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Abstract

We propose Object-oriented Neural Program-
ming (OONP), a framework for semanti-
cally parsing documents in specific do-
mains. Basically, OONP reads a doc-
ument and parses it into a predesigned
object-oriented data structure that reflects
the domain-specific semantics of the doc-
ument. An OONP parser models semantic
parsing as a decision process: a neural net-
based Reader sequentially goes through
the document, and builds and updates an
intermediate ontology during the process
to summarize its partial understanding of
the text. OONP supports a big variety of
forms (both symbolic and differentiable)
for representing the state and the docu-
ment, and a rich family of operations to
compose the representation. An OONP
parser can be trained with supervision
of different forms and strength, includ-
ing supervised learning (SL) , reinforce-
ment learning (RL) and hybrid of the two.
Our experiments on both synthetic and
real-world document parsing tasks have
shown that OONP can learn to handle fairly
complicated ontology with training data of
modest sizes.

1 Introduction
Mapping a document into a structured “machine
readable” form is a canonical and probably the
most effective way for document understanding.
There are quite some recent efforts on designing
neural net-based learning machines for this pur-
pose, which can be roughly categorized into two
groups: 1) sequence-to-sequence model with the

* The work was done when these authors worked as in-
terns at DeeplyCurious.ai.

Figure 1: Illustration of OONP on a parsing task.

neural net as the black box (Liang et al., 2017), and
2) neural net as a component in a pre-designed sta-
tistical model (Zeng et al., 2014). Both categories
are hindered in tackling document with compli-
cated structures, by either the lack of effective rep-
resentation of knowledge or the flexibility in fus-
ing them in the model.

Towards solving this problem, we proposed
Object-oriented Neural Programming (OONP), a
framework for semantically parsing in-domain
documents (illustrated in Figure 1). OONP main-
tains an object-oriented data structure, where ob-
jects from different classes are to represent entities
(people, events, items etc) which are connected
through links with varying types. Each object en-
capsulates internal properties (both symbolic and
differentiable), allowing both neural and symbolic
reasoning over complex structures and hence mak-
ing it possible to represent rich semantics of docu-
ments. An OONP parser is neural net-based, but
it has sophisticated architecture and mechanism
designed for taking and yielding discrete struc-
tures, hence nicely combining symbolism (for in-
terpretability and formal reasoning) and connec-
tionism (for flexibility and learnability).

For parsing, OONP reads a document and parses
it into this object-oriented data structure through a
series of discrete actions along reading the doc-
ument sequentially. OONP supports a rich fam-
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ily of operations for composing the ontology, and
flexible hybrid forms for knowledge representa-
tion. An OONP parser can be trained with super-
vised learning (SL), reinforcement learning (RL)
and hybrid of the two.

OONP in a nutshell The key properties of OONP
can be summarized as follows

1. OONP models parsing as a decision process:
as the “reading and comprehension” agent
goes through the text it gradually forms the
ontology as the representation of the text
through its action;

2. OONP uses a symbolic memory with graph
structure as part of the state of the parsing
process. This memory will be created and
updated through the sequential actions of the
decision process, and will be used as the se-
mantic representation of the text at the end

3. OONP can blend supervised learning (SL) and
reinforcement learning (RL) in tuning its pa-
rameters to suit the supervision signal in dif-
ferent forms and strength.

2 Related Works

2.1 Semantic Parsing
Semantic parsing is concerned with translating
language utterances into executable logical forms
and plays a key role in building conversational
interfaces (Jonathan and Percy, 2014). Dif-
ferent from common tasks of semantic pars-
ings, such as parsing the sentence to dependency
structure (Buys and Blunsom, 2017) and exe-
cutable commands (Herzig and Berant, 2017),
OONP parses documents into a predesigned object-
oriented data structure which is easily readable for
both human and machine. It is related to seman-
tic web (Berners-Lee et al., 2001) as well as frame
semantics (Charles J, 1982) in the way semantics
is represented, so in a sense, OONP can be viewed
as a neural-symbolic implementation of semantic
parsing with similar semantic representation.

2.2 State Tracking
OONP is inspired by Daumé III et al. (2009)
on modeling parsing as a decision process, and
the work on state-tracking models in dialogue
system (Henderson et al., 2014) for the mix-
ture of symbolic and probabilistic representa-
tions of dialogue state. For modeling a docu-
ment with entities, Yang et al. (2017) use coref-
erence links to recover entity clusters, though they

Figure 2: The overall diagram of OONP, where
S stands for symbolic representation, D for dis-
tributed representation, and S+D for a hybrid of
symbolic and distributed parts.

only model entity mentions as containing a sin-
gle word. However, entities whose names consist
of multiple words are not considered. Entity Net-
works (Henaff et al., 2017) and EntityNLM (Ji et al.,
2017) have addressed above problem and are the
pioneers to model on tracking entities, but they
have not considered the properties of the entities.
In fact, explicitly modeling the entities both with
their properties and contents is important to under-
stand a document, especially a complex document.
For example, if there are two persons named ‘Av-
ery’, it is vital to know their genders or last names
to avoid confusion. Therefore, we propose OONP
to sketch objects and their relationships by build-
ing a structured graph for document parsing.

3 OONP: Overview
An OONP parser ( illustrated in Figure 2) consists
of a Reader equipped with read/write heads, Inline
Memory that represents the document, and Carry-on
Memory that summarizes the current understanding
of the document at each time step. For each docu-
ment to parse, OONP first preprocesses it and puts
it into the Inline Memory, and then Reader controls
the read-heads to sequentially go through the Inline
Memory and at the same time update the Carry-on
Memory. We will give a more detailed description
of the major components below.

3.1 Memory
we have two types of memory, Carry-on Memory
and Inline Memory. Carry-on Memory is designed to
save the state in the decision process and summa-
rize current understanding of the document based
on the text that has been “read”, while Inline Mem-
ory is designed to save location-specific informa-
tion about the document. In a sense, the informa-
tion in Inline Memory is low-level and unstructured,
waiting for Reader to fuse and integrate into more
structured representation.

Carry-on Memory has three compartments:
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• Object Memory: denoted Mobj, the object-
oriented data structure constructed during the
parsing process;

• Matrix Memory: denoted Mmat, a matrix-
type memory with fixed size, for differen-
tiable read/write by the controlling neural
net (Graves et al., 2014). In the simplest case,
it could be just a vector as the hidden state of
conventional RNN;

• Action History: symbolic memory to save the
entire history of actions made during the
parsing process.

Intuitively, Object Memory stores the extracted
knowledge of the document with defined structure
and strong evidence, while Matrix Memory keeps the
knowledge that is fuzzy, uncertain or incomplete,
waiting for further information to confirm, com-
plete or clarify.

Object Memory

Object Memory stores an object-oriented represen-
tation of document, as illustrated in Figure 3. Each
object is an instance of a particular class∗, which
specifies the innate structure of the object, includ-
ing internal properties, operations, and how this
object can be connected with others. The inter-
nal properties can be of different types, for exam-
ple string or category, which usually correspond
to different actions in specifying them: the string-
type property is usually “copied” from the original
text in Inline Memory, while the category properties
need to be rendered by a classifier. The links are
in general directional and typed, resembling a spe-
cial property viewing from the “source object”. In
Figure 3, there are six “linked” objects of three
classes (namely, PERSON, EVENT, and ITEM) .
Taking ITEM-object I02 for example, it has five
internal properties (Type, Model, Color, Value,
Status), and is linked with two EVENT-objects
through stolen and disposed link respectively.

In addition to the symbolic properties and links,
each object had also its object-embedding as the
distributed interface with Reader. For description
simplicity, we will refer to the symbolic part of
this hybrid representation of objects as the Ontol-
ogy, with some slight abuse of this word. Object-
embedding is complementary to the symbolic part

∗We only consider flat structure of classes, but it is pos-
sible to have a hierarchy of classes with different levels of
abstractness, and to allow an object to go from abstract class
to its child during parsing with more information obtained.

Figure 3: An example of objects of three classes.

of the object, recording all the relevant informa-
tion associated with it but not represented in the
Ontology, e.g., the contextual information when the
object is created. Both Ontology and the object
embeddings will be updated in time by the class-
dependent operations driven by the actions issued
by the Policy-net in Reader.

According to the way the Ontology evolves with
time, the parsing task can be roughly classified
into two categories: 1) Stationary: there is a fi-
nal ground truth that does not change with time,
and 2) Dynamical: the truth changes with time.
For stationary Ontology, see Section 5.2 and 5.3 for
example, and for dynamical Ontology, please see
Section 5.1.

Inline Memory
Inline Memory stores the relatively raw represen-
tation of the document with the sequential struc-
ture. Basically, Inline Memory is an array of mem-
ory cells, each corresponding to a pre-defined lan-
guage unit (e.g., word) in the same order as they
are in the original text. Each cell can have dis-
tributed part and symbolic part, designed to save
the result of preprocessing of text, e.g., plain word
embedding, hidden states of RNN, or some sym-
bolic processing.

Inline Memory provides a way to represent locally
encoded “low level” knowledge of the text, which
will be read, evaluated and combined with the
global semantic representation in Carry-on Memory
by Reader. One particular advantage of this setting
is that it allows us to incorporate the local deci-
sions of some other models, including “higher or-
der” ones like local relations across multiple lan-
guage units, as illustrated in Figure 4.

3.2 Reader
Reader is the control center of OONP, coordinating
and managing all the operations of OONP. More
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Figure 4: Inline Memory with symbolic knowledge.

Figure 5: The overall digram of OONP

specifically, it takes the input of different forms
(reading), processes it (thinking), and updates the
memory (writing). As shown in Figure 5, Reader
contains Neural Net Controller (NNC) and multiple
symbolic processors, and NNC also has Policy-net
as its sub-component. Similar to the controller
in Neural Turing Machine (Graves et al., 2014),
NNC is equipped with multiple read-heads and
write-heads for differentiable read/write over Ma-
trix Memory and (the distributed part of) Inline Mem-
ory, with a variety of addressing strategies (Graves
et al., 2014). Policy-net however issues discrete
outputs (i.e., actions), which gradually builds and
updates the Object Memory in time. The symbolic
processors are designed to handle information in
symbolic form from Object Memory, Inline Memory,
Action History, and Policy-net, while that from Inline
Memory and Action History is eventually generated
by Policy-net. In Appendix.A†, we give a particular
implementation of Reader with more details.

4 OONP: Actions
The actions issued by Policy-net can be generally
categorized as the following
• New-Assign : determine whether to create an

new object for the information at hand or as-
sign it to a certain existed object;
• Update.X : determine which internal prop-

erty or link of the selected object to update;
• Update2what : determine the content of the

updating, which could be about string, cate-
gory or links;

The typical order of actions is New-Assign →
Update.X → Update2what, but it is common
to have New-Assign action followed by nothing,
when, for example, an object is mentioned but no
†The appendix is also available at

https://arxiv.org/abs/1709.08853

substantial information is provided. As shown in
Figure 6, we give an example of the entire episode
of OONP parsing on the short text given in Fig-
ure 1, to show that a sequence of actions gradu-
ally forms the complete representation of the doc-
ument.

5 An examples of actions

5.1 New-Assign

With any information at hand (denoted as St) at
time t, the choices of New-Assign include the
following three categories of actions: 1) creating
(New) an object of a certain type, 2) assigning St
to an existed object, and 3) doing nothing for St
and moving on. For Policy-net, the stochastic pol-
icy is to determine the following probabilities:

prob(c, new|St), c = 1, 2, · · · , |C|
prob(c, k|St), for Oc,kt ∈ Mt

obj

prob(none|St)

where |C| stands for the number of classes, Oc,k
t

stands for the kth object of class c at time t. Deter-
mining whether to new an object always relies on
the following two signals

1. The information at hand cannot be contained
by any existed objects;

2. Linguistic hints that suggest whether a new
object is introduced.

Based on those intuitions, we take a score-based
approach to determine the above-mentioned prob-
ability. More specifically, for a given St, Reader
forms a “temporary” object with its own struc-
ture (denoted Ôt) with both symbolic and dis-
tributed sections. We also have a virtual object for
the New action for each class c, denoted Oc,new

t ,
which is typically a time-dependent vector formed
by Reader based on information in Matrix Memory.
For a given Ôt, we can then define the following
|C|+ |Mt

obj|+ 1 types of score functions:

New: score(c)
new(O

c,new
t , Ôt; θ(c)new), c = 1, 2, · · · , |C|

Assign: score(c)
assign(O

c,k
t , Ôt; θ(c)assign), forOc,kt ∈ Mtobj

Do nothing: scorenone(Ôt; θnone).

to measure the level of matching between the in-
formation at hand and existed objects, as well as
the likeliness for creating an object or doing noth-
ing. This process is pictorially illustrated in Fig-
ure 7. We therefore can define the following prob-
ability for the stochastic policy
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Figure 6: A pictorial illustration of a full episode of OONP parsing, where we assume the description of
cars (highlighted with shadow) are segmented in preprocessing.

prob(c, new|St) =
escore(c)new(Oc,new

t ,Ôt;θ
(c)
new)

Z(t)
(1)

prob(c, k|St) =
e

score(c)assign(Oc,kt ,Ôt;θ
(c)
assign)

Z(t)
(2)

prob(none|St) =
escorenone(Ôt;θnone)

Z(t)
(3)

where Z(t) =
∑
c′∈C e

score(c
′)

new (Oc
′,new
t ,Ôt;θ

(c′)
new ) +

∑
(c′′,k′)∈idx(Mtobj)

e
score(c

′′)
assign(O

c′′,k
t ,Ôt;θ

(c′′)
assign) + escorenone(Ôt;θnone)

is the normalizing factor.

5.2 Updating Objects

In Update.X step, Policy-net needs to choose the
property or external link (or none) to update for the
selected object determined by New-Assign step.
If Update.X chooses to update an external link,
Policy-net needs to further determine which object
it links to. After that, Update2what updates the
chosen property or links. In task with static On-
tology, most internal properties and links will be
“locked” after they are updated for the first time,
with some exception on a few semi-structured

Figure 7: A pictorial illustration of what the
Reader sees in determining whether to New an ob-
ject and the relevant object when the read-head on
Inline Memory reaches the last word in the text in
Figure 2. The color of the arrow line stands for dif-
ferent matching functions for object classes, where
the dashed lines are for the new object.

properties (e.g., the Description property in the
experiment in Section 7.2). For dynamical Ontol-
ogy, on the contrary, some properties and links are
always subject to changes.
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6 Learning
The parameters of OONP models (denoted Θ) in-
clude that for all operations and that for compos-
ing the distributed sections in Inline Memory. They
can be trained with supervised learning (SL) , re-
inforcement learning (RL), and a hybrid of the two
in different ways. With pure SL, the oracle gives
the ground truth about the “right action” at each
time step during the entire decision process, with
which the parameter can be tuned to maximize the
likelihood of the truth, with the following objec-
tive function

JSL(Θ) = − 1

N

N∑
i

Ti∑
t=1

log(π
(i)
t [a?t ]) (4)

where N stands for the number of instances, Ti
stands for the number of steps in decision process
for the ith instance, π(i)t [·] stands for the probabil-
ities of the actions at t from the stochastic policy,
and a?t stands for the ground truth action in step t.

With RL, the supervision is given as rewards
during the decision process, for which an extreme
case is to give the final reward at the end of the
decision process by comparing the generated On-
tology and the ground truth, e.g.,

r
(i)
t =

{
0, if t 6= Ti

match(MTi
obj,Gi), if t = Ti

(5)

where the match(MTi
obj,Gi) measures the consistency

between the Ontology of in the Object Memory MTi
obj

and the ground truth G?. We can use policy search
algorithm to maximize the expected total reward,
e.g. the commonly used REINFORCE (Williams,
1992) for training, with the gradient

∇ΘJRL(Θ) = −Eπθ
[
∇Θ log πΘ

(
ait|sit

)
r

(i)
t:T

]
(6)

≈ − 1

NTi

N∑
i

T∑
t=1

∇Θ log πΘ

(
ait|sit

)
r

(i)
t:Ti

. (7)

When OONP is applied to real-world tasks, there
is often quite natural supervision signals for both
SL and RL. More specifically, for static Ontology
one can infer some actions from the final ontology
based on some basic assumption, e.g.,
• the system should New an object the first time

it is mentioned;
• the system should put an extracted string (say,

that for Name ) into the right property of right
object at the end of the string.

For those that can not be fully inferred, say the
categorical properties of an object (e.g., Type for
event objects), we have to resort to RL to deter-
mine the time of decision, while we also need SL

to train Policy-net on the content of the decision.
Fortunately it is quite straightforward to combine
the two learning paradigms in optimization. More
specifically, we maximize this combined objective

J (Θ) = JSL(Θ) + λJRL(Θ), (8)

whereJSL andJRL are over the parameters within
their own supervision mode and λ coordinates the
weight of the two learning mode on the parameters
they share. Equation (8) actually indicates a deep
coupling of supervised learning and reinforcement
learning, since for any episode the samples of ac-
tions related to RL might affect the inputs to the
models under supervised learning.

For dynamical Ontology (see Section 7.1 for ex-
ample), it is impossible to derive most of the de-
cisions from the final Ontology since they may
change over time. For those we have to rely mostly
on the supervision at the time step to train the
action (supervised mode) or count on OONP to
learn the dynamics of the ontology evolution by
fitting the final ground truth. Both scenarios are
discussed in Section 7.1 on a synthetic task.

7 Experiments

We applied OONP on three document parsing
tasks, to verify its efficacy on parsing documents
with different characteristics and investigate dif-
ferent components of OONP.

7.1 Task-I: bAbI Task
Data and Task
We implemented OONP on enriched version of
bAbI tasks (Johnson, 2017) with intermediate rep-
resentation for history of arbitrary length. In this
experiment, we considered only the original bAbi
task-2 (Weston et al., 2015), with an instance
shown in the left panel Figure 8. The ontology
has three types of objects: PERSON-object, ITEM-
object, and LOCATION-object, and three types of
links specifying relations between them (see Fig-
ure 8 for an illustration). All three types of objects
have Name as the only internal property.

The task for OONP is to read an episode of story
and recover the trajectory of the evolving ontol-
ogy. We choose bAbI for its dynamical ontol-
ogy that evolves with time and ground truth given
for each snapshot. Comparing with the real-world
tasks we will present later, bAbi has almost trivial
internal properties but relatively rich opportunities
for links, considering that any two objects of dif-
ferent types could potentially have a link.
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Figure 8: One instance of bAbI (6-sentence
episode) and the ontology of two snapshots.

Action Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
Update(c, k).AddLink(c′, k′, `) Add an link of type-` from object-(c, k) to object-(c′, k′)
Update(c, k).DelLink(c′, k′, `) Delete the link of type-` from object-(c, k) to object-(c′, k′)

Table 1: Actions for bAbI.

Implementation Details
For preprocessing, we have a trivial NER to find
the names of people, items and locations (saved
in the symbolic part of Inline Memory) and word-
level bi-directional GRU for the distributed rep-
resentations of Inline Memory. In the parsing pro-
cess, Reader goes through the inline word-by-
word in the temporal order of the original text,
makes New-Assign action at every word, leaving
Update.X and Update2what actions to the time
steps when the read-head on Inline Memory reaches
a punctuation (see more details of actions in Ta-
ble 1). For this simple task, we use an almost
fully neural Reader (with MLPs for Policy-net) and
a vector for Matrix Memory, with however a Sym-
bolic Reasoner to maintain the logical consistency
after updating the relations with the actions (see
Appendx.B for more details).

Results and Analysis
For training, we use 1,000 episodes with length
evenly distributed from one to six. We use just
REINFORCE with only the final reward defined
as the overlap between the generated ontology and
the ground truth, while step-by-step supervision
on actions yields almost perfect result (result omit-
ted). For evaluation, we use the F1 (Rijsbergen,
1979) between the generated links and the ground
truth averaged over all snapshots of all test in-
stances, since the links are sparse compared with
all the possible pairwise relations between objects,
with which we get F1= 94.80% without Symbolic
Reasoner and F1= 95.30% with it.

Clearly OONP can learn fairly well on recover-
ing the evolving ontology with such a small train-
ing set and weak supervision (RL with the final
reward), showing that the credit assignment over

Figure 9: Example of police report & its ontology.

to earlier snapshots does not cause much difficulty
in the learning of OONP even with a generic pol-
icy search algorithm. It is not so surprising to ob-
serve that Symbolic Reasoner helps to improve the
results on discovering the links, while it does not
improve the performance on identifying the ob-
jects although it is taken within the learning.

7.2 Task-II: Parsing Police Report

Data & Task
We implement OONP for parsing Chinese police
report (brief description of criminal cases written
by policeman), as illustrated in the left panel of
Figure 9. We consider a corpus of 5,500 cases
with a variety of crime categories, including theft,
robbery, drug dealing and others. Although the
language is reasonably formal, the corpus cov-
ers a big variety of topics and language styles,
and has a high proportion of typos. The ontol-
ogy we designed for this task mainly consists of
a number of PERSON-objects and ITEM-objects
connected through an EVENT-object with several
types of relations, as illustrated in the right panel
of Figure 9. A PERSON-object has three inter-
nal properties: Name (string), Gender (categori-
cal) and Age (number), and two types of exter-
nal links (suspect and victim) to an EVENT-
object. An ITEM-object has three internal prop-
erties: Name (string), Quantity (string) and Value

(string), and six types of external links (stolen,

drug, robbed, swindled, damaged, and other) to
an EVENT-object. On average, a sample has 95.24
Chinese words and the ontology has 3.35 objects,
3.47 mentions and 5.02 relationships. Compared
with bAbI in Section 7.1, the police report ontol-
ogy has less pairwise links but much richer inter-
nal properties for objects of all three objects.

Implementation Details
The OONP model is to generate the ontology as il-
lustrated in Figure 9 through a decision process
with actions in Table 2. As pre-processing, we
performed third party NER algorithm to find peo-
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ple names, locations, item etc. For the distributed
part of Inline Memory, we used dilated CNN with
different choices of depth and kernel size (Yu and
Koltun, 2016), all of which will be jointly learned
during training. In updating objects with its string-
type properties (e.g., Name for a PERSON-object
), we use Copy-Paste strategy for extracted string
(whose NER tag already specifies which property
in an object it goes to) as Reader sees it. For un-
determined category properties in existed objects,
Policy-net will determine the object to update (a
New-Assign action without New option), its prop-
erty to update (an Update.X action), and the up-
dating operation (an Update2what action) at mile-
stones of the decision process , e.g., when reaching
an punctuation. For this task, since all the relations
are between the single by-default EVENT-object
and other objects, the relations can be reduced to
category-type properties of the corresponding ob-
jects in practice. For category-type properties, we
cannot recover New-Assign and Update.X actions
from the label (the final ontology), so we resort RL
for learning to determine that part, which is mixed
with the supervised learning for Update2what and
other actions for string-type properties.

Action Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
UpdateObject(c, k).Name Set the name of object-(c, k) with the extracted string.
UpdateObject(PERSON, k).Gender Set the name of a PERSON-object indexed k with the extracted string.
UpdateObject(ITEM, k).Quantity Set the quantity of an ITEM-object indexed k with the extracted string.
UpdateObject(ITEM, k).Value Set the value of an ITEM-object indexed k with the extracted string.
UpdateObject(EVENT, 1).Items.x Set the link between the EVENT-object and an ITEM-object, where

x ∈{stolen, drug, robbed, swindled, damaged, other}
UpdateObject(EVENT, 1).Persons.x Set the link between the EVENT-object and an PERSON-object,

and x ∈{victim, suspect}

Table 2: Actions for parsing police report.

Results & Discussion
We use 4,250 cases for training, 750 for validation
an held-out 750 for test. We consider the follow-
ing four metrics in comparing the performance of
different models:

Assignment Accuracy the accuracy on New-Assign actions made by the model
Category Accuracy the accuracy of predicting the category properties of all

the objects
Ontology Accuracy the proportion of instances for which the generated Objects

is exactly the same as the ground truth
Ontology Accuracy-95 the proportion of instances for which the generated Objects

achieves 95% consistency with the ground truth

which measures the accuracy of the model in mak-
ing discrete decisions as well as generating the fi-
nal ontology.

Model Assign Acc. (%) Type Acc. (%) Ont. Acc. (%) Ont. Acc-95 (%)
Bi-LSTM (baseline) 73.2 ± 0.58 - 36.4± 1.56 59.8 ± 0.83
ENTITYNLM (baseline) 87.6 ± 0.50 84.3 ± 0.80 59.6 ± 0.85 72.3 ± 1.37
OONP (neural) 88.5 ± 0.44 84.3 ± 0.58 61.4 ± 1.26 75.2 ± 1.35
OONP (structured) 91.2 ± 0.62 87.0 ± 0.40 65.4 ± 1.42 79.9 ± 1.28
OONP (RL) 91.4 ± 0.38 87.8 ± 0.75 66.7 ± 0.95 80.7 ± 0.82

Table 3: OONP on parsing police reports.

We empirically investigated two competing
models, Bi-LSTM and EntityNLM , as baselines. Both

models can be viewed as simplified versions of
OONP. Bi-LSTM consists of a bi-directional LSTM
as Inline Memory encoder and a two-layer MLP on
top of that as Policy-net. Bi-LSTM does not sup-
port categorical prediction for objects due to the
lack of explicit object representation, which will
only be trained to perform New-Assign actions
and evaluated on them (with the relevant metrics
modified for it). EntityNLM, on the other hand,
has some modest capability for modeling entities
with the original purpose of predicting entity men-
tions (Ji et al., 2017) which has been adapted and
re-implemented for this scenario. For OONP , we
consider three variants:
• OONP (neural): simple version of OONP with

only distributed representation in Reader;
• OONP (structured): OONP that considers the

matching between two structured objects in
New-Assign actions;
• OONP (RL): another version of OONP (struc-

tured) that uses RL‡ to determine the time
for predicting the category properties, while
OONP (neural) and OONP (structured) use a
rule-based approach to determine the time.

The experimental results are given in Table 3.
As shown in Table 3, Bi-LSTM struggles to achieve
around 73% Assignment Accuracy on test set,
while OONP (neural) can boost the performance to
88.5%. Arguably, this difference in performance
is due to the fact that Bi-LSTM lacks Object Mem-
ory, so all relevant information has to be stored in
the Bi-LSTM hidden states along the reading pro-
cess. When we start putting symbolic representa-
tion and operation into Reader, as shown in the re-
sult of OONP (structure), the performance is again
significantly improved on all four metrics.

From the result of OONP (RL), RL improves
not only the prediction of categorical property
(and hence the overall ontology accuracy) but also
tasks trained with purely SL (i.e., learning the
New-Assign actions). This indicates there might
be some deep entanglement between SL and RL
through the obvious interaction between features
in parsing and/or sharing of parameters.

7.3 Task-III: Parsing court judgment docs
Data and Task
Comparing with Task-II, court judgements are
typically much longer, containing multiple events
‡ A more detailed exposition of this idea can be found in

(Liu et al., 2018), where RL is used for training a multi-label
classifier of text
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Figure 10: Left: the judgement document with
highlighted part being the description the facts of
crime; right: the corresponding ontology

of different types and large amount of irrelevant
text. The dataset contains 4056 Chinese judge-
ment documents, divided into training/dev/testing
set 3256/400/400 respectively. The ontology for
this task mainly consists of a number of PER-
SON-objects and ITEM-objects connected through
a number EVENT-object with several types of
links. An EVENT-object has three internal prop-
erties: Time (string), Location (string), and Type

(category, ∈{theft, restitution, disposal}),
four types of external links to PERSON-objects
(namely, principal, companion, buyer, victim)
and four types of external links to ITEM-objects
(stolen, damaged, restituted, disposed ). In
addition to the external links to EVENT-objects ,
a PERSON-object has only the Name (string) as the
internal property. An ITEM-object has three in-
ternal properties: Description (array of strings),
Value (string) and Returned(binary) in addition
to its external links to EVENT-objects , where
Description consists of the words describing the
corresponding item, which could come from mul-
tiple segments across the document. An object
could be linked to more than one EVENT-object,
for example a person could be the principal sus-
pect in event A and also a companion in event B.
An illustration of the judgement document and the
corresponding ontology can be found in Figure 10.

Implementation Details
We use a model configuration similar to that in
Section 7.2, with event-based segmentation of
text given by third-party extraction algorithm (Yan
et al., 2017) in Inline Memory, which enables
OONP to trivially New EVENT-objectwith rules.
OONP reads the Inline Memory, fills the EVENT-
objects, creates and fills PERSON-objects and
ITEM-objects, and specifies the links between

them, with the actions summarized in Table 4.
When an object is created during a certain event,
it will be given an extra feature (not an internal
property) indicating this connection, which will
be used in deciding links between this object and
event object, as well as in determining the future
New-Assign actions.

Action for 2nd-round Description
NewObject(c) New an object of class-c.
AssignObject(c, k) Assign the current information to existed object (c, k)
UpdateObject(PERSON, k).Name Set the name of the kth PERSON-object with the extracted string.
UpdateObject(ITEM, k).Description Add to the description of an kth ITEM-object with the extracted

string.
UpdateObject(ITEM, k).Value Set the value of an kth ITEM-object with the extracted string.
UpdateObject(EVENT, k).Time Set the time of an kth EVENT-object with the extracted string.
UpdateObject(EVENT, k).Location Set the location of an kth EVENT-object with the extracted string.
UpdateObject(EVENT, k).Type Set the type of the kth EVENT-object among {theft, disposal,

restitution}
UpdateObject(EVENT, k).Items.x Set the link between the kth EVENT-object and an ITEM-object,

where x ∈ {stolen, damaged, restituted, disposed }
UpdateObject(EVENT, k).Persons.x Set the link between the kth EVENT-object and an PERSON-object,

and x ∈ {principal, companion, buyer, victim}

Table 4: Actions for parsing court judgements.

Results and Analysis
We use the same metric as in Section 7.2, and com-
pare two OONP variants, OONP (neural) and OONP
(structured), with two baselines EntityNLM and Bi-
LSTM. The two baselines will be tested only on the
second-round reading, while both OONP variants
are tested on a two-round reading. The results are
shown in Table 5. OONP parsers attain accuracy
significantly higher than Bi-LSTM. Among, OONP
(structure) achieves over 71% accuracy on getting
the entire ontology right and over 77% accuracy
on getting 95% consistency with the ground truth.
We omitted the RL results since the model RL
model chooses to predict the type properties same
as the simple rules.

Model Assign Acc. (%) Type Acc. (%) Ont. Acc. (%) Ont. Acc-95 (%)
Bi-LSTM (baseline) 84.66 ± 0.20 - 18.20 ± 0.74 36.88 ± 1.01
ENTITYNLM (baseline) 90.50 ± 0.21 96.33 ± 0.39 39.85 ± 0.20 48.29 ± 1.96
OONP (neural) 94.50 ± 0.24 97.73 ± 0.12 53.29 ± 0.26 72.22 ± 1.01
OONP (structured) 96.90 ± 0.22 98.80 ± 0.08 71.11 ± 0.54 77.27 ± 1.05

Table 5: OONP on judgement documents.

8 Conclusion

We proposed Object-oriented Neural Program-
ming (OONP), a framework for semantically pars-
ing in-domain documents. OONP is neural net-
based, but equipped with sophisticated architec-
ture and mechanism for document understanding,
therefore nicely combining interpretability and
learnability. Experiments on both synthetic and
real-world datasets have shown that OONP outper-
forms several strong baselines by a large margin
on parsing fairly complicated ontology.
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