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Abstract

In the age of social news, it is important
to understand the types of reactions that
are evoked from news sources with various
levels of credibility. In the present work
we seek to better understand how users re-
act to trusted and deceptive news sources
across two popular, and very different, so-
cial media platforms. To that end, (1) we
develop a model to classify user reactions
into one of nine types, such as answer,
elaboration, and question, etc, and (2) we
measure the speed and the type of reac-
tion for trusted and deceptive news sources
for 10.8M Twitter posts and 6.2M Reddit
comments. We show that there are signif-
icant differences in the speed and the type
of reactions between trusted and deceptive
news sources on Twitter, but far smaller
differences on Reddit.

1 Introduction

As the reliance on social media as a source of news
increases and the reliability of sources is increas-
ingly debated, it is important to understand how
users react to various sources of news. Most stud-
ies that investigate misinformation spread in so-
cial media focus on individual events and the role
of the network structure in the spread (Qazvinian
et al., 2011; Wu et al., 2015; Kwon et al., 2017) or
detection of false information (Rath et al., 2017).
These studies have found that the size and shape
of misinformation cascades within a social net-
work depends heavily on the initial reactions of
the users. Other work has focused on the language
of misinformation in social media (Rubin et al.,
2016; Rashkin et al., 2017; Mitra et al., 2017;
Wang, 2017; Karadzhov et al., 2017; Volkova
et al., 2017) to detect types of deceptive news.

As an alternative to studying newsworthy events
one at a time (Starbird, 2017), the current work ap-
plies linguistically-infused models to predict user
reactions to deceptive and trusted news sources.
Our analysis reveals differences in reaction types
and speed across two social media platforms —
Twitter and Reddit.

The first metric we report is the reaction type.
Recent studies have found that 59% of bitly-URLs
on Twitter are shared without ever being read (Ga-
bielkov et al., 2016), and 73% of Reddit posts were
voted on without reading the linked article (Glen-
ski et al., 2017). Instead, users tend to rely on
the commentary added to retweets or the com-
ments section of Reddit-posts for information on
the content and its credibility. Faced with this
reality, we ask: what kind of reactions do users
find when they browse sources of varying credi-
bility? Discourse acts, or speech acts, can be used
to identify the use of language within a conversa-
tion, e.g., agreement, question, or answer. Recent
work by Zhang et al. (2017) classified Reddit com-
ments by their primary discourse act (e.g., ques-
tion, agreement, humor), and further analyzed pat-
terns from these discussions.

The second metric we report is reaction speed.
A study by Jin et al. (2013) found that trusted news
stories spread faster than misinformation or ru-
mor; Zeng et al. (2016) found that tweets which
deny rumors had shorter delays than tweets of sup-
port. Our second goal is to determine if these
trends are maintained for various types of news
sources on Twitter and Reddit.

Hence, the contributions of this work are two-
fold: (1) we develop a linguistically-infused neu-
ral network model to classify reactions in social
media posts, and (2) we apply our model to label
10.8M Twitter posts and 6.2M Reddit comments
in order to evaluate the speed and type of user re-
actions to various news sources.
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2 Reaction Type Classification

In this section, we describe our approach to clas-
sify user reactions into one of eight types of
discourse: agreement, answer, appreciation, dis-
agreement, elaboration, humor, negative reaction,
or question, or as none of the given labels, which
we call “other”, using linguistically-infused neural
network models.

2.1 Reddit Data

We use a manually annotated Reddit dataset from
Zhang et al. (2017) to train our reaction classifica-
tion model. Annotations from 25 crowd-workers
labelled the primary discourse act for 101,525
comments within 9,131 comment threads on Red-
dit. The Reddit IDs, but not the text content of
the comments themselves, were released with the
annotations. So we collected the content of Red-
dit posts and comments from a public archive of
Reddit posts and comments.1 Some content was
deleted prior to archival, so the dataset shown in
Table 1 is a subset of the original content. Despite
the inability to capture all of the original dataset,
Table 1 shows a similar distribution between our
dataset and the original.

Zhang et al. Present work
Reaction Type # % # %
agreement 5,054 4.73 3,857 4.61
answer 41,281 38.63 32,561 38.94
appreciation 8,821 8.25 6,973 8.34
disagreement 3,430 3.21 2,654 3.17
elaboration 19,315 18.07 14,966 17.90
humor 2,358 2.21 1,878 2.25
negative reaction 1,901 1.78 1,473 1.76
other 1,979 1.85 1,538 1.84
question 10,568 9.89 8,194 9.80
no majority label 12,162 11.38 9532 11.40
Total 106,869 100 83, 626 100

Table 1: Summary of the training data we recovered com-
pared to the data collected by Zhang et al. (2017) reported as
distributions of comments across reaction types.

2.2 Model

We develop a neural network architecture that re-
lies on content and other linguistic signals ex-
tracted from reactions and parent posts, and takes
advantage of a “late fusion” approach previ-
ously used effectively in vision tasks (Karpathy
et al., 2014; Park et al., 2016). More specifi-
cally, we combine a text sequence sub-network
with a vector representation sub-network as shown

1bigquery.cloud.google.com/dataset/
fh-bigquery:reddit_posts|reddit_comments
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Figure 1: Architecture of neural network model used to pre-
dict reaction types.

in Figure 1. The text sequence sub-network
consists of an embedding layer initialized with
200-dimensional GloVe embeddings (Pennington
et al., 2014) followed by two 1-dimensional con-
volution layers, then a max-pooling layer followed
by a dense layer. The vector representation sub-
network consists of two dense layers. We incorpo-
rate information from both sub-networks through
concatenated padded text sequences and vector
representations of normalized Linguistic Inquiry
and Word Count (LIWC) features (Pennebaker
et al., 2001) for the text of each post and its parent.

2.3 Reaction Type Classification Results

As shown in Figure 2, our linguistically-infused
neural network model that relies solely on the
content of the reaction and its parent has com-
parable performance to the more-complex CRF
model by Zhang et al. (2017), which relies on con-
tent as well as additional metadata like the author,
thread (e.g., the size of the the thread, the number
of branches), structure (e.g., the position within
the thread), and community (i.e., the subreddit in
which the comment is posted).
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Figure 2: Comparison of our model’s performance, measured
using F1 score, trained only on content features, with the per-
formance reported by Zhang et al. (2017) trained on content,
author, thread, structure, and community features.
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3 Measuring Reactions to Trusted and
Deceptive News Sources

In this section, we present key results of our anal-
ysis of how often and how quickly users react to
content from sources of varying credibility using
the reaction types predicted by our linguistically-
infused neural network model.

3.1 Twitter and Reddit News Data

We focus on trusted news sources that provide
factual information with no intent to deceive
and deceptive news sources. Deceptive sources
are ranked by their intent to deceive as fol-
lows: clickbait (attention-grabbing, misleading, or
vague headlines to attract an audience), conspir-
acy theory (uncorroborated or unreliable informa-
tion to explain events or circumstances), propa-
ganda (intentionally misleading information to ad-
vance a social or political agenda), and disinfor-
mation (fabricated or factually incorrect informa-
tion meant to intentionally deceive readers).

Trusted, clickbait, conspiracy, and propaganda
sources were previously compiled by Volkova
et al. (2017) through a combination of crowd-
sourcing and public resources. Trusted news
sources with Twitter-verified accounts were man-
ually labeled and clickbait, conspiracy, and pro-
paganda news sources were collected from several
public resources that annotate suspicious news ac-
counts2. We collected news sources identified as
spreading disinformation by the European Union’s
East Strategic Communications Task Force from
euvsdisinfo.eu. In total, there were 467 news
sources: 251 trusted and 216 deceptive.

We collected reaction data for two popular plat-
forms, Reddit and Twitter, using public APIs over
the 13 month period from January 2016 through
January 2017. For our Reddit dataset, we col-
lected all Reddit posts submitted during the 13
month period that linked to domains associated
with one of our labelled news sources. Then we
collected all comments that directly responded to
those posts. For our Twitter dataset, we collected
all tweets posted in the 13 month period that ex-
plicitly @mentioned or directly retweeted content
from a source and then assigned a label to each
tweet based on the class of the source @mentioned

2Example resources used by Volkova et al (2017)
to compile deceptive news sources: http://www.
fakenewswatch.com/, http://www.propornot.
com/p/the-list.html and others.

Reddit Dataset
Type # Sources # Comments
Trusted 169 5,429,694
Deceptive (no disinfo) 128 664,670
Deceptive 179 795,591
Total 348 6,225,285

Twitter Dataset
Type # Sources # Tweets
Trusted 182 6,567,002
Deceptive (no disinfo) 100 775,844
Deceptive 150 4,263,576
Total 232 10,830,578

Table 2: Summary of Twitter and Reddit datasets used to
measure the speed and types of reactions to Trusted and De-
ceptive news sources excluding (no disinformation) or in-
cluding (All) the most extreme of the deceptive sources —
those identified as spreading disinformation.
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Figure 3: Distributions of Deceptive news sources and re-
actions to those sources (Reddit comments or tweets, respec-
tively) for the Reddit and Twitter datasets across the four sub-
categories of deceptive news sources.

or retweeted. A breakdown of each dataset by
source type is shown in Table 2. Figure 3 illus-
trates the distribution of deceptive news sources
and reactions across the four sub-categories of de-
ceptive news sources. In our analysis, we consider
the set of all deceptive sources and the set exclud-
ing the most extreme (disinformation).

3.2 Methodology

We use the linguistically-infused neural network
model from Figure 1 to label the reaction type of
each tweet or comment. Using these labels, we ex-
amine how often response types occur when users
react to each type of news source. For clarity, we
report the five most frequently occurring reaction
types (expressed in at least 5% of reactions within
each source type) and compare the distributions of
reaction types for each type of news source.

To examine whether users react to content from
trusted sources differently than from deceptive
sources, we measure the reaction delay, which we
define as the time elapsed between the moment the

http://www.fakenewswatch.com/
http://www.fakenewswatch.com/
http://www.propornot.com/p/the-list.html
http://www.propornot.com/p/the-list.html
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Figure 4: Distributions of five most frequently occurring re-
action types within comments on Reddit and tweets on Twit-
ter for each news source type (MWU p < 0.01).

link or content was posted/tweeted and the mo-
ment that the reaction comment or tweet occurred.
We report the cumulative distribution functions
(CDFs) for each source type and use Mann Whit-
ney U (MWU) tests to compare whether users re-
spond with a given reaction type with significantly
different delays to news sources of different levels
of credibility.

3.3 Results and Discussion

For both Twitter and Reddit datasets, we found
that the primary reaction types were answer, ap-
preciation, elaboration, question, or “other” (no la-
bel was predicted). Figure 4 illustrates the distri-
bution of reaction types among Reddit comments
(top plot) or tweets (bottom plot) responding to
each type of source, as a percentage of all com-
ments/tweets reacting to sources of the given type
(i.e., trusted, all deceptive, and deceptive exclud-
ing disinformation sources).

For Twitter, we report clear differences in user
reactions to trusted vs. deceptive sources. De-
ceptive (including disinformation) sources have a
much higher rate of appreciation reactions and a
lower rate of elaboration responses, compared to
trusted news sources. Differences are still signifi-
cant (p < 0.01) but the trends reverse if we do not
include disinformation sources. We also see an in-
crease in the rate of question-reactions compared
to trusted news sources if we exclude disinforma-
tion sources.

For Reddit, there appears to be a very simi-
lar distribution across reaction types for trusted
and deceptive sources. However, MWU tests still
found that the differences between trusted and de-
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Figure 5: CDF plots of the volumes of reactions by reac-
tion delays for the frequently occurring reactions (i.e., , re-
actions that occur in at least 5% of comments) for each
source-type, using a step size of one hour. The CDF for
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ceptive news sources were statistically significant
(p < 0.01) — regardless of whether we include
or exclude disinformation sources. Posts that link
to deceptive sources have higher rates of ques-
tion, appreciation, and answering reactions, while
posts that link to trusted sources have higher rates
of elaboration, agreement, and disagreement.

Next, we compared the speed with which users
reacted to posts of sources of varying credibil-
ity. Our original hypothesis was that users re-
act to posts of trusted sources faster than posts
of deceptive sources. The CDFs for each source
type and platform (solid and dashed lines repre-
sent Reddit and Twitter respectively) are shown
in Figure 5. We observe that the lifetime of di-
rect reactions to news sources on Twitter is often
more extended than for sources on Reddit. One
exception is answer reactions which almost al-
ways occur within the first hour after the Twitter
new source originally posted the tweet being an-
swered. This may be due to the different ways
that users consume content on the two platforms.
Users follow accounts on Twitter, whereas on Red-
dit users “follow” topics through their subscrip-
tions to various subreddits. Users can view the
news feeds of individual sources on Twitter and
view all of the sources’ posts. Reddit, on the other
hand, is not designed to highlight individual users
or news sources; instead new posts (regardless of
the source) are viewed based on their hotness score
within each subreddit.

In addition, we observe that reactions to posts
linked to trusted sources are less heavily concen-
trated within the first 12 to 15 hours of the post’s
lifetime on Reddit. The opposite is found on Twit-
ter. Twitter sources may have a larger range
of reaction delays, but they are also more heav-
ily concentrated in the lower end of that range
(p < 0.01).

4 Related Work

As we noted above, most studies that examine
misinformation spread focus on individual events
such as natural disasters (Takahashi et al., 2015),
political elections (Ferrara, 2017), or crises (Star-
bird et al., 2014) and examine the response to the
event on social media. A recent study by Vosoughi
et al. (2018) found that news stories that were fact-
checked and found to be false spread faster and
to more people than news items found to be true.
In contrast, our methodology considers immediate

reactions to news sources of varying credibility, so
we can determine whether certain reactions or re-
actions to trusted or deceptive news sources evoke
more or faster responses from social media users.

5 Conclusion

In the current work, we have presented a content-
based model that classifies user reactions into one
of nine types, such as answer, elaboration, and
question, etc., and a large-scale analysis of Twitter
posts and Reddit comments in response to content
from news sources of varying credibility.

Our analysis of user reactions to trusted and de-
ceptive sources on Twitter and Reddit shows sig-
nificant differences in the distribution of reaction
types for trusted versus deceptive news. However,
due to differences in the user interface, algorith-
mic design, or user-base, we find that Twitter users
react to trusted and deceptive sources very differ-
ently than Reddit users. For instance, Twitter users
questioned disinformation sources less often and
more slowly than they did trusted news sources;
Twitter users also expressed appreciation towards
disinformation sources more often and faster than
towards trusted sources. Results from Reddit show
similar, but far less pronounced, reaction results.

Future work may focus on analysis of reaction
behavior from automated (i.e., ’bot’), individual,
or organization accounts; on additional social me-
dia platforms and languages; or between more
fine-grained categories of news source credibility.
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