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Abstract

Morphological analysis involves predict-
ing the syntactic traits of a word (e.g.
{POS: Noun, Case: Acc, Gender: Fem}).
Previous work in morphological tagging
improves performance for low-resource
languages (LRLs) through cross-lingual
training with a high-resource language
(HRL) from the same family, but is limited
by the strict—often false—assumption
that tag sets exactly overlap between the
HRL and LRL. In this paper we pro-
pose a method for cross-lingual morpho-
logical tagging that aims to improve in-
formation sharing between languages by
relaxing this assumption. The proposed
model uses factorial conditional random
fields with neural network potentials, mak-
ing it possible to (1) utilize the expres-
sive power of neural network represen-
tations to smooth over superficial differ-
ences in the surface forms, (2) model pair-
wise and transitive relationships between
tags, and (3) accurately generate tag sets
that are unseen or rare in the training data.
Experiments on four languages from the
Universal Dependencies Treebank (Nivre
et al., 2017) demonstrate superior tagging
accuracies over existing cross-lingual ap-
proaches.!

1 Introduction

Morphological analysis (Haji¢ and Hladka (1998),
Oflazer and Kuruoz (1994), inter alia) is the task
of predicting fine-grained annotations about the
syntactic properties of tokens in a language such

'Our code and data is publicly available at
www.github.com/chaitanyamalaviya/
NeuralFactorGraph.
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Figure 1: Morphological tags for a UD sentence
in Portuguese and a translation in Spanish

as part-of-speech, case, or tense. For instance,
in Figure 1, the given Portuguese sentence is la-
beled with the respective morphological tags such
as Gender and its label value Masculine.

The accuracy of morphological analyzers is
paramount, because their results are often a first
step in the NLP pipeline for tasks such as transla-
tion (Vylomova et al., 2017; Tsarfaty et al., 2010)
and parsing (Tsarfaty et al., 2013), and errors in
the upstream analysis may cascade to the down-
stream tasks. One difficulty, however, in creating
these taggers is that only a limited amount of anno-
tated data is available for a majority of the world’s
languages to learn these morphological taggers.
Fortunately, recent efforts in morphological an-
notation follow a standard annotation schema for
these morphological tags across languages, and
now the Universal Dependencies Treebank (Nivre
et al., 2017) has tags according to this schema in
60 languages.

Cotterell and Heigold (2017) have recently
shown that combining this shared schema with
cross-lingual training on a related high-resource
language (HRL) gives improved performance
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Figure 2: FCRF-LSTM Model for morphological
tagging

on tagging accuracy for low-resource languages
(LRLs). The output space of this model consists of
tag sets such as {POS: Adj, Gender: Masc, Num-
ber: Sing}, which are predicted for a token at each
time step. However, this model relies heavily on
the fact that the entire space of tag sets for the
LRL must match those of the HRL, which is of-
ten not the case, either due to linguistic divergence
or small differences in the annotation schemes be-
tween the two languages.” For instance, in Fig-
ure 1 “refrescante” is assigned a gender in the Por-
tuguese UD treebank, but not in the Spanish UD
treebank.

In this paper, we propose a method that in-
stead of predicting full tag sets, makes predictions
over single tags separately but ties together each
decision by modeling variable dependencies be-
tween tags over time steps (e.g. capturing the fact
that nouns frequently occur after determiners) and
pairwise dependencies between all tags at a sin-
gle time step (e.g. capturing the fact that infini-
tive verb forms don’t have tense). The specific
model is shown in Figure 2, consisting of a facto-
rial conditional random field (FCRF; Sutton et al.
(2007)) with neural network potentials calculated
by long short-term memory (LSTM; (Hochreiter
and Schmidhuber, 1997)) at every variable node
(§3). Learning and inference in the model is made

*In particular, the latter is common because many UD re-
sources were created by full or semi-automatic conversion
from treebanks with less comprehensive annotation schemes
than UD. Our model can generate label values for these tags
too, which could possibly aid the enhancement of UD anno-
tations, although we do not examine this directly in our work.

tractable through belief propagation over the pos-
sible tag combinations, allowing the model to con-
sider an exponential label space in polynomial
time (§3.5).

This model has several advantages:

o The model is able to generate tag sets un-
seen in training data, and share information
between similar tag sets, alleviating the main
disadvantage of previous work cited above.

e Our model is empirically strong, as vali-
dated in our main experimental results: it
consistently outperforms previous work in
cross-lingual low-resource scenarios in ex-
periments.

e Our model is more interpretable, as we can
probe the model parameters to understand
which variable dependencies are more likely
to occur in a language, as we demonstrate in
our analysis.

In the following sections, we describe the model
and these results in more detail.

2 Problem Formulation and Baselines

2.1 Problem Formulation

Formally, we define the problem of morpholog-
ical analysis as the task of mapping a length-T'
string of tokens x = x1,...,x7 into the tar-
get morphological tag sets for each token y =
Yi,...,yr. For the tth token, the target label
Yt = Yi1,---,Yt,m defines a set of tags (e.g.
{Gender: Masc, Number: Sing, POS: Verb}). An
annotation schema defines a set S of M possi-
ble tag types and with the mth type (e.g. Gen-
der) defining its set of possible labels )V, (e.g.
{Masc, Fem, Neu}) such that v, € V. We
must note that not all tags or attributes need to
be specified for a token; usually, a subset of S is
specified for a token and the remaining tags can
be treated as mapping to a NULL € ), value. Let
Y = {(ylv'-'ayM) NS ylv"'ayM € yM}
denote the set of all possible tag sets.

2.2 Baseline: Tag Set Prediction

Data-driven models for morphological analy-
sis are constructed using training data D =
{(x®,y@D)IN | consisting of N training exam-
ples. The baseline model (Cotterell and Heigold,
2017) we compare with regards the output space
of the model as a subset ) C ) where ) is the
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set of all tag sets seen in this training data. Specif-
ically, they solve the task as a multi-class classi-
fication problem where the classes are individual
tag sets. In low-resource scenarios, this indicates
that || << || and even for those tag sets exist-
ing in Y we may have seen very few training ex-
amples. The conditional probability of a sequence
of tag sets given the sentence is formulated as a
Oth order CRF.

T
plyx) = [[ p(y:lx) (1)
t=1

Instead, we would like to be able to generate
any combination of tags from the set )/, and share
statistical strength among similar tag sets.

2.3 A Relaxation: Tag-wise Prediction

As an alternative, we could consider a model that
performs prediction for each tag’s label y; ,,, inde-
pendently.

T M
p(ylx) = HH (Yt,m[x) )

This formulation has an advantage: the tag-
predictions within a single time step are now in-
dependent, it is now easy to generate any combi-
nation of tags from ). On the other hand, now
it is difficult to model the interdependencies be-
tween tags in the same tag set y;, a major dis-
advantage over the previous model. In the next
section, we describe our proposed neural factor
graph model, which can model not only dependen-
cies within tags for a single token, but also depen-
dencies across time steps while still maintaining
the flexibility to generate any combination of tags
from ).

3 Neural Factor Graph Model

Due to the correlations between the syntactic prop-
erties that are represented by morphological tags,
we can imagine that capturing the relationships
between these tags through pairwise dependen-
cies can inform the predictions of our model.
These dependencies exist both among tags for the
same token (intra-token pairwise dependencies),
and across tokens in the sentence (inter-token tran-
sition dependencies). For instance, knowing that a
token’s POS tag is a Noun, would strongly suggest
that this token would have a NULL label for the tag
Tense, with very few exceptions (Nordlinger and

Sadler, 2004). In a language where nouns follow
adjectives, a tag set prediction {POS: Adj, Gen-
der: Fem} might inform the model that the next
token is likely to be a noun and have the same gen-
der. The baseline model can not explicitly model
such interactions given their factorization in equa-
tion 1.

To incorporate the dependencies discussed
above, we define a factorial CRF (Sutton et al.,
2007), with pairwise links between cotemporal
variables and transition links between the same
types of tags. This model defines a distribution
over the tag-set sequence y given the input sen-
tence x as,

p(ylx H [T %a(yaxt) @

t 1aeC

where C is the set of factors in the factor graph (as
shown in Figure 2), « is one such factor, and y,
is the assignment to the subset of variables neigh-
boring factor a. We define three types of potential
functions: neural ¥y, pairwise ¢p, and transi-
tion ¢, described in detail below.

YNN

Figure 3: Factors in the Neural Factor Graph
model (red: Pairwise, grey: Transition, green:
Neural Network)

3.1 Neural Factors

The flexibility of our formulation allows us to in-
clude any form of custom-designed potentials in
our model. Those for the neural factors have a
fairly standard log-linear form,

¢NN,i(yt,m) = €xXp {Z Ann,kfrm,k(xa t)} (4)
k

except that the features f,, ;. are themselves given
by a neural network. There is one such factor per
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variable. We obtain our neural factors using a biL-
STM over the input sequence x, where the input
word embedding for each token is obtained from
a character-level biLSTM embedder. This compo-
nent of our model is similar to the model proposed
by Cotterell and Heigold (2017). Given an input
token x; = cj...c,, we compute an input embed-
ding vy as,

vy = [cLSTM(ey...¢,); cLSTM(cpy....c1)]  (5)

Here, cLSTM is a character-level LSTM function
that returns the last hidden state. This input em-
bedding v; is then used in the biLSTM tagger to
compute an output representation e;. Finally, the
scores fun(X,t) are obtained as,

fnn(Xa t) = Wier + by (6)

We use a language-specific linear layer with
weights W; and bias b;.

3.2 Pairwise Factors

As discussed previously, the pairwise factors are
crucial for modeling correlations between tags.
The pairwise factor potential for a tag ¢ and tag
7 at timestep ¢ is given in equation 7. Here, the
dimension of f, is (|Vi],|Y;]). These scores are
used to define the neural factors as,

Ve, (Ytir Yt.j) = exp {Z Mook ook (Wi yt,j)}
k
(7

3.3 Transition Factors

Previous work has experimented with the use of a
linear chain CRF with factors from a neural net-
work (Huang et al., 2015) for sequence tagging
tasks. We hypothesize that modeling transition
factors in a similar manner can allow the model
to utilize information about neighboring tags and
capture word order features of the language. The
transition factor for tag ¢ and timestep ¢ is given
below for variables y; ; and y; 1 ;. The dimension

of fris (|, |Vi]).

Y1y (Ye,is Yer1,6) = exp {Z AT e STk (e yt+1,i)}

k
®)
In our experiments, f;,  and frj are simple indi-
cator features for the values of tag variables with
no dependence on x.

3.4 Language-Specific Weights

As an enhancement to the information encoded
in the transition and pairwise factors, we experi-
ment with training general and language-specific
parameters for the transition and the pairwise
weights. We define the weight matrix Age, to learn
the general trends that hold across both languages,
and the weights Ajune to learn the exceptions to
these trends. In our model, we sum both these pa-
rameter matrices before calculating the transition
and pairwise factors. For instance, the transition
weights A7 are calculated as A7 = At, gen+AT, lang-

3.5 Loopy Belief Propagation

Since the graph from Figure 2 is a loopy graph,
performing exact inference can be expensive.
Hence, we use loopy belief propagation (Murphy
et al., 1999; Ihler et al., 2005) for computation of
approximate variable and factor marginals. Loopy
BP is an iterative message passing algorithm that
sends messages between variables and factors in a
factor graph. The message updates from variable
v;, with neighboring factors N (7), to factor « is

T #tesitv) — ©

€N (i)\a

Pisa (Vi) =

The message from factor « to variable v; is

Z Ya(va) H Hi—a(vali])

Vaivalil=v; JEN(a)\i

Pa—si(vi) =

(10)
where v, denote an assignment to the subset of
variables adjacent to factor «, and v,[i] is the as-
signment for variable v;. Message updates are
performed asynchronously in our model. Our
message passing schedule was similar to that of
foward-backward: the forward pass sends all mes-
sages from the first time step in the direction of
the last. Messages to/from pairwise factors are in-
cluded in this forward pass. The backward pass
sends messages in the direction from the last time
step back to the first. This process is repeated un-
til convergence. We say that BP has converged
when the maximum residual error (Sutton and Mc-
Callum, 2007) over all messages is below some
threshold. Upon convergence, we obtain the belief
values of variables and factors as,

bi(vi):% H fha—i (Vi) (11)
' aeN(i)
bata) = ——talva) T] mialvali) (12)

€N (o)
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where k; and k., are normalization constants en-
suring that the beliefs for a variable ¢ and factor a
sum-to-one. In this way, we can use the beliefs as
approximate marginal probabilities.

3.6 Learning and Decoding

We perform end-to-end training of the neural fac-
tor graph by following the (approximate) gradient
of the log-likelihood -V | log p(y ¥ |x(). The
true gradient requires access to the marginal prob-
abilities for each factor, e.g. p(ya.|x) where y,,
denotes the subset of variables in factor a.. For
example, if « is a transition factor for tag m at
timestep ¢, then y, would be y;,, and yii1 m.
Following (Sutton et al., 2007), we replace these
marginals with the beliefs b,,(y,,) from loopy be-
lief propagation.® Consider the log-likelihood of
a single example ¢ = log p(y?|x("). The par-
tial derivative with respect to parameter A,y for
each type of factor ¢ € {NN,T, P} is the dif-
ference of the observed features with the expected
features under the model’s (approximate) distribu-
tion as represented by the beliefs:

0 |
gf L > (fg,k(yﬁf)) —Zba(ya)fw(ya))
. Ya

aclCy

where C, denotes all the factors of type g, and we
have omitted any dependence on x(® and ¢ for
brevity—t is accessible through the factor index
«. For the neural network factors, the features are
given by a biLSTM. We backpropagate through to
the biLSTM parameters using the partial deriva-
tive below,

YA
——— = ANNE — Z bem (Yt,m) ANN &
OfNN (Yt mst) Ytm

where by, (-) is the variable belief corresponding
to variable y; .

To predict a sequence of tag sets y at test time,
we use minimum Bayes risk (MBR) decoding
(Bickel and Doksum, 1977; Goodman, 1996) for
Hamming loss over tags. For a variable y; ,, rep-
resenting tag m at timestep ¢, we take

Ut,m = argmax by, (1). (13)

1€Ym

where [ ranges over the possible labels for tag m.

Language Pair | HRL Train | Dev | Test
DA/SV 4,383 504 | 1219
RU/BG 3,850 1115 | 1116
FI/HU 12,217 441 449
ES/PT 14,187 560 | 477

Table 1: Dataset sizes. tgt_size = 100 or 1,000
LRL sentences are added to HRL Train

Language Pair | Unique Tags | Tag Sets
DA/SV 23 224
RU/BG 19 798
FI/HU 27 2195
ES/PT 19 451

Table 2: Tag Set Sizes with tgt_size=100

4 Experimental Setup

4.1 Dataset

We used the Universal Dependencies Treebank
UD v2.1 (Nivre et al., 2017) for our experiments.
We picked four low-resource/high-resource
language pairs, each from a different family:
Danish/Swedish  (DA/SV), Russian/Bulgarian
(RU/BG), Finnish/Hungarian (FI/HU), Span-
ish/Portuguese (ES/PT). Picking languages from
different families would ensure that we obtain
results that are on average consistent across
languages.

The sizes of the training and evaluation sets are
specified in Table 1. In order to simulate low-
resource settings, we follow the experimental pro-
cedure from Cotterell and Heigold (2017). We re-
strict the number of sentences of the target lan-
guage (tgt_size) in the training set to 100 or 1000
sentences. We also augment the tag sets in our
training data by adding a NULL label for all tags
that are not seen for a token. It is expected that
our model will learn which tags are unlikely to oc-
cur given the variable dependencies in the factor
graph. The dev set and test set are only in the tar-
get language. From Table 2, we can see there is
also considerable variance in the number of unique
tags and tag sets found in each of these language
pairs.

3Using this approximate gradient is akin to the surrogate
likelihood training of (Wainwright, 2006).

2657



Language | Model tgt_size =100 tgt_size=1000
Accuracy F1-Micro F1-Macro | Accuracy F1-Macro F1-Micro
v Baseline 15.11 8.36 10.37 68.64 76.36 76.50
Ours 29.47 54.09 54.36 71.32 84.42 84.46
BG Baseline 29.05 14.32 29.62 59.20 67.22 67.12
Ours 27.81 40.97 42.43 39.25 60.23 60.84
HU Baseline 21.97 13.30 16.67 50.75 58.68 62.79
Ours 33.32 54.88 54.69 45.90 74.05 73.38
T Baseline 18.91 7.10 10.33 74.22 81.62 81.87
Ours 58.82 73.67 74.07 76.26 87.13 87.22

Table 3: Token-wise accuracy and F1 scores on mono-lingual experiments

4.2 Baseline Tagger

As the baseline tagger model, we re-implement
the SPECIFIC model from Cotterell and Heigold
(2017) that uses a language-specific softmax layer.
Their model architecture uses a character biLSTM
embedder to obtain a vector representation for
each token, which is used as input in a word-level
biLSTM. The output space of their model is all
the tag sets seen in the training data. This work
achieves strong performance on several languages
from UD on the task of morphological tagging and
is a strong baseline.

4.3 Training Regimen

We followed the parameter settings from Cotterell
and Heigold (2017) for the baseline tagger and
the neural component of the FCRF-LSTM model.
For both models, we set the input embedding and
linear layer dimension to 128. We used 2 hidden
layers for the LSTM where the hidden layer di-
mension was set to 256 and a dropout (Srivastava
et al., 2014) of 0.2 was enforced during training.
All our models were implemented in the PyTorch
toolkit (Paszke et al., 2017). The parameters of the
character biLSTM and the word biLSTM were ini-
tialized randomly. We trained the baseline models
and the neural factor graph model with SGD and
Adam respectively for 10 epochs each, in batches
of 64 sentences. These optimizers gave the best
performances for the respective models.

For the FCRF, we initialized transition and pair-
wise parameters with zero weights, which was im-
portant to ensure stable training. We considered
BP to have reached convergence when the maxi-
mum residual error was below 0.05 or if the max-
imum number of iterations was reached (set to
40 in our experiments). We found that in cross-

lingual experiments, when tgt_size = 100, the
relatively large amount of data in the HRL was
causing our model to overfit on the HRL and not
generalize well to the LRL. As a solution to this,
we upsampled the LRL data by a factor of 10 when
tgt_size = 100 for both the baseline and the pro-
posed model.

Evaluation: Previous work on morphological
analysis (Cotterell and Heigold, 2017; Buys and
Botha, 2016) has reported scores on average
token-level accuracy and F1 measure. The av-
erage token level accuracy counts a tag set pre-
diction as correct only it is an exact match with
the gold tag set. On the other hand, F1 mea-
sure is measured on a tag-by-tag basis, which al-
lows it to give partial credit to partially correct tag
sets. Based on the characteristics of each eval-
uation measure, Accuracy will favor tag-set pre-
diction models (like the baseline), and F1 mea-
sure will favor tag-wise prediction models (like
our proposed method). Given the nature of the
task, it seems reasonable to prefer getting some of
the tags correct (e.g. Noun+Masc+Sing becomes
Noun+Fem+Sing), instead of missing all of them
(e.g. Noun+Masc+Sing becomes Adj+Fem+Plur).
F-score gives partial credit for getting some of the
tags correct, while tagset-level accuracy will treat
these two mistakes equally. Based on this, we
believe that F-score is intuitively a better metric.
However, we report both scores for completeness.

5 Results and Analysis
5.1 Main Results

First, we report the results in the case of mono-
lingual training in Table 3. The first row for each
language pair reports the results for our reimple-
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Language | Model tgt_size =100 tgt_size=1000
Accuracy F1-Micro F1-Macro | Accuracy F1-Macro F1-Micro
DA/SV Baseline 66.06 73.95 74.37 82.26 87.88 87.91
Ours 63.22 78.75 78.72 77.43 87.56 87.52
RU/BG Baseline 52.76 58.41 58.23 71.90 77.89 77.97
Ours 46.89 64.46 64.75 67.56 82.06 82.11
FI/HU Baseline 51.74 68.15 66.82 61.80 75.96 76.16
Ours 45.41 68.63 68.07 63.93 85.06 84.12
ES/PT Baseline 79.40 86.03 86.14 85.85 91.91 91.93
Ours 77.75 88.42 88.44 85.02 92.35 92.37

Table 4: Token-wise accuracy and F1 scores on cross-lingual experiments

mentation of Cotterell and Heigold (2017), and
the second for our full model. From these results,
we can see that we obtain improvements on the F-
measure over the baseline method in most experi-
mental settings except BG with tgt_size = 1000.
In a few more cases, the baseline model sometimes
obtains higher accuracy scores for the reason de-
scribed in 4.3.

In our cross-lingual experiments shown in Ta-
ble 4, we also note F-measure improvements
over the baseline model with the exception of
DA/SV when tgt_size = 1000. We observe that
the improvements are on average stronger when
tgt_size = 100. This suggests that our model
performs well with very little data due to its flex-
ibility to generate any tag set, including those not
observed in the training data. The strongest im-
provements are observed for FI/HU. This is likely
because the number of unique tags is the highest in
this language pair and our method scales well with
the number of tags due to its ability to make use of
correlations between the tags in different tag sets.

Language | Transition Pairwise | F1-Macro

X X 69.87

HU v X 73.21

X v 73.68

v v 74.05

X X 79.57

FI/HU v X 84.41

X v 84.73

v v 85.06

Table 5: Ablation Experiments (tgt_size=1000)

To examine the utility of our transition and pair-
wise factors, we also report results on ablation
experiments by removing transition and pairwise

factors completely from the model in Table 5.
Ablation experiments for each factor showed de-
creases in scores relative to the model where both
factors are present, but the decrease attributed to
the pairwise factors is larger, in both the mono-
lingual and cross-lingual cases. Removing both
factors from our proposed model results in a fur-
ther decrease in the scores. These differences were
found to be more significant in the case when
tgt_size = 100.

Upon looking at the tag set predictions made
by our model, we found instances where our
model utilizes variable dependencies to predict
correct labels. For instance, for a specific phrase
in Portuguese (um estado), the baseline model
predicted {POS: Det, Gender: Masc, Number:
Sing}i, {POS: Noun, Gender: Fem (X), Number:
Sing}i+1, whereas our model was able to get the
gender correct because of the transition factors in
our model.

5.2 What is the Model Learning?

POS:

Figure 4:  Generic transition weights for POS
from the RU/BG model

One of the major advantages of our model is
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Figure 5:  Generic pairwise weights between
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the ability to interpret what the model has learned
by looking at the trained parameter weights. We
investigated both language-generic and language-
specific patterns learned by our parameters:

e Language-Generic: We found evidence for
several syntactic properties learned by the
model parameters. For instance, in Figure 4,
we visualize the generic (At gen) transition
weights of the POS tags in RU/BG. Several
universal trends such as determiners and ad-
jectives followed by nouns can be seen. In
Figure 5, we also observed that infinitive has
a strong correlation for NULL tense, which
follows the universal phenomena that infini-
tives don’t have tense.

Neut

GENDER

Masc

NULL

Past Fut Pres Imp NULL
TENSE

Figure 6: Language-specific pairwise weights
for RU between Gender and Tense from the
RU/BG model

e Language Specific Trends: We visual-
ized the learnt language-specific weights and
looked for evidence of patterns correspond-
ing to linguistic phenomenas observed in a
language of interest. For instance, in Rus-
sian, verbs are gender-specific in past tense
but not in other tenses. To analyze this, we
plotted pairwise weights for Gender/Tense in

Figure 6 and verified strong correlations be-
tween the past tense and all gender labels.

6 Related Work

There exist several variations of the task of pre-
diction of morphological information from an-
notated data: paradigm completion (Durrett and
DeNero, 2013; Cotterell et al., 2017b), morpho-
logical reinflection (Cotterell et al., 2017a), seg-
mentation (Creutz et al., 2005; Cotterell et al.,
2016) and tagging. Work on morphological tag-
ging has broadly focused on structured prediction
models such as CRFs, and neural network models.
Amongst structured prediction approaches, Miiller
et al. (2013); Miiller and Schiitze (2015) proposed
the use of a higher-order CRF that is approx-
imated using coarse-to-fine decoding. (Miiller
etal., 2015) proposed joint lemmatization and tag-
ging using this framework. (Haji¢, 2000) was the
first work that performed experiments on multilin-
gual morphological tagging. They proposed an ex-
ponential model and the use of a morphological
dictionary. Buys and Botha (2016); Kirov et al.
(2017) proposed a model that used tag projection
of type and token constraints from a resource-rich
language to a low-resource language for tagging.

Most recent work has focused on character-
based neural models (Heigold et al., 2017), that
can handle rare words and are hence more use-
ful to model morphology than word-based mod-
els. These models first obtain a character-level
representation of a token from a biLSTM or CNN,
which is provided to a word-level biLSTM tagger.
Heigold et al. (2017, 2016) compared several neu-
ral architectures to obtain these character-based
representations and found the effect of the neu-
ral network architecture to be minimal given the
networks are carefully tuned. Cross-lingual trans-
fer learning has previously boosted performance
on tasks such as translation (Johnson et al., 2016)
and POS tagging (Snyder et al., 2008; Plank et al.,
2016). Cotterell and Heigold (2017) proposed a
cross-lingual character-level neural morphological
tagger. They experimented with different strate-
gies to facilitate cross-lingual training: a language
ID for each token, a language-specific softmax and
a joint language identification and tagging model.
We have used this work as a baseline model for
comparing with our proposed method.

In contrast to earlier work on morphological
tagging, we use a hybrid of neural and graphical
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model approaches. This combination has several
advantages: we can make use of expressive fea-
ture representations from neural models while en-
suring that our model is interpretable. Our work
is similar in spirit to Huang et al. (2015) and Ma
and Hovy (2016), who proposed models that use
a CRF with features from neural models. For our
graphical model component, we used a factorial
CREF (Sutton et al., 2007), which is a generaliza-
tion of a linear chain CRF with additional pairwise
factors between cotemporal variables.

7 Conclusion and Future Work

In this work, we proposed a novel framework for
sequence tagging that combines neural networks
and graphical models, and showed its effective-
ness on the task of morphological tagging. We
believe this framework can be extended to other
sequence labeling tasks in NLP such as seman-
tic role labeling. Due to the robustness of the
model across languages, we believe it can also be
scaled to perform morphological tagging for mul-
tiple languages together.
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