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Abstract

We ask how to practically build a model for
German named entity recognition (NER)
that performs at the state of the art for both
contemporary and historical texts, i.e., a
big-data and a small-data scenario. The two
best-performing model families are pitted
against each other (linear-chain CRFs and
BiLSTM) to observe the trade-off between
expressiveness and data requirements. BiL-
STM outperforms the CRF when large
datasets are available and performs infe-
rior for the smallest dataset. BiLSTMs
profit substantially from transfer learning,
which enables them to be trained on multi-
ple corpora, resulting in a new state-of-the-
art model for German NER on two contem-
porary German corpora (CoNLL 2003 and
GermEval 2014) and two historic corpora.

1 Introduction

Named entity recognition and classification (NER)
is a central component in many natural language
processing pipelines. High-quality NER is crucial
for applications like information extraction, ques-
tion answering, or entity linking.

Since the goal of NER is to recognize instances
of named entities in running text, it is established
practice to treat NER as a “word-by-word sequence
labeling task” (Jurafsky and Martin, 2009). There
are two families of sequence models that constitute
promising candidates. On the one hand, linear-
chain CRFs, which form the basis for many widely
used systems (e.g., Finkel et al., 2005; Benikova
et al., 2015), profit from hand-crafted features
and can easily incorporate language- and domain-
specific knowledge from dictionaries or gazetteers.
On the other hand, bidirectional LSTMSs (BiL-
STMs, e.g., Reimers and Gurevych, 2017) identify

informative features directly from the data, pre-
sented as word and/or character embeddings (e.g.,
Mikolov et al., 2013; Bojanowski et al., 2017).

When developing NER tools for new types of
text, one requirement is the availability of different
resources to inform features and/or embeddings.
Another one is the amount of training data: linear-
chain CRFs require only moderate amounts of train-
ing data compared to BiLSTM. To perform rep-
resentation learning, BiLSTMs require consider-
ably annotated data to learn proper representations
(see, e.g., the impact of training size by Dernon-
court et al., 2016). This consideration becomes
particularly pressing when moving to “small-data”
settings such as low-resource languages, specific
domains, or historical corpora. Thus, it is an open
question, whether it is generally a better idea to
choose different model families for different set-
tings, or whether one model family can be opti-
mized to perform well across settings.

This paper investigates this question empirically
on a set of German corpora including two large,
contemporary corpora and two small historical cor-
pora. We pit linear-chain CRF- and BiLSTM-based
systems against each other and compare to state-of-
the-art models, performing three experiments. Due
to these experiments, we get the following results:
(a), the BiLSTM system indeed performs best on
contemporary corpora, both within and across do-
mains; (b), the BiLSTM system performs worse
than the CRF systems for the smallest historical
corpus due to lack of data; (c), by applying transfer
learning to adduce more training data, the RNN
outperform CRFs substantially for all corpora. The
final BiLSTM models form a new state of the art
for German NER and are freely available.
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2 Model Families for NER

As mentioned above, contemporary research on
NER almost exclusively uses sequence classifica-
tion models. Our study focuses on CRFs and BiL-
STMs, the two most widely used choices.

CRF-based Systems. Linear-chain CRFs form
a family of models that are well established in se-
quence classification. They form the basis of two
widely used Named Entity recognizers.

The first one is STANFORDNER1 (Finkel et al.,
2005) which provides models for various languages.
It uses a set of language-independent features, in-
cluding word and character n-grams, word shapes,
surrounding POS and lemmas. For German, these
features are complemented by distributional clus-
ters computed on a large German web corpus
(Faruqui and Padó, 2010). The ready-to-run model
is pre-trained on the German CoNLL 2003 data
(Tjong Kim Sang and De Meulder, 2003).

Benikova et al. (2015) developed GERMANER2 ,
another CRF-based NER system. It was optimized
for the GermEval 2014 NER challenge and also
uses a set of standard features (word and charac-
ter n-grams, POS) supplemented by a number of
specific information sources (unsupervised parts of
speech (Biemann, 2009), distributional semantics
and topic cluster information, gazetteer lists).

BiLSTM-based Systems. Among the various
deep learning architectures applied for NER, the
best results have been achieved with bidirectional
LSTM methods combined with a top-level CRF
model (Ma and Hovy, 2016; Lample et al., 2016;
Reimers and Gurevych, 2017). In this work, we
use an implementation that solely uses word and
character embeddings.

We train the character embeddings while train-
ing the model but use pre-trained word embed-
dings. To alleviate issues with out-of-vocabulary
(OOV) words, we use both character- and subword-
based word embeddings computed with fastText
(Bojanowski et al., 2017). This method is able to
retrieve embeddings for unknown words by incor-
porating subword information.3

1http://stanford.io/2ohopn3
2http://github.com/tudarmstadt-lt/

GermaNER
3The source code and the best performing models are avail-

able online: http://www.ims.uni-stuttgart.de/
forschung/ressourcen/werkzeuge/german_
ner.html

3 Datasets

For the evaluation, we use two established datasets
for NER on contemporary German and two datasets
for historical German.

Contemporary German. The first large-scale
German NER dataset was published as part of
the CoNLL 2003 shared task (CoNLL, Tjong
Kim Sang and De Meulder, 2003). It consists of
about 220k tokens (for training) of annotated news-
paper documents. The tagset handles locations
(LOC), organizations (ORG), persons (PER) and
the remaining entities as miscellaneous (MISC).
The second dataset is the GermEval 2014 shared
task dataset (GermEval, Benikova et al. (2014)),
consisting of some 450k tokens (for training) of
Wikipedia articles.4 This dataset has two levels
of annotations: outer and inner span named enti-
ties. For example, the term Chicago Bulls is tagged
as organization in the outer span annotation. The
nested term Chicago is annotated as location in
the inner span annotation. However, there are only
few inner span annotations. In addition to the stan-
dard tagsets also used in the CoNLL dataset, fine
grained versions of these entities are marked with
suffixes: -deriv marks derivations of the named
entities (e.g. German actor – German is a derived
location) and -part marks compounds including
a named entity (e.g. in the word Rhineshore the
compound Rhine is location). To compare to pre-
vious state-of-the-art methods, we show results on
the official metric (a combination of the outer and
inner spans) in Section 4. As there are only few
inner span annotations, we additionally report re-
sults based on the outer spans. To be more conform
with the tagsets of the CoNLL task, we focus on
outer spans and remove the fine-grained tags in the
follow-up experiments (see Section 5 and 6).

Historical German. We further consider two
datasets based on historical texts (Neudecker,
2016)5, extracted from the Europeana collection
of historical newspapers6, a standard resource for
historical digital humanities. More specifically, our
first corpus is the collection of Tyrolean periodi-
cals and newspapers from the Dr Friedrich Temann
Library (LFT), covering around 87k tokens from

4https://sites.google.com/site/
germeval2014ner/

5https://github.com/KBNLresearch/
europeananp-ner/

6www.europeana.eu/portal/de

http://stanford.io/2ohopn3
http://github.com/tudarmstadt-lt/GermaNER
http://github.com/tudarmstadt-lt/GermaNER
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/german_ner.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/german_ner.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/german_ner.html
https://sites.google.com/site/germeval2014ner/
https://sites.google.com/site/germeval2014ner/
https://github.com/KBNLresearch/europeananp-ner/
https://github.com/KBNLresearch/europeananp-ner/
www.europeana.eu/portal/de
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Type Model Pr R F1

CRF StanfordNER 80.02 62.29 70.05
CRF GermaNER 81.31 68.00 74.06
RNN UKP 79.54 71.10 75.09

– ExB 78.07 74.75 76.38
RNN BiLSTM-WikiEmb 81.95 78.13 79.99*

RNN BiLSTM-EuroEmb 75.50 70.72 73.03

Table 1: Evaluation on GermEval data, using the
official metric (metric 1) of the GermEval 2014
task that combines inner and outer chunks.

1926. Our second corpus is a collection of Austrian
newspaper texts from the Austrian National Library
(ONB), covering some 35k tokens between 1710
and 1873. These corpora give rise to a number
of challenges: they are considerably smaller than
the contemporary corpora from above, contain a
different language variety (19th century Austrian
German), and include a high rate of OCR errors
since they were originally printed in Gothic type-
face.7 We use 80% of the data for training and each
10% for development and testing.

4 Experiment 1: Contemporary German

In our first experiment, we compare the NER per-
formances on the two contemporary, large datasets.
For BiLSTM, we experiment with two options for
word embeddings. First, we use pre-trained em-
beddings computed on Wikipedia with 300 dimen-
sions and standard parameters (WikiEmb)8, which
are presumably more appropriate for contemporary
texts. Second, we compute embeddings with the
same parameters from 1.5 billion tokens of historic
German texts from Europeana (EuroEmb). These
embeddings should be more appropriate for histori-
cal texts but may suffer from sparsity.

Table 1 shows results on GermEval using the of-
ficial metric (metric 1) for the best performing sys-
tems. This measure considers both outer and inner
span annotations. Within the challenge, the ExB
(Hänig et al., 2015) ensemble classifier achieved
the best result with an F1 score of 76.38, followed
by the RNN-based method from UKP (Reimers
et al., 2014) with 75.09. GermaNER achieves high
precision, but cannot compete in terms of recall.
Our BiLSTM with Wikipedia word embeddings,
scores highest (79.99) and outperforms the shared

7We cleaned the corpora by correcting named entity labels
and tokenization. We will make these versions available.

8https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

Type Model Pr R F1

CRF StanfordNER 80.13 65.43 72.04
CRF GermaNER 82.72 71.19 76.52
RNN UKP 79.90 74.13 76.91

– ExB 80.67 77.55 79.08
RNN BiLSTM-WikiEmb 83.07 80.62 81.83*

RNN BiLSTM-EuroEmb 76.48 73.54 74.98

Table 2: Evaluation on the test set of GermEval
2014 using the Outer Chunks evaluation schema.

Type Model Pr R F1

CRF StanfordNER 74.18 72.50 73.33
RNN Lample et al. (2016) - - 78.76
CRF GermaNER 85.88 73.78 79.37
RNN BiLSTM-WikiEmb 87.67 78.79 82.99*

RNN BiLSTM-EuroEmb 79.92 72.14 75.83

Table 3: Evaluation on the test set of the German
CoNLL 2003 dataset.

task winner ExB significantly, based on a bootstrap
resampling test (Efron and Tibshirani, 1994). Us-
ing Europeana embeddings, the performance drops
to an F1 score of 73.03 – due to the difference in
vocabulary. As the number of inner span annota-
tions is marginal and hard to detect, we additionally
present scores considering only outer span annota-
tions in Table 2. Whereas the scores are slightly
higher, we observe the same trend as from the pre-
vious results shown in Table 1.

On the CoNLL dataset (see Table 3) GermaNER
outperforms the currently best-performing RNN-
based system (Lample et al., 2016). The BiLSTM
again yields the significantly best performance,
matching its high precision while substantially im-
proving recall. Again, lower F1 scores are achieved
using the Europeana embeddings. In sum, we find
that BiLSTM models can outperform CRF models
when there is sufficient training data to profit from
distributed representations.

5 Experiment 2: Cross-Corpus
Performance

A potential downside of BiLSTMs is that learned
models may be more text type specific, due to the
high capacity of the models. Experiment 2 evalu-
ates how well the models do when trained on one
corpus and tested on another one, including histori-
cal corpora. To level the playing field, we reduce
the detailed annotation of GermEval to the standard
five-category set (PER, LOC, ORG, MISC, OTH).

Results for these experiments are presented in

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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Test data

Model Train CoNLL GermEval LFT ONB
St

an
fo

rd
N

E
R

CoNLL 72.12 48.82 39.72 46.36
GermEval 65.63 72.09 45.22 52.21
LFT 35.25 35.00 67.26 52.77
ONB 34.09 33.96 42.95 72.42

G
er

m
a

N
E

R

CoNLL 79.37 60.40 46.53 53.93
GermEval 71.05 76.37 48.05 54.95
LFT 44.87 45.82 69.18 56.38
ONB 46.56 47.19 48.41 73.31

B
iL

ST
M

-
W

ik
iE

m
b CoNLL 82.99 66.51 49.28 58.79

GermEval 78.15 82.93 55.99 61.35
LFT 57.27 53.38 68.47 65.53
ONB 51.42 49.30 49.35 70.46

B
iL

ST
M

-
E

ur
oE

m
b CoNLL 75.83 55.06 45.30 54.59

GermEval 70.19 75.24 52.15 59.43
LFT 43.63 43.82 69.62 61.10
ONB 36.33 38.81 46.48 67.29

Table 4: Evaluation (F1) for two CRF-based meth-
ods and BiLSTM trained and tested on different
corpora.

Table 4. Unsurprisingly, the best results are gained
when testing on the same dataset as the training has
been performed. GermaNER consistently outper-
forms StanfordNER again, highlighting the benefits
of knowledge engineering when using CRFs.

Interestingly, these benefits also extend to the
historical datasets for which the CRF features were
presumably not optimized: overall F1-scores are
only a few points lower than for the contemporary
corpora, and the CRFs significantly outperform the
BiLSTM models on ONB and performs compa-
rable on the larger LFT dataset. The type of em-
beddings used by BiLSTM plays a minor role for
the historical corpora (for contemporary corpora,
Wikipedia is clearly better). In sum, we conclude
that BiLSTM models run into trouble when faced
with very small training datasets, while CRF-based
methods are more robust (Cotterell and Duh, 2017).

6 Experiment 3: Transfer Learning

If the problems of BiLSTM from the last section
are in fact due to lack of data, we might be able
to obtain an improvement by combining them. A
simple way of doing this is transfer learning (Lee
et al., 2017): we simply start training on one cor-
pus and at some point switch to another corpus.
In our scenario, we start by training on large con-
temporary “source” corpora until convergence and
then train additional 15 epochs on the “target” cor-
pus from the domain on which we evaluate. The

results in Table 5 show significant improvements
for the CoNLL dataset but performance drops for
GermEval. Combining contemporary sources with
historic target corpora yields to consistent benefits.
Performance on LFT increases from 69.62 to 74.33
and on ONB from 73.31 to 78.56. Cross-domain
classification scores are also improved consistently.
The GermEval corpus is more appropriate as a
source corpus, presumably because it is both larger
and drawn from encyclopaedic text, more varied
than newswire. We conclude that transfer learning
is beneficial for BiLSTMs, especially when train-
ing data for the target domain is scarce. We applied
the same procedure to the CRFs, but did not obtain
improvements for the “target” data.

7 Data Analysis

Besides OCR errors, the lower F1 scores for the
historic data are largely due to hyphens used to
divide words for line breaks. The lowest F1 scores
are achieved for the label organization. Evaluat-
ing on the ONB dataset, we obtain an F1 score for
that label of 50.22 using GermaNER, 48.63 for the
BiLSTM using Europeana embeddings and 61.48
using transfer learning. We observe a similar effect
for the LFT dataset. Often, the annotations for the
organization category are not entirely clear. For
example, the typo “sterreichischen Außenminis-
terlum” (should be “Außenministerium”, Austrian
foreign ministry) is manually annotated in the data
but not detected by any of the models. However,
“tschechoslowakischen Presse” (engl. Czechoslo-
vakian press) is detected as organization by all
classifiers but is not manually annotated.

8 Related Work

BiLSTMs that combine neural network architec-
tures with CRF-based superstructures yield the
highest results on English NER datasets in a num-
ber of studies (Ma and Hovy, 2016; Lample et al.,
2016; Reimers and Gurevych, 2017; Lin et al.,
2017). However, only few systems reported results
for German NER, and restrict themselves to the
“big-data” scenarios of the CoNLL 2003 (Lample
et al., 2016; Reimers and Gurevych, 2017) and Ger-
mEval (Reimers et al., 2014; Christian Hnig, 2014)
datasets.Sutton and McCallum (2005) showed the
capability of CRFs for transfer learning by joint
decoding two separately trained sequence models.
Lee et al. (2017) apply transfer learning using a
BiLSTM for medical NER using two similar tasks
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BiLSTM-WikiEmb BiLSTM-EuroEmb

Train Transfer CoNLL GermEval LFT ONB CoNLL GermEval LFT ONB

CoNLL GermEval 78.55 82.93 55.28 64.93 72.23 75.78 51.98 61.74
CoNLL LFT 62.80 58.89 72.90 67.96 56.30 51.25 70.04 65.65
CoNLL ONB 62.05 57.19 59.43 76.17 55.82 49.14 54.19 73.68
GermEval CoNLL 84.73† 72.11 54.21 65.95 78.41 63.42 52.02 59.28
GermEval LFT 67.77 69.09 74.33† 70.57 55.83 57.71 72.03 70.36
GermEval ONB 72.15 73.18 62.52 76.06 64.05 64.20 57.12 78.56†

Table 5: Results for different test sets when using transfer learning. † marks results statistically significantly
better than the ones reported in Table 4.

with different labels and show that only 60% of
the data of the target domain is required to achieve
good results. Crichton et al. (2017) yield improve-
ments up to 0.8% for NER in the medical domain.
Most related to our paper is the work by Ghad-
dar and Langlais (2017) which demonstrates the
impact of transfer learning of the English CoNLL
2003 dataset with Wikipedia annotations.

9 Conclusion

Our study fills an empirical gap by considering
historical datasets and performing careful compar-
isons of multiple models under exactly the same
conditions. We have investigated the relative perfor-
mance of an BiLSTM method and traditional CRFs
on German NER in big- and small-data situations,
asking whether it makes sense to consider differ-
ent model types for different setups. We found
that combining BiLSTM with a CRF as top layer,
outperform CRFs with hand-coded features consis-
tently when enough data is available. Even though
RNNs struggle with small datasets, transfer learn-
ing is a simple and effective remedy to achieve
state-of-the-art performance even for such datasets.
In sum, modern RNNs consistently yield the best
performance.In future work, we will extend the
BiLSTM to other languages using cross-lingual
embeddings (Ruder et al., 2017).
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