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Abstract

Online petitions are a cost-effective way
for citizens to collectively engage with
policy-makers in a democracy. Predicting
the popularity of a petition — commonly
measured by its signature count — based
on its textual content has utility for policy-
makers as well as those posting the pe-
tition. In this work, we model this task
using CNN regression with an auxiliary
ordinal regression objective. We demon-
strate the effectiveness of our proposed ap-
proach using UK and US government pe-
tition datasets.1

1 Introduction

A petition is a formal request for change or an
action to any authority, co-signed by a group of
supporters. Research has shown the impact of on-
line petitions on the political system (Lindner and
Riehm, 2011; Hansard, 2016; Bochel and Bochel,
2017). Modeling the factors that influence peti-
tion popularity — measured by the number of sig-
natures a petition gets — can provide valuable in-
sights to policy makers as well as those authoring
petitions (Proskurnia et al., 2017).

Previous work on modeling petition popularity
has focused on predicting popularity growth over
time based on an initial popularity trajectory (Hale
et al., 2013; Yasseri et al., 2017; Proskurnia et al.,
2017), e.g. given the number of signatures a peti-
tion gets in the first x hours, prediction of the to-
tal number of signatures at the end of its lifetime.
Asher et al. (2017) and Proskurnia et al. (2017)
examine the effect of sharing petitions on Twitter
on its overall success, as a time series regression

1 The code and data from this paper are avail-
able from http://github.com/shivashankarrs/
Petitions

task. Other work has analyzed the importance of
content on the success of the petition (Elnoshokaty
et al., 2016). Proskurnia et al. (2017) also consider
the anonymity of authors and petitions featured on
the front-page of the website as additional factors.
Huang et al. (2015) analyze ‘power’ users on pe-
tition platforms, and show their influence on other
petition signers.

In general, the target authority for a petition can
be political or non-political. In this work, we use
petitions from the official UK and US government
websites, whereby citizens can directly appeal to
the government for action on an issue. In the case
of UK petitions, they are guaranteed an official re-
sponse at 10k signatures, and the guarantee of par-
liamentary debate on the topic at 100k signatures;
in the case of US petitions, they are guaranteed a
response from the government at 100k signatures.
Political scientists refer to this as advocacy democ-
racy (Dalton et al., 2003), in that people are able to
engage with elected representatives directly. Our
objective is to predict the popularity of a petition at
the end of its lifetime, solely based on the petition
text.

Elnoshokaty et al. (2016) is the closest work to
this paper, whereby they target Change.org peti-
tions and perform correlation analysis of popular-
ity with the petition’s category, target goal set,2

and the distribution of words in General Inquirer
categories (Stone et al., 1962). In our case, we are
interested in the task of automatically predicting
the number of signatures.

We build on the convolutional neural network
(CNN) text regression model of Bitvai and Cohn
(2015) to infer deep latent features. In addi-
tion, we evaluate the effect of an auxiliary ordi-
nal regression objective, which can discriminate
petitions that attract different scales of popular-

2See http://bit.ly/2BXd0Sl.
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ity (e.g., 10 signatures, the minimum count needed
to not be closed vs. 10k signatures, the minimum
count to receive a response from UK government).

Finally, motivated by text-based message prop-
agation analysis work (Tan et al., 2014; Piotrkow-
icz et al., 2017), we hand-engineer features which
capture wording effects on petition popularity, and
measure the ability of the deep model to automat-
ically infer those features.

2 Proposed Approach

Inspired by the successes of CNN for text cate-
gorization (Kim, 2014) and text regression (Bit-
vai and Cohn, 2015), we propose a CNN-based
model for predicting the signature count. An out-
line of the model is provided in Figure 1. A peti-
tion has three parts: (1) title, (2) main content, and
(3) (optionally) additional details.3 We concate-
nate all three parts to form a single document for
each petition. We have n petitions as input train-
ing examples of the form {ai, yi}, where ai and
yi denote the text and signature count of petition i,
respectively. Note that we log-transform the sig-
nature count, consistent with previous work (El-
noshokaty et al., 2016; Proskurnia et al., 2017).

We represent each token in the document via
its pretrained GloVe embedding (Pennington et al.,
2014), which we update during learning. We then
apply multiple convolution filters with width one,
two and three to the dense input document matrix,
and apply a ReLU to each. They are then passed
through a max-pooling layer with a tanh activa-
tion function, and finally a multi-layer perceptron
via the exponential linear unit activation,

f(x) =

{
x, if x > 0

α (exp(x)− 1) otherwise ,

to obtain the final output (yi), which is guaranteed
to be positive. We train the model by minimizing
mean squared error in log-space,

Lreg =
1

n

n∑
i=1

‖ŷi − yi‖22 , (1)

where ŷi is the estimated signature count for peti-
tion i. We refer to this model as CNNregress .

2.1 Auxiliary Ordinal Regression Task
We augment the regression objective with an ordi-
nal regression task, which discriminates petitions

3Applicable for the UK government petitions only.
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Figure 1: CNN-Regression Model. y denotes sig-
nature count. > rk is the auxiliary task that de-
notes p(petition attracting > rk signatures).

that achieve different scale of signatures. The in-
tuition behind this is that there are pre-determined
thresholds on signatures which trigger different
events, with the most important of these being 10k
(to guarantee a government response) and 100k (to
trigger a parliamentary debate) for the UK peti-
tions; and 100k (to get a government response)
for the US petitions. In addition to predicting
the number of signatures, we would like to be
able to predict whether a petition is likely to meet
these thresholds, and to this end we use the ex-
ponential ordinal scale based on the thresholds
O = {10, 100, 1000, 10000, 100000}.4 Overall
this follows the exponential distribution of signa-
ture counts closely (Yasseri et al., 2017).

We transform the ordinal regression problem
into a series of simpler binary classification sub-
problems, as proposed by Li and Lin (2007). We
construct binary classification objectives for each
threshold in O. For each petition i we construct
an additional binary vector ~oi, with a 0–1 encod-
ing for each of the ordinal classes ({ai,yi,~oi}).
Note that the transformation is done in a consis-
tent way, i.e., if a petition has y signatures, then
in addition to immediate lower-bound threshold in
O determined by l = blog10 yc (for y < 106), all
classes which have a lesser threshold are also set
to 1 (ot:t<l).

With this transformation, apart from the real-
valued output yi, we also learn a mapping from
hi with sigmoid activation for each class (~ri). Fi-
nally we minimize cross-entropy loss for each bi-
nary classification task, denoted Laux.

4We use O = {1000, 10000, 100000} for the US peti-
tions, as only petitions which get a minimum of 150 signa-
tures are published on the website.
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Overall, the loss function for the joint model is:

LJ = Lreg + γLaux (2)

where γ ≥ 0 is a hyper-parameter which is tuned
on the validation set. We refer to this model as
CNNregress+ord .

3 Hand-engineered Features

We hand-engineered custom features, partly based
on previous work on non-petition text. This in-
cludes features from Tan et al. (2014) and Pi-
otrkowicz et al. (2017) such as structure, syntax,
bias, polarity, informativeness of title, and novelty
(or freshness), in addition to novel features devel-
oped specifically for our task, such as policy cate-
gory and political bias features. We provide a brief
description of the features below:
• Additional Information (ADD): binary flag in-

dicating whether the petition has additional de-
tails or not.
• Ratio of indefinite (IND) and definite (DEF) ar-

ticles.
• Ratio of first-person singular pronouns (FSP),

first-person plural pronouns (FPP), second-
person pronouns (SPP), third-person singular
pronouns (TSP), and third-person plural pro-
nouns (TPP).
• Ratio of subjective words (SUBJ) and difference

between count of positive and negative words
(POL), based on General Inquirer lexicon.
• Ratio of biased words (BIAS) from the bias lex-

icon (Recasens et al., 2013).
• Syntactic features: number of nouns (NNC),

verbs (VBC), adjectives (ADC) and adverbs
(RBC).
• Number of named entities (NEC), based on the

NLTK NER model (Bird et al., 2009).
• Freshness (FRE): cosine similarity with all pre-

vious petitions, inverse weighted by the differ-
ence in start date of petitions (in weeks).
• Action score of title (ACT): probability of title

conveying the action requested. Predictions are
obtained using an one-class SVM model built
on the universal representation (Conneau et al.,
2017) of titles of rejected petitions,5 as they
don’t contain any action request. These rejected
petitions are not part of our evaluation dataset.
• Policy category popularity score (CSC): com-

monality of the petition’s policy issue (Subra-

5https://petition.parliament.uk/help
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Figure 2: UK Petitions Signature Distribution.
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Figure 3: US Petitions Signature Distribution

manian et al., 2017), based on the recent UK/US
election manifesto promises.
• Political bias and polarity: relative lean-

ing/polarity based on: (a) #left+#right
#left+#right+#neutral

(PBIAS) (b) #left−#right
#left+#right (L–R). Sentence-level

left, right and neutral classes are obtained us-
ing a model built on the CMP dataset, and the
categorization given by Volkens et al. (2013).
The custom features are passed through a hid-

den layer with tanh activations (ci), and concate-
nated with the hidden representation learnt using

the dense input document (Section 2),
[
hi

ci

]
, be-

fore mapping to the output layer (Figure 1). We
refer to this model as CNNregress+ord+feat . We use
the Adam optimizer (Kingma and Ba, 2014) to
train all our models.

4 Evaluation

We collected our data from the UK6 and US7

government websites over the term of the 2015–
17 Conservative and 2011–14 Democratic gov-
ernments respectively. The UK dataset contains
10950 published petitions, with over 31m signa-
tures in total. We removed US petitions with
≤ 150 signatures, resulting in a total of 1023 pe-
titions, with over 12m signatures in total. We split
the data chronologically into train/dev/test splits
based on a 80/10/10 breakdown. Distribution over
log signature counts is given in Figures 2 and 3.

To analyze the statistical significance of each
feature varying across ordinal groups O, we ran

6https://petition.parliament.uk
7https://petitions.whitehouse.gov/

https://petition.parliament.uk/help
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a Kruskal-Wallis test (at α = 0.05: Kruskal and
Wallis (1952)) on the training set. The test re-
sults in the test statistic H and the corresponding
p-value, with a high H indicating that there is a
difference between the two groups. The analysis
is given in Table 2, where p < 0.001, p < 0.01
and p < 0.05 are denoted as “***”, “**” and
“*”, respectively. Note that the ordinal groups are
different for the two datasets: analyzing the UK
dataset with the same ordinal groups used for the
US dataset ({1000,10000,100000}) resulted in a
similarly sparse set of significance values for non-
syntactic features as the US dataset.

We benchmark our proposed approach against
the following baseline approaches:
Mean: average signature count in the raining set.
LinearBoW: linear regression (Linear) model us-

ing TF-IDF weighted bag-of-words features.
LinearGI: linear regression model based on word

distributions from the General Inquirer lexicon;
similar to (Elnoshokaty et al., 2016), but with-
out the target goal set or category of the petition
(neither of which is relevant to our datasets).

SVRBoW: support vector regression (SVR) model
with RBF kernel and TF-IDF weighted bag-of-
words features.

SVRfeat: SVR model using the hand-engineered
features from Section 3.

SVRBoW+feat: SVR model using combined
TF-IDF weighted bag-of-words and hand-
engineered features.
We present the regression results for the base-

line and proposed approaches based on: (1) mean
absolute error (MAE), and (2) mean absolute per-
centage error (MAPE, similar to Proskurnia et al.
(2017)), calculated as 100

n

∑n
i=1

|ŷi−yi|
yi

. Results
are given in Table 1.

The proposed CNN models outperform all of
the baselines. Comparing the CNN model with
regression loss only, CNNregress , and the joint
model, CNNregress+ord is superior across both
datasets and measures. When we add the hand-
engineered features (CNNregress+ord+feat), there is
a very small improvement. In order to further un-
derstand the effect of the hand-engineering fea-
tures without the ordinal regression loss, we use
it only with the regression task (CNNregress+feat),
which mildly improves over CNNregress , but is be-
low CNNregress+ord+feat . We also evaluate a vari-
ant of CNNregress+ord+feat with an additional hid-
den layer, given in the final row of Table 1, and

find it to lead to further improvements in the re-
gression results. Adding more hidden layers did
not show further improvements.

4.1 Classification Performance
The F-score is calculated over the three classes
of [0, 10000), [10000, 100000) and [100000,∞)
(corresponding to the thresholds at which the peti-
tion leads to a government response or parliamen-
tary debate) for the UK dataset; and [150, 100000)
and [100000,∞) for the US dataset, by determin-
ing if the predicted and actual signature counts
are in the same bin or not. We also built an
SVM-based ordinal classifier (Li and Lin, 2007)
over the significant ordinal classes, as an addi-
tional baseline. The CNN models struggle to
improve F-score (in large part due to the imbal-
anced data). For the UK dataset, CNN mod-
els with an ordinal objective (CNNregress+ord and
CNNregress+ord+feat) result in a macro-averaged F-
score of 0.36, compared to 0.33 for all other meth-
ods. But for the US dataset, which is a binary clas-
sification task, all methods obtain a 0.49 F-score.
In addition to text, considering other factors such
as early signature growth (Hale et al., 2013) —
which determines the timeliness to get the issue
online on the US website — could be necessary.

4.2 Latent vs. Hand-engineered Features
Finally, we built a linear regression model with
the estimated hidden features from CNNregress+ord
as independent variables and hand-engineered fea-
tures as dependent variables, to study their linear
dependencies in a pair-wise fashion. The most sig-
nificant dependencies (given by p-value, phidden)
over the test set are given in Table 2. We found
that the model is able to learn latent feature rep-
resentations for syntactic features (NNC, VBC,
ADC,8 RBC9), FRE, NEC, IND and DEF,8 but
not the other features — these can be considered to
provide deeper information than can be extracted
automatically from the data, or else information
that has no utility for the signature prediction task.
From the analysis in Table 2, some of the features
that vary across ordinal groups are not linearly
dependent with the deep latent features. These
include ADD,8 BIAS, CSC,8 PBIAS,9 and L–R,
where the latter ones are policy-related features.
This indicates that the custom features and hidden
features contain complementary signals.

8UK dataset only.
9US dataset only.
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UK Petitions US Petitions

Approach MAE MAPE MAE MAPE

Mean 4.37 159.7 2.82 44.61
LinearBoW 1.75 57.56 2.51 37.01
LinearGI 1.77 58.22 1.84 27.71
SVRBoW 1.53 45.35 1.39 20.37
SVRfeat 1.54 46.96 1.40 20.48
SVRBoW+feat 1.52 44.71 1.39 20.38

CNNregress 1.44 36.72 1.24 14.98
CNNregress+ord 1.42 33.86 1.22 14.68
CNNregress+ord+feat 1.41 32.92 1.20 14.47
CNNregress+feat 1.43 35.84 1.23 14.75
CNNregress+ord+feat + Additional hidden layer 1.40 31.68 1.16 14.38

Table 1: Results over UK and US Government petition datasets. Best scores are given in bold.

UK Petitions US Petitions

Feature Description H p phidden H p phidden

ADD Additional details 94.59 ***
IND Indefinite articles 14.87 * 8.56 * *
DEF Definite articles 34.91 *** * 3.69
FSP First-person singular pronouns 53.36 *** 6.84 *
FPP First-person plural pronouns 11.26 * 6.10
SPP Second-person pronouns 13.80 * 3.95
TSP Third-person singular pronouns 5.82 9.07 *
TPP Third-person plural pronouns 16.13 ** 5.58
SUBJ Subjective words 12.25 * 7.21 * ***
POL Polarity 2.60 * 4.27
BIAS Biased words 11.92 * 4.56 *
NNC Nouns 7.34 *** 1.93 **
VBC Verbs 2.75 ** 7.46 * ***
ADC Adjectives 26.14 *** *** 4.07
RBC Adverbs 17.09 ** 2.99 *
NEC Named entities 51.11 *** *** 3.94 *
FRE Freshness 86.97 *** * 13.86 ** *
ACT Title’s action score 3.89 3.54
CSC Policy category popularity 38.22 *** 1.94
PBIAS Political bias 4.13 12.23 **
L–R Left–right scale 10.94 * 12.88 **

Table 2: Dependency of hand-engineered features against the signature count (p andH) and deep hidden
features (phidden). ADD is not applicable for the US government petitions dataset. p < 0.001, p < 0.01
and p < 0.05 are denoted as “***”, “**” and “*”, respectively.

Overall our proposed approach with the
auxiliary loss and hand-engineered features
(CNNregress+ord+feat) provides a reduction in
MAE over CNNregress by 2.1% and 3.2%, and
SVR by 7.2% and 13.7% on the UK and US
datasets, resp. Although the ordinal classification
performance is not very high, it must be noted
that the data is heavily skewed (only 2% of the
UK test-set falls in the [10000, 100000) and
[100000,∞) bins put together), and we tuned the
hyper-parameters wrt the regression task only.

5 Conclusion and Future Work

This paper has targeted the prediction of the popu-
larity of petitions directed at the UK and US gov-

ernments. In addition to introducing a novel task
and dataset, contributions of our work include: (a)
we have shown the utility of an auxiliary ordi-
nal regression objective; and (b) determined which
hand-engineered features are complementary to
our deep learning model. In the future, we aim to
study other factors that can influence petition pop-
ularity in conjunction with text, e.g., social media
campaigns, news coverage, and early growth rates.
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