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Abstract
This paper proposes hybrid semi-
Markov conditional random fields
(SCRFs) for neural sequence labeling in
natural language processing. Based on
conventional conditional random fields
(CRFs), SCRFs have been designed for
the tasks of assigning labels to segments
by extracting features from and describing
transitions between segments instead of
words. In this paper, we improve the
existing SCRF methods by employing
word-level and segment-level information
simultaneously. First, word-level labels
are utilized to derive the segment scores
in SCRFs. Second, a CRF output layer
and an SCRF output layer are integrated
into an unified neural network and trained
jointly. Experimental results on CoNLL
2003 named entity recognition (NER)
shared task show that our model achieves
state-of-the-art performance when no
external knowledge is used1.

1 Introduction

Sequence labeling, such as part-of-speech (POS)
tagging, chunking, and named entity recognition
(NER), is a category of fundamental tasks in
natural language processing (NLP). Conditional
random fields (CRFs) (Lafferty et al., 2001), as
probabilistic undirected graphical models, have
been widely applied to the sequence labeling tasks
considering that they are able to describe the
dependencies between adjacent word-level labels
and to avoid illegal label combination (e.g., I-ORG
can’t follow B-LOC in the NER tasks using the
BIOES tagging scheme). Original CRFs utilize
hand-crafted features which increases the difficul-
ty of performance tuning and domain adaptation.

1The code of our models is available at http://
github.com/ZhixiuYe/HSCRF-pytorch

In recent years, neural networks with distribut-
ed word representations (i.e., word embeddings)
(Mikolov et al., 2013; Pennington et al., 2014)
have been introduced to calculate word scores
automatically for CRFs (Chiu and Nichols, 2016;
Huang et al., 2015).

On the other hand, semi-Markov condition-
al random fields (SCRFs) (Sarawagi and Cohen,
2005) have been proposed for the tasks of as-
signing labels to the segments of input sequences,
e.g., NER. Different from CRFs, SCRFs adopt
segments instead of words as the basic units for
feature extraction and transition modeling. The
word-level transitions within a segment are usual-
ly ignored. Some variations of SCRFs have also
been studied. For example, Andrew (2006) ex-
tracted segment-level features by combining hand-
crafted CRF features and modeled the Markov
property between words instead of segments in
SCRFs. With the development of deep learning,
some models of combining neural networks and
SCRFs have also been studied. Zhuo et al. (2016)
and Kong et al. (2015) employed gated recur-
sive convolutional neural networks (grConvs) and
segmental recurrent neural networks (SRNNs) to
calculate segment scores for SCRFs respectively.

All these existing neural sequence labeling
methods using SCRFs only adopted segment-level
labels for score calculation and model training.
In this paper, we suppose that word-level labels
can also contribute to the building of SCRFs and
thus design a hybrid SCRF (HSCRF) architecture
for neural sequence labeling. In an HSCRF,
word-level labels are utilized to derive the
segment scores. Further, a CRF output layer
and an HSCRF output layer are integrated into
a unified neural network and trained jointly. We
evaluate our model on CoNLL 2003 English
NER task (Sang and Meulder, 2003) and achieve
state-of-the-art performance when no external
knowledge is used.

http://github.com/ZhixiuYe/HSCRF-pytorch
http://github.com/ZhixiuYe/HSCRF-pytorch
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Figure 1: The diagram of a neural network with an
HSCRF output layer for sequence labeling.

In summary, the contributions of this paper are:
(1) we propose the HSCRF architecture which
employs both word-level and segment-level labels
for segment score calculation. (2) we propose
a joint CRF-HSCRF training framework and a
naive joint decoding algorithm for neural sequence
labeling. (3) we achieve state-of-the-art perfor-
mance in CoNLL 2003 NER shared task.

2 Methods

2.1 Hybrid semi-Markov CRFs
Let s = {s1, s2, ..., sp} denote the segmentation
of an input sentence x = {x1, ..., xn} and w =
{w1, ..., wn} denote the sequence of word repre-
sentations of x derived by a neural network as
shown in Fig. 1. Each segment si = (bi, ei, li),
0 ≤ i ≤ p, is a triplet of a begin word index bi,
an end word index ei and a segment-level label li,
where b1 = 1, ep = |x|, bi+1 = ei + 1, 0 ≤ ei −
bi < L, and L is the upperbound of the length of
si. Correspondingly, let y = {y1, ..., yn} denote
the word-level labels of x. For example, if a sen-
tence x in NER task is “Barack Hussein Obama
and Natasha Obama”, we have the corresponding
s = ((1, 3, PER), (4, 4, O), (5, 6, PER)) and y =
(B-PER, I-PER, E-PER, O, B-PER, E-PER).

Similar to conventional SCRFs (Sarawagi and
Cohen, 2005), the probability of a segmentation ŝ
in an HSCRF is defined as

p(ŝ|w) =
score(ŝ,w)∑

s′∈S score(s
′ ,w)

, (1)

where S contains all possible segmentations and

score(s,w) =

|s|∏
i=1

ψ(li−1, li,w, bi, ei). (2)

Here, ψ(li−1, li,w, bi, ei) = exp{mi + bli−1,li},
where mi = ϕh(li,w, bi, ei) is the segment score

and bi,j is the segment-level transition parameter
from class i to class j.

Different from existing methods of utilizing
SCRFs in neural sequence labeling (Zhuo et al.,
2016; Kong et al., 2015) , the segment score in an
HSCRF is calculated using word-level labels as

mi =

ei∑
k=bi

ϕc(yk,w
′
k) =

ei∑
k=bi

a>ykw
′
k, (3)

where w′k is the feature vector of the k-th word,
ϕc(yk,w

′
k) calculates the score of the k-th word

being classified into word-level class yk, and ayk is
a weight parameter vector corresponding to class
yk. For each word, w′k is composed of word
representation wk and another two segment-level
descriptions, i.e., (1) wei − wbi which is derived
based on the assumption that word representations
in the same segment (e.g., “Barack Obama”) are
closer to each other than otherwise (e.g., “Obama
is”), and (2) φ(k−bi+1) which is the embedding
vector of the word index in a segment. Finally, we
have w′k = [wk;wei −wbi ;φ(k− bi+1)], where
bi ≤ k ≤ ei and [; ; ] is a vector concatenation
operation.

The training and decoding criteria of conven-
tional SCRFs (Sarawagi and Cohen, 2005) are
followed. The negative log-likelihood (NLL), i.e.,
−logp(ŝ|w), is minimized to estimate the param-
eters of the HSCRF layer and the lower neural
network layers that derive word representations.
For decoding, the Viterbi algorithm is employed
to obtain the optimal segmentation as

s∗ = argmax︸ ︷︷ ︸
s′∈S

logp(s′|m), (4)

where S contains all legitimate segmentations.

2.2 Jointly training and decoding using CRFs
and HSCRFs

To further investigate the effects of word-level
labels on the training of SCRFs, we integrate
a CRF output layer and a HSCRF output layer
into an unified neural network and train them
jointly. These two output layers share the same
sequence of word representations w which are
extracted by lower neural network layers. Given
both word-level and segment-level ground truth
labels of training sentences, the model parameters
are optimized by minimizing the summation of the
loss functions of the CRF layer and the HSCRF
layer with equal weights.
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At decoding time, two label sequences, i.e., sc
and sh, for an input sentence can be obtained using
the CRF output layer and the HSCRF output layer
respectively. A naive joint decoding algorithm is
also designed to make a selection between them.
Assume the NLLs of measuring sc and sh using
the CRF and HSCRF layers are NLLc and NLLh

respectively. Then, we exchange the models and
measure the NLLs of sc and sh by HSCRF and
CRF and obtain another two valuesNLLc by h and
NLLh by c. We just naively assign the summation
ofNLLc andNLLc by h to sc, and the summation
ofNLLh andNLLh by c to sh. Finally, we choose
the one between sc and sh with lower NLL sum as
the final result.

3 Experiments

3.1 Dataset

We evaluated our model on the CoNLL 2003
English NER dataset (Sang and Meulder, 2003).
This dataset contained four labels of named en-
tities (PER, LOC, ORG and MISC) and label O
for others. The existing separation of training,
development and test sets was followed in our
experiments. We adopted the same word-level
tagging scheme as the one used in Liu et al.
(2018) (e.g., BIOES instead of BIO). For better
computation efficiency, the max segment length
L introduced in Section 2.1 was set to 6, which
pruned less than 0.5% training sentences for build-
ing SCRFs and had no effect on the development
and test sets.

3.2 Implementation

As shown in Fig. 1, the GloVe (Pennington et al.,
2014) word embedding and the character encoding
vector of each word in the input sentence were
concatenated and fed into a bi-directional LSTM
to obtain the sequence of word representations
w. Two character encoding models, LM-BLSTM
(Liu et al., 2018) and CNN-BLSTM (Ma and
Hovy, 2016), were adopted in our experiments.
Regarding with the top classification layer, we
compared our proposed HSCRF with conventional
word-level CRF and grSemi-CRF (GSCRF) (Zhuo
et al., 2016), which was an SCRF using only
segment-level information. The descriptions of
the models built in our experiments are summa-
rized in Table 1.

For a fair comparison, we implemented all
models in the same framework using PyTorch

library2. The hyper-parameters of the models are
shown in Table 2 and they were selected according
to the two baseline methods without fine-tuning.
Each model in Table 1 was estimated 10 times and
its mean and standard deviation of F1 score were
reported considering the influence of randomness
and the weak correlation between development set
and test set in this task (Reimers and Gurevych,
2017).

3.3 Results
Table 1 lists the F1 score results of all built
models on CoNLL 2003 NER task. Comparing
model 3 with model 1/2 and model 9 with model
7/8, we can see that HSCRF performed better
than CRF and GSCRF. The superiorities were
significant since the p-values of t-test were smaller
than 0.01. This implies the benefits of utilizing
word-level labels when deriving segment scores
in SCRFs. Comparing model 1 with model 4,
3 with 5, 7 with 10, and 9 with 11, we can
see that the jointly training method introduced in
Section 2.2 improved the performance of CRF
and HSCRF significantly (p < 0.01 in all these
four pairs). This may be attributed to that jointly
training generates better word representations that
can be shared by both CRF and HSCRF decoding
layers. Finally, comparing model 6 with model
4/5 and model 12 with model 10/11, we can see
the effectiveness of the jointly decoding algorith-
m introduced in Section 2.2 on improving F1
scores (p < 0.01 in all these four pairs). The
LM-BLSTM-JNT model with jointly decoding
achieved the highest F1 score among all these built
models.

3.4 Comparison with existing work
Table 3 shows some recent results3 on the CoN-
LL 2003 English NER task. For the conve-
nience of comparison, we also listed the maximum
F1 scores among 10 repetitions when building
our models. The maximum F1 score of our
re-implemented CNN-BLSTM-CRF model was
slightly worse than the one originally reported in
Ma and Hovy (2016), but it was similar to the one
reported in Reimers and Gurevych (2017).

2http://pytorch.org/
3It should be noticed that the results of Liu et al.

(2018) were inconsistent with the original ones reported
in their paper. According to its first author’s GitHub
page (https://github.com/LiyuanLucasLiu/LM-LSTM-CRF),
the originally reported results had errors due to some bugs.
Here, we report the results after the bugs got fixed.

http://pytorch.org/
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No. Model Name Word Representation Top Layer Decoding Layer F1 Score (±std)
1 CNN-BLSTM-CRF CNN-BLSTM CRF CRF 90.92± 0.08
2 CNN-BLSTM-GSCRF CNN-BLSTM GSCRF GSCRF 90.96± 0.12
3 CNN-BLSTM-HSCRF CNN-BLSTM HSCRF HSCRF 91.10± 0.12
4 CNN-BLSTM-JNT(CRF) CNN-BLSTM CRF+HSCRF CRF 91.08± 0.12
5 CNN-BLSTM-JNT(HSCRF) CNN-BLSTM CRF+HSCRF HSCRF 91.20± 0.10
6 CNN-BLSTM-JNT(JNT) CNN-BLSTM CRF+HSCRF CRF+HSCRF 91.26± 0.10
7 LM-BLSTM-CRF LM-BLSTM CRF CRF 91.17± 0.11
8 LM-BLSTM-GSCRF LM-BLSTM GSCRF GSCRF 91.06± 0.05
9 LM-BLSTM-HSCRF LM-BLSTM HSCRF HSCRF 91.27± 0.08

10 LM-BLSTM-JNT(CRF) LM-BLSTM CRF+HSCRF CRF 91.24± 0.07
11 LM-BLSTM-JNT(HSCRF) LM-BLSTM CRF+HSCRF HSCRF 91.34± 0.10
12 LM-BLSTM-JNT(JNT) LM-BLSTM CRF+HSCRF CRF+HSCRF 91.38± 0.10

Table 1: Model descriptions and their performance on CoNLL 2003 NER task.

Component Parameter Value
word-level dimension 100

embedding†‡

character-level dimension 30
embedding†‡

character-level LSTM†
depth 1

hidden size 300
highway network† layer 1

word-level BLSTM†
depth 1

hidden size 300

word-level BLSTM‡
depth 1

hidden size 200

CNN‡
window size 3
filter number 30

φ(·)†‡ dimension 10
dropout†‡ dropout rate 0.5

optimization†‡

learning rate 0.01
batch size 10
strategy SGD

gradient clip 5.0
decay rate 1/(1+0.05t)

Table 2: Hyper-parameters of the models built
in our experiments, where † indicates the ones
when using LM-BLSTM for deriving word
representations and ‡ indicates the ones when
using CNN-BLSTM.

In the NER models listed in Table 3, Zhuo
et al. (2016) employed some manual features and
calculated segment scores by grConv for SCRF.
Lample et al. (2016) and Ma and Hovy (2016) con-
structed character-level encodings using BLSTM
and CNN respectively, and concatenated them
with word embeddings. Then, the same BLSTM-
CRF architecture was adopted in both models. Rei
(2017) fed word embeddings into LSTM to obtain
the word representations for CRF decoding and to
predict the next word simultaneously. Similarly,
Liu et al. (2018) input characters into LSTM to
predict the next character and to get the character-
level encoding for each word.

Model Test Set F1 Score
Type Value (±std)

Zhuo et al. (2016) reported 88.12
Lample et al. (2016) reported 90.94
Ma and Hovy (2016) reported 91.21

Rei (2017) reported 86.26

Liu et al. (2018) mean 91.24 ± 0.12
max 91.35

CNN-BLSTM-CRF mean 90.92 ± 0.08
max 91.04

LM-BLSTM-CRF mean 91.17 ± 0.11
max 91.30

CNN-BLSTM-JNT(JNT) mean 91.26 ± 0.10
max 91.41

LM-BLSTM-JNT(JNT) mean 91.38± 0.10
max 91.53

Luo et al. (2015)∗ reported 91.2
Chiu and Nichols (2016)∗ reported 91.62 ± 0.33

Tran et al. (2017)∗ reported 91.66
Peters et al. (2017)∗ reported 91.93 ± 0.19
Yang et al. (2017)∗ reported 91.26

Table 3: Comparison with existing work on
CoNLL 2003 NER task. The models labelled with
∗ utilized external knowledge beside CoNLL 2003
training set and pre-trained word embeddings.

Some of the models listed in Table 3 utilized
external knowledge beside CoNLL 2003 training
set and pre-trained word embeddings. Luo et al.
(2015) proposed JERL model, which was trained
on both NER and entity linking tasks simultane-
ously. Chiu and Nichols (2016) employed lexicon
features from DBpedia (Auer et al., 2007). Tran
et al. (2017) and Peters et al. (2017) utilized
pre-trained language models from large corpus to
model word representations. Yang et al. (2017)
utilized transfer learning to obtain shared informa-
tion from other tasks, such as chunking and POS
tagging, for word representations.

From Table 3, we can see that our CNN-
BLSTM-JNT and LM-BLSTM-JNT models with
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No. Model Name Entity Length
1 2 3 4 5 ≥ 6 all

7 LM-BLSTM-CRF 91.68 91.88 82.64 75.81 73.68 72.73 91.17
8 LM-BLSTM-GSCRF 91.57 91.68 83.61 74.32 76.64 73.64 91.06
9 LM-BLSTM-HSCRF 91.65 91.84 82.97 76.20 78.95 74.55 91.27
12 LM-BLSTM-JNT(JNT) 91.73 92.03 83.78 77.27 79.66 76.55 91.38

Table 4: Model performance on CoNLL 2003 NER task for entities with different lengths.

jointly decoding both achieved state-of-the-art F1
scores among all models without using external
knowledge. The maximum F1 score achieved by
the LM-BLSTM-JNT model was 91.53%.

3.5 Analysis

To better understand the effectiveness of word-
level and segment-level labels on the NER task,
we evaluated the performance of models 7, 8,
9 and 12 in Table 3 for entities with different
lengths. The mean F1 scores of 10 training
repetitions are reported in Table 4. Comparing
model 7 with model 8, we can see that GSCRF
achieved better performance than CRF for long
entities (with more than 4 words) but worse for
short entities (with less than 3 words). Comparing
model 7 with model 9, we can find that HSCRF
outperformed CRF for recognizing long entities
and meanwhile achieved comparable performance
with CRF for short entities.

One possible explanation is that word-level la-
bels may supervise models to learn word-level
descriptions which tend to benefit the recognition
of short entities. On the other hand, segment-
level labels may guide models to capture the de-
scriptions of combining words for whole entities
which help to recognize long entities. By utilizing
both labels, the LM-BLSTM-HSCRF model can
achieve better overall performance of recogniz-
ing entities with different lengths. Furthermore,
the LM-BLSTM-JNT(JNT) model which adopted
jointly training and decoding achieved the best
performance among all models shown in Table 4
for all entity lengths.

4 Conclusions

This paper proposes a hybrid semi-Markov condi-
tional random field (HSCRF) architecture for neu-
ral sequence labeling, in which word-level labels
are utilized to derive the segment scores in SCRFs.
Further, the methods of training and decoding
CRF and HSCRF output layers jointly are also
presented. Experimental results on CoNLL 2003

English NER task demonstrated the effectiveness
of the proposed HSCRF model which achieved
state-of-the-art performance.
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