT, a small percentage λ, such as 10%, of the
Dlow group is sampled as the knowledge to be
reviewed. The updated NMT objective function
is formalized as follows,

Jrm =
∑

〈x,y〉∈Dhigh

− logP (y|x,θ) +
∑

〈x,y〉∈λDlow

− logP (y|x,θ). (7)

3 Experiments

3.1 Datasets

The proposed methods were applied to perform
1) the NIST Chinese (ZH) to English (EN)
translation task that contained a training dataset
of 1.42 million bilingual sentence pairs from LDC

1Zhang et al. (2017) adopted 80% as the selection
threshold and we follow their settings for fair comparison.
Due to limited space, we will empirically investigate the
effect of the thresholds as our future work.

2For those 20% sentences who are not selected, their
criterioni+1

〈x,y〉 = criterioni〈x,y〉.

corpora3. The NIST02 and NIST03-08 datasets
were used as the development and test datasets,
respectively. 2) the WMT English to German (DE)
translation task for which 4.43 million bilingual
sentence pairs from the WMT-14 dataset4 was
used as the training data. The newstest2012
and newstest2013-2015 datasets were used as
development and test datasets, respectively.

3.2 Baselines and Settings

Beside the PBSMT (Koehn et al., 2007) and
vanilla NMT, three typical existing approaches
described in the introduction were empirically
compared: 1) Curriculum learning using the
source sentence length as the criterion (Kocmi
and Bojar, 2017). 2) Gradual fine-tuning using
language model-based cross-entropy (Wees et al.,
2017)5. 3) NMT boosting method by eliminating
20% of the training data with the lowest training
cost after performing every iteration (Zhang et al.,
2017).

For the proposed DSS method, we adopted one
epoch as one iteration for the EN-DE task and
three epochs as one iteration for the ZH-EN task,
because the corpus size of the EN-DE task is
approximately three times larger than that of the
ZH-EN task.

3.3 NMT Systems

The proposed method was implemented in
Nematus (Sennrich et al., 2017) with the following
default settings: the word embedding dimension
was 620, the size of each hidden layer was 1,000,
the batch size was 80, the maximum sequence
length was 50, and the beam size for the decoding
was 10. A 30K-word vocabulary was created and
data was shuffled before each epoch. Training
was conducted on a single Tesla P100 GPU using
default dropout and the ADADELTA optimizer
(Zeiler, 2012) with default learning rate 0.0001.
All of the systems were trained for 500K batches
which took approximately 7 days.

3LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

4https://nlp.stanford.edu/projects/
nmt/data/wmt14.en-de/

5Wees et al. (2017) also proposed a weighted sampling
method; however, its performance was worse than that of the
gradual fine-tuning. The method originally adopted by Wees
et al. was based on the cross-entropy differences between
two domains. Because no domain information is available
for this task; the development data was used as the in-domain
data by that method. In the method proposed in this study,
the development data is not required.

https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/
https://nlp.stanford.edu/projects/nmt/data/wmt14.en-de/
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Figure 1: Learning curves. Left: NIST ZH-to-EN; Right EN-to-DE.

Table 1: Results from the NIST ZH-to-EN translation task.

Methods Dev (NIST02) NIST03 NIST04 NIST05 NIST06 NIST08 Test (all)
PBSMT 33.15 31.02 33.78 30.33 29.62 23.53 29.66
Vanilla NMT 38.48 37.53 39.95 35.24 33.86 27.23 35.08
Random Sampling 38.35 36.45 40.01 34.27 33.70 26.37 34.62
Kocmi and Bojar (2017) 38.51 37.60 39.87 35.43 33.76 27.37 35.19
Wees et al. (2017) 39.16 38.09 40.30 35.59 34.14 27.46 35.62
Zhang et al. (2017) 39.08 38.27 40.37 35.32 33.57 27.87 35.57
DSS-WS 39.54+ 39.23++ 40.84+ 35.98+ 34.91++ 28.42+ 36.85++
DSS-RM 39.89++ 39.90++ 40.60 35.77+ 35.45++ 29.30++ 37.33++

Table 2: Results from the WMT EN-to-DE translation task.

Methods Dev (newstest2012) newstest2013 newstest2014 newstest2015 Test (all)
PBSMT 14.89 16.75 15.19 16.84 16.35
Vanilla NMT 17.55 20.92 19.16 20.01 20.06
Random Sampling 17.39 20.32 18.36 20.30 19.61
Kocmi and Bojar (2017) 17.63 20.63 19.21 20.47 20.18
Wees et al. (2017) 17.69 20.81 19.21 20.24 20.19
Zhang et al. (2017) 17.67 20.80 19.37 20.42 20.30
DSS-WS 17.99 21.11 19.89+ 21.20+ 20.96+
DSS-RM 18.34+ 21.76++ 20.04++ 21.02+ 21.22++

Note: The translation performance was measured using the case-insensitive BLEU (Papineni et al., 2002) scores. Marks after
the scores indicate that the proposed methods significantly (Koehn, 2004) outperformed the existing optimal baselines in bold
(“++”denotes better at a significance level of α = 0.01, whereas “+”denotes better at a significance level of α = 0.05.).

3.4 Results and Analyses

3.4.1 Training Efficiency
The learning curve is depicted in Figure 1.

1) The BLEU score (ZH-EN as example)
of vanilla NMT increased from 0 to 35 using
approximately 200K training batches. Further, the
BLEU increased from 35 to 38 using around 200K
additional training batches. This is consistent
with our hypothesis that the improvement in NMT
shows decreasing significance as the training
progresses.

2) For the baselines, the method developed
by Kocmi and Bojar (2017) did not provide
significant improvement in speed. The method
proposed by Wees et al. (2017) and Zhang et al.
(2017) slightly accelerated the NMT training.

3) The proposed DSS methods significantly
accelerated the NMT training. The BLEU
score (ZH-EN as example) reached 35 after
using approximately 140K training batches;
further, the BLEU score reached 38 after
using approximately additional 120K training
batches. This may be caused due to the fact
that the amount of well-learned became larger
and larger as the training kept going. If
these sentences were continually trained, the
performance would not increase significantly. In
comparison, DSS methods eliminated these well-
learned sentences; therefore, the performance kept
improving significantly until all of the sentences
become well-learned.

4) The performances of Kocmi and Bojar
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(2017) and Zhang et al. (2017) decreased
significantly after reaching the highest BLEU.
This is consistent with the hypothesis that
NMT may forget the learned knowledge by
directly removing corresponding sentences. In
comparison, the performances of the proposed
DSS methods did not decrease significantly,
because the removed sentences still have chances
to be sampled.

3.4.2 Translation Performance
For fair comparison, we evaluated the best
performed (on dev data) model during 500K
training batches on the test data. The results are
shown in Tables 1 and 2.

1) The methods proposed by Wees et al.
(2017) and Zhang et al. (2017) slightly improved
performances. On Test(all), the proposed
DSS methods significantly improved the BLEU
score by approximately 1.2∼2.2 as compared
to the vanilla NMT and by 0.9∼1.7 to the
best performing baselines. As the well-learned
sentences increases during NMT training, it did
not only slow down NMT training, but also
prevent NMT from learning knowledge from the
sentences which were not well learned and cause
the improvement stagnate.

2) Within the DSS methods, the review
mechanism appears to be a slightly better
mechanism than weighted sampling. This
indicates that the review mechanism retained the
learned knowledge in a better manner than the
learned knowledge of the weighted sampling.

4 Discussions

During the response period, the comments and
suggestions of reviewers inspired us a lot. Due
to the limited time and space, we briefly discussed
these suggestions in this paper. We will show the
empirical results in our future work.

4.1 Effect on Extreme Large Data
For the large corpus, we have tested the WMT EN-
FR task, which containing approximately 12M
sentences. The NMT trained from large-scale
corpus still gained slight BLEU improvement after
several-epoch training. After 6 epochs training
(1M batches), the proposed dynamic sentence
sampling method outperformed the baseline by
approximately 0.6 BLEU.

For the web-scale corpora which may be
converged within one epoch, in our opinion, if

a sentence pair is not well-learned enough, it is
necessary to learn it once more. To accelerate
this judging processing, we can adopt the sentence
similarities between the untrained sentence with
small-sized trained sentences as the criteria for
sentence sampling.

4.2 Effect on Long-time Training

Similarly, for the WMT EN-DE and NIST ZH-
EN, if we keep training for more than 1M batches
which takes 2-3 weeks, the BLEU would increase
by 1.0-1.5 and differences between baseline and
the proposed method would slightly decrease by
0.5-0.7 BLEU. Because 7-10 days is a reasonable
time for NMT training, we reported 500K batches
training results in this paper.

4.3 Effect on Noisy Data

We added 20% noisy data, which is wrongly
aligned, to the NIST ZH-EN corpus. Empirical
result shows that the training cost of these
noise data did not decrease significantly and
even increase sometimes during the training
processing. After the first-time time dynamic
sampling training by the proposed method, the
noise data ratio decreased from 20% to 13%. After
the second-time dynamic sampling training, the
noise data ratio decreased from 13% to 7%. This
indicates that the proposed method can also detect
the noisy data.

5 Conclusion

In this study, the sentences for which training
costs of two iterations do not show any significant
variation are defined as well-learned sentences.
Using a dynamic sentence sampling method,
these well-learned sentences are assigned a
lower probability of being sampled during
the subsequent epoch. The empirical results
illustrated that the proposed method can
significantly accelerate the NMT training
and improve the NMT performances.
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