
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2642–2652
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

2642

Morphosyntactic Tagging with a Meta-BiLSTM Model
over Context Sensitive Token Encodings

Bernd Bohnet, Ryan McDonald, Gonçalo Simões, Daniel Andor, Emily Pitler, Joshua Maynez
Google Inc.

{bohnetbd,ryanmcd,gsimoes,andor,epitler,joshuahm}@google.com

Abstract

The rise of neural networks, and par-
ticularly recurrent neural networks, has
produced significant advances in part-of-
speech tagging accuracy (Zeman et al.,
2017). One characteristic common among
these models is the presence of rich
initial word encodings. These encod-
ings typically are composed of a recur-
rent character-based representation with
learned and pre-trained word embeddings.
However, these encodings do not consider
a context wider than a single word and it
is only through subsequent recurrent lay-
ers that word or sub-word information in-
teracts. In this paper, we investigate mod-
els that use recurrent neural networks with
sentence-level context for initial character
and word-based representations. In partic-
ular we show that optimal results are ob-
tained by integrating these context sensi-
tive representations through synchronized
training with a meta-model that learns to
combine their states. We present results
on part-of-speech and morphological tag-
ging with state-of-the-art performance on
a number of languages.

1 Introduction

Morphosyntactic tagging accuracy has seen dra-
matic improvements through the adoption of re-
current neural networks—specifically BiLSTMs
(Schuster and Paliwal, 1997; Graves and Schmid-
huber, 2005) to create sentence-level context sen-
sitive encodings of words. A successful recipe is
to first create an initial context insensitive word
representation, which usually has three main parts:
1) A dynamically trained word embedding; 2) a
fixed pre-trained word-embedding, induced from

a large corpus; and 3) a sub-word character model,
which itself is usually the final state of a recurrent
model that ingests one character at a time. Such
word/sub-word models originated with Plank et al.
(2016). Recently, Dozat et al. (2017) used pre-
cisely such a context insensitive word representa-
tion as input to a BiLSTM in order to obtain con-
text sensitive word encodings used to predict part-
of-speech tags. The Dozat et al. model had the
highest accuracy of all participating systems in the
CoNLL 2017 shared task (Zeman et al., 2017).

In such a model, sub-word character-based rep-
resentations only interact indirectly via subsequent
recurrent layers. For example, consider the sen-
tence I had shingles, which is a painful disease.
Context insensitive character and word representa-
tions may have learned that for unknown or infre-
quent words like ‘shingles’, ‘s’ and more so ‘es’ is
a common way to end a plural noun. It is up to the
subsequent BiLSTM layer to override this once it
sees the singular verb is to the right. Note that this
differs from traditional linear models where word
and sub-word representations are directly concate-
nated with similar features in the surrounding con-
text (Giménez and Marquez, 2004).

In this paper we aim to investigate to what ex-
tent having initial sub-word and word context in-
sensitive representations affects performance. We
propose a novel model where we learn context
sensitive initial character and word representa-
tions through two separate sentence-level recur-
rent models. These are then combined via a meta-
BiLSTM model that builds a unified representa-
tion of each word that is then used for syntac-
tic tagging. Critically, while each of these three
models—character, word and meta—are trained
synchronously, they are ultimately separate mod-
els using different network configurations, train-
ing hyperparameters and loss functions. Empiri-
cally, we found this optimal as it allowed control

2643

over the fact that each representation has a differ-
ent learning capacity.

We tested the system on the 2017 CoNLL
shared task data sets and gain improvements com-
pared to the top performing systems for the major-
ity of languages for part-of-speech and morpho-
logical tagging. As we will see, a pattern emerged
where gains were largest for morphologically rich
languages, especially those in the Slavic family
group. We also applied the approach to the bench-
mark English PTB data, where our model achieved
97.9 using the standard train/dev/test split, which
constitutes a relative reduction in error of 12%
over the previous best system.

2 Related Work

While sub-word representations are often at-
tributed to the advent of deep learning in NLP,
it was, in fact, commonplace for linear featurized
machine learning methods to incorporate such rep-
resentations. While the literature is too large to
enumerate, Giménez and Marquez (2004) is a
good example of an accurate linear model that
uses both word and sub-word features. Specifi-
cally, like most systems of the time, they use n-
gram affix features, which were made context sen-
sitive via manually constructed conjunctions with
features from other words in a fixed window.

Collobert and Weston (2008) was perhaps the
first modern neural network for tagging. While
this first study used only word embeddings, a sub-
sequent model extended the representation to in-
clude suffix embeddings (Collobert et al., 2011).

The seminal dependency parsing paper of Chen
and Manning (2014) led to a number of tagging
papers that used their basic architecture of highly
featurized (and embedded) feed-forward neural
networks. Botha et al. (2017), for example, stud-
ied this architecture in a low resource setting using
word, sub-word (prefix/suffix) and induced cluster
features to obtain competitive accuracy with the
state-of-the-art. Zhou et al. (2015), Alberti et al.
(2015) and Andor et al. (2016) extended the work
of Chen et al. to a structured prediction setting, the
later two use again a mix of word and sub-word
features.

The idea of using a recurrent layer over char-
acters to induce a complementary view of a word
has occurred in numerous papers. Perhaps the
earliest is Santos and Zadrozny (2014) who com-
pare character-based LSTM encodings to tradi-

tional word-based embeddings. Ling et al. (2015)
take this a step further and combine the word em-
beddings with a recurrent character encoding of
the word—instead of just relying on one or the
other. Alberti et al. (2017) use characters encod-
ings for parsing. Peters et al. (2018) show that con-
textual embeddings using character convolutions
improve accuracy for number of NLP tasks. Plank
et al. (2016) is probably the jumping-off point for
most current architectures for tagging models with
recurrent neural networks. Specifically, they used
a combined word embedding and recurrent char-
acter encoding as the initial input to a BiLSTM
that generated context sensitive word encodings.
Though, like most previous studies, these initial
encodings were context insensitive and relied on
subsequent layers to encode sentence-level inter-
actions.

Finally, Dozat et al. (2017) showed that sub-
word/word combination representations lead to
state-of-the-art morphosyntactic tagging accuracy
across a number of languages in the CoNLL 2017
shared task (Zeman et al., 2017). Their word rep-
resentation consisted of three parts: 1) A dynam-
ically trained word embedding; 2) a fixed pre-
trained word embedding; 3) a character LSTM en-
coding that summed the final state of the recurrent
model with vector constructed using an attention
mechanism over all character states. Again, the
initial representations are all context insensitive.
As this model is currently the state-of-the-art in
morphosyntactic tagging, it will serve as a base-
line during our discussion and experiments.

3 Models

In this section, we introduce models that we inves-
tigate and experiment with in §4.

3.1 Sentence-based Character Model

The feature that distinguishes our model most
from previous work is that we apply a bidirectional
recurrent layer (LSTM) on all characters of a sen-
tence to induce fully context sensitive initial word
encodings. That is, we do not restrict the context
of this layer to the words themselves (as in Figure
1b). Figure 1a shows the sentence-based character
model applied to an example token in context.

The character model uses, as input, sentences
split into UTF8 characters. We include the spaces
between the tokens1 in the input and map each

1As input, we assume the sentence has been tok-

2644

(a) Sentence-based Character Model. The representation for
the token shingles is the concatenation of the four shaded
boxes. Note the surrounding sentence context affects the
representation.

(b) Token-based Character Modela. The token is repre-
sented by the concatenation of attention over the lightly
shaded boxes with the final cell (dark shaded box). The rest
of the sentence has no impact on the representation.

aThis is specifically the model of Dozat et al. (2017).

Figure 1: Token representations are sensitive to the context in the sentence-based character model (§3.1)
and are context-independent in the token-based character model (§3.2).

character to a dynamically learned embedding.
Next, a forward LSTM reads the characters

from left to right and a backward LSTM reads sen-
tences from right to left, in standard BiLSTM fash-
ion.

More formally, for an n-character sen-
tence, we apply for each character embedding
(echar1 , ..., echarn) a BiLSTM:

f0
c,i, b

0
c,i = BiLSTM(r0, (e

char
1 , ..., echarn))i

As is also typical, we can have multiple such
layers (l) that feed into each other through the con-
catenation of previous layer encodings. The last
layer l has both forward (f l

c,1, ..., f
l
c,n) and back-

ward (blc,1, ..., b
l
c,n) output vectors for each char-

acter.
To create word encodings, we need to combine

a relevant subset of these context sensitive charac-
ter encodings. These word encodings can then be
used in a model that assigns morphosyntactic tags
to each word directly or via subsequent layers. To
accomplish this, the model concatenates up to four
character output vectors: the {forward, backward}
output of the {first, last} character in the token
(F1st(w), Flast(w), B1st(w), Blast(w)). In Fig-
ure 1a, the four shaded boxes indicate these four
outputs for the example token. Thus, the proposed
model concatenates all four of these and passes it
as input to an multilayer perceptron (MLP):

gi = concat(F1st(w),Flast(w),

B1st(w),Blast(w)) (1)

mchars
i = MLP(gi)

A tag can then be predicted with a linear clas-
sifier that takes as input the output of the MLP

enized/segmented.

mchars
i , applies a softmax function and chooses

for each word the tag with highest probability. Ta-
ble 8 investigates the empirical impact of alterna-
tive definitions of gi that concatenate only subsets
of {F1st(w),Flast(w),B1st(w),Blast(w)}.

3.2 Word-based Character Model
To investigate whether a sentence sensitive char-
acter model is better than a character model where
the context is restricted to the characters of a
word, we reimplemented the word-based charac-
ter model of Dozat et al. (2017) as shown in Fig-
ure 1a. This model uses the final state of a unidi-
rectional LSTM over the characters of the word,
combined with the attention mechanism of Cao
and Rei (2016) over all characters. We refer the
reader to those works for more details. Critically,
however, all the information fed to this represen-
tation comes from the word itself, and not a wider
sentence-level context.

3.3 Sentence-based Word Model
We used a similar setup for our context sensitive
word encodings as the character encodings. There
are a few differences. Obviously, the inputs are the
words of the sentence. For each of the words, we
use pretrained word embeddings (pword

1 , ..., pword
n)

summed with a dynamically learned word embed-
ding for each word in the corpus (eword

1 , ..., eword
n):

inword
i = eword

i + pword
i

The summed embeddings ini are passed as in-
put to one or more BiLSTM layers whose output
f l
w,i, b

l
w,i is concatenated and used as the final en-

coding, which is then passed to an MLP

oword
i = concat(f l

w,i, b
l
w,i)

mword
i = MLP(oword

i)

2645

It should be noted, that the output of this BiL-
STM is essentially the Dozat et al. model before
tag prediction, with the exception that the word-
based character encodings are excluded.

3.4 Meta-BiLSTM: Model Combination

Given initial word encodings, both character and
word-based, a common strategy is to pass these
through a sentence-level BiLSTM to create con-
text sensitive encodings, e.g., this is precisely what
Plank et al. (2016) and Dozat et al. (2017) do.
However, we found that if we trained each of the
character-based and word-based encodings with
their own loss, and combined them using an ad-
ditional meta-BiLSTM model, we obtained opti-
mal performance. In the meta-BiLSTM model, we
concatenate the output, for each word, of its con-
text sensitive character and word-based encodings,
and put this through another BiLSTM to create an
additional combined context sensitive encoding.
This is followed by a final MLP whose output is
passed to a linear layer for tag prediction.

cwi = concat(mchar
i ,mword

i)

f l
m,i, b

l
m,i = BiLSTM(r0, (cw0, ..., cwn))i

mcomb
i = MLP(concat(f l

m,i, b
l
m,i))

With this setup, each of the models can be opti-
mized independently which we describe in more
detail in §3.5. Figure 2b depicts the architecture of
the combined system and contrasts it with that of
the Dozat et al. model (Figure 2a).

3.5 Training Schema

As mentioned in the previous section, the char-
acter and word-based encoding models have their
own tagging loss functions, which are trained in-
dependently and joined via the meta-BiLSTM.
I.e., the loss of each model is minimized indepen-
dently by separate optimizers with their own hy-
perparameters. Thus, it is in some sense a multi-
task learning model and we must define a schedule
in which individual models are updated. We opted
for a simple synchronous schedule outline in Al-
gorithm 1. Here, during each epoch, we update
each of the models in sequence—character, word
and meta—using the entire training data.

In terms of model selection, after each epoch,
the algorithm evaluates the tagging accuracy of
the development set and keeps the parameters of
the best model. Accuracy is measured using the

Data: train-corpus, dev-corpus
/* The following models are defined

in §3. */
Input: char-model, word-model, meta-model
/* Model optimizers */
Input: char-opt, word-opt, meta-opt
/* Results are parameter sets for

each model. */
Result: best-char, best-word, best-meta
/* Initialize parameter sets (cf.

Table 1) */
Initialize(pac, paw, pam)
/* Iteration on over training

corpus. */
for epoch = 1 to MAX do

/* Update character model. */
char-logits, char-preds =

char-model(train-corpus, pac)
pac = char-opt.update(char-preds, train-data)
/* Update word model. */
word-logits, word-preds =

word-model(train-corpus, paw)
paw = word-opt.update(char-preds, train-data)
/* Update Meta-BiLSTM model. */
meta-preds = meta-model(train-corpus,
pac, paw, pam)

pam = meta-opt.update(train-corpus,
meta-preds)

/* Evaluate model due to dev set
accuracy. */

F1 = DevEval(parc, parw, parm)
/* Keep the best model. */
if F1 > best-F1 then

best-char = pac; best-word = paw

best-meta = pam; best-F1 = F1
end

end
Algorithm 1: Training procedure for learn-
ing initial character and word-based context
sensitive encodings synchronously with meta-
BiLSTM.

meta-BiLSTM tagging layer, which requires a for-
ward pass through all three models. Though we
use all three losses to update the models, only the
meta-BiLSTM layer is used for model selection
and test-time prediction.

While each of the three models—character,
word and meta—are trained with their own loss
functions, it should be emphasized that training is
synchronous in the sense that the meta-BiLSTM
model is trained in tandem with the two encod-
ing models, and not after those models have con-
verged. Since accuracy from the meta-BiLSTM
model on the development set determines the best
parameters, training is not completely indepen-
dent. We found this to improve accuracy overall.
Crucially, when we allowed the meta-BiLSTM to
back-propagate through the whole network, per-
formance degraded regardless of whether one or
multiple loss functions were used.

2646

Word

Char Embeddings

MLP

classifier

Word Embeddings

Words of a Sentence

7

Attn Final

(a) The overall architecture of Dozat et al. (2017)

Chars of a Sentence

Char Embeddings

MLP

classifier

MLP

classifier

MLP

classifier

Word Embeddings

Words of a Sentence

7

7

(b) The overall architecture of the system. The data flows along
the arrows. The optimizers minimizes the loss of the classifiers
independently and backpropagates along the bold arrows.

Figure 2: Tagging architectures. (a) Dozat et al. (2017); (b) Meta-BiLSTM architecture of this work.

Each language could in theory use separate
hyperparameters, optimized for highest accuracy.
However, for our main experiments we use identi-
cal settings for each language which worked well
for large corpora and simplified things. We pro-
vide an overview of the selected hyperparameters
in §4.1. We explored more settings for selected in-
dividual languages with a grid search and ablation
experiments and present the results in §5.

4 Experiments and Results

In this section, we present the experimental setup
and the selected hyperparameter for the main ex-
periments where we use the CoNLL Shared Task
2017 treebanks and compare with the best systems
of the shared task.

4.1 Experimental Setup
For our main results, we selected one network con-
figuration and set of the hyperparameters. These
settings are not optimal for all languages. How-
ever, since hyperparameter exploration is compu-
tationally demanding due to the number of lan-
guages we optimized these hyperparameters on
initial development data experiments over a few
languages. Table 1 shows an overview of the ar-
chitecture, hyperparameters and the initialization
settings of the network. The word embeddings
are initialized with zero values and the pre-trained
embeddings are not updated during training. The
dropout used on the embeddings is achieved by a
single dropout mask and we use dropout on the in-
put and the states of the LSTM.

Architecture
Model Parameter Value
Chr, Wrd BiLSTM layers 3
Mt BiLSTM layers 1
Chr, Wrd, Mt BiLSTM size 400
Chr, Wrd, Mt Dropout LSTMs 0.33
Chr, Wrd, Mt Dropout MLP 0.33
Wrd Dropout embeddings 0.33
Chr Dropout embeddings 0.05
Chr, Wrd, Mt Nonlinear act. (MLP) ELU

Initialization
Model Parameter Value
Wrd embeddings Zero
Chr embeddings Gaussian
Chr, Wrd, Mt MLP Gaussian

Training
Model Parameter Value
Chr, Wrd, Mt Optimizer Adam
Chr, Wrd, Mt Loss Cross entropy
Chr, Wrd, Mt Learning rate 0.002
Chr, Wrd, Mt Decay 0.999994
Chr, Wrd, Mt Adam epsilon 1e-08
Chr, Wrd, Mt beta1 0.9
Chr, Wrd, Mt beta2 0.999

Table 1: Selected hyperparameters and initializa-
tion of parameters for our models. Chr, Wrd, and
Mt are used to indicate the character, word, and
meta models respectively. The Gaussian distribu-
tion is used with a mean of 0 and variance of 1 to
generate the random values.

As is standard, model selection was done mea-
suring development accuracy/F1 score after each
epoch and taking the model with maximum value
on the development set.

2647

4.2 Data Sets

For the experiments, we use the data sets as pro-
vided by the CoNLL Shared Task 2017 (Zeman
et al., 2017). For training, we use the training sets
which were denoted as big treebanks 2.

We followed the same methodology used in the
CoNLL Shared Task. We use the training tree-
bank for training only and the development sets
for hyperparameter tuning and early stopping. To
keep our results comparable with the Shared Task,
we use the provided precomputed word embed-
dings. We excluded Gothic from our experiments
as the available downloadable content did not in-
clude embeddings for this language.

As input to our system—for both part-of-
speech tagging and morphological tagging—we
use the output of the UDPipe-base baseline system
(Straka and Straková, 2017) which provides seg-
mentation. The segmentation differs from the gold
segmentation and impacts accuracy negatively for
a number of languages. Most of the top perform-
ing systems for part-of-speech tagging used as in-
put UDPipe to obtain the segmentation for the
input data. For morphology, the top system for
most languages (IMS) used its own segmentation
(Björkelund et al., 2017). For the evaluation, we
used the official evaluation script (Zeman et al.,
2017).

4.3 Part-of-Speech Tagging Results

In this section, we present the results of the appli-
cation of our model to part-of-speech tagging. In
our first experiment, we used our model in the set-
ting of the CoNLL 2017 Shared Task to annotate
words with XPOS3 tags (Zeman et al., 2017). We
compare our results against the top systems of the
CoNLL 2017 Shared Task. Table 2 contains the
results of this task for the large treebanks.

Because Dozat et al. (2017) won the challenge
for the majority of the languages, we first com-
pare our results with the performance of their sys-
tem. Our model outperforms Dozat et al. (2017)
in 32 of the 54 treebanks with 13 ties. These ties
correspond mostly to languages where XPOS tag-
ging anyhow obtains accuracies above 99%. Our
model tends to produce better results, especially
for morphologically rich languages (e.g. Slavic

2In the CONLL 2017 Shared Task, a big treebank is one
that contains a development set. In total, there are 55 out of
the 64 UD treebanks which are considered big treebanks.

3These are the language specific fine-grained part-of-
speech tags from the Universal Dependency Treebanks.

CONLL DQM ours RRIE
lang. Winner
cs cac 95.16 95.16 96.91 36.2
cs 95.86 95.86 97.28 35.5
fi 97.37 97.37 97.81 16.7
sl 94.74 94.74 95.54 15.2
la ittb 94.79 94.79 95.56 14.8
grc 84.47 84.47 86.51 13.1
bg 96.71 96.71 97.05 10.3
ca 98.58 98.58 98.72 9.9
grc proiel 97.51 97.51 97.72 8.4
pt 83.04 83.04 84.39 8.0
cu 96.20 96.20 96.49 7.6
it 97.93 97.93 98.08 7.2
fa 97.12 97.12 97.32 6.9
ru 96.73 96.73 96.95 6.7
sv 96.40 96.40 96.64 6.7
ko 93.02 93.02 93.45 6.2
sk 85.00 85.00 85.88 5.9
nl 90.61 90.61 91.10 5.4
fi ftb 95.31 95.31 95.56 5.3
de 97.29 97.29 97.39 4.7
tr 93.11 93.11 93.43 4.6
hi 97.01 97.01 97.13 4.0
es ancora 98.73 98.73 98.78 3.9
ro 96.98 96.98 97.08 3.6
la proiel 96.93 96.93 97.00 2.3
pl 91.97 91.97 92.12 1.9
ar 87.66 87.66 87.82 1.3
gl 97.50 97.50 97.53 1.2
sv lines 94.84 94.84 94.90 1.2
cs clt 89.98 89.98 90.09 1.1
lv 80.05 80.05 80.20 0.8
zh 88.40 85.07 85.10 0.2
da 100.00 99.96 99.96 0.0
es 99.81 99.69 99.69 0.0
eu 99.98 99.96 99.96 0.0
fr sequoia 99.49 99.06 99.06 0.0
fr 99.50 98.87 98.87 0.0
hr 99.93 99.93 99.93 0.0
hu 99.85 99.82 99.82 0.0
id 100.00 99.99 99.99 0.0
ja 98.59 89.68 89.68 0.0
nl lassy 99.99 99.93 99.93 0.0
no bok. 99.88 99.75 99.75 0.0
no nyn. 99.93 99.85 99.85 0.0
ru syn. 99.58 99.57 99.57 0.0
en lines 95.41 95.41 95.39 -0.4
ur 92.30 92.30 92.21 -1.2
he 83.24 82.45 82.16 -1.7
vi 75.42 73.56 73.12 -1.7
gl treegal 91.65 91.65 91.40 -3.0
en 94.82 94.82 94.66 -3.1
en partut 95.08 95.08 94.81 -5.5
pt br 98.22 98.22 98.11 -6.2
et 95.05 95.05 94.72 -6.7
el 97.76 97.76 97.53 -10.3
macro-avg 93.18 93.11 93.40 -

Table 2: Results for XPOS tags. The first column
shows the language acronym, the column named
DQM shows the results of Dozat et al. (2017). Our
system outperforms Dozat et al. (2017) on 32 out
of 54 treebanks and Dozat et al. outperforms our
model on 10 of 54 treebanks, with 13 ties. RRIE
is the relative reduction in error. We excluded ties
in the calculation of macro-avg since these tree-
banks do not contain meaningful xpos tags.

2648

System Accuracy
Søgaard (2011) 97.50
Huang et al. (2015) 97.55
Choi (2016) 97.64
Andor et al. (2016). 97.44
Dozat et al. (2017) 97.41
ours 97.96

Table 3: Results on WSJ test set.

languages), whereas Dozat et al. (2017) showed
higher performance in 10 languages in particular
English, Greek, Brazilian Portuguese and Esto-
nian.

4.4 Part-of-Speech Tagging on WSJ

We also performed experiments on the Penn Tree-
bank with the usual split in train, development and
test set. Table 3 shows the results of our model
in comparison to the results reported in state-of-
the-art literature. Our model significantly out-
performs these systems, with an absolute differ-
ence of 0.32% in accuracy, which corresponds to
a RRIE of 12%.

4.5 Morphological Tagging Results

In addition to the XPOS tagging experiments, we
performed experiments with morphological tag-
ging. This annotation was part of the CONLL
2017 Shared Task and the objective was to predict
a bundle of morphological features for each token
in the text. Our model treats the morphological
bundle as one tag making the problem equivalent
to a sequential tagging problem. Table 4 shows the
results.

Our models tend to produce significantly bet-
ter results than the winners of the CoNLL 2017
Shared Task (i.e., 1.8% absolute improvement on
average, corresponding to a RRIE of 21.20%).
The only cases for which this is not true are
again languages that require significant segmen-
tation efforts (i.e., Hebrew, Chinese, Vietnamese
and Japanese) or when the task was trivial.

Given the fact that Dozat et al. (2017) obtained
the best results in part-of-speech tagging by a sig-
nificant margin in the CoNLL 2017 Shared Task,
it would be expected that their model would also
perform significantly well in morphological tag-
ging since the tasks are very similar. Since they
did not participate in this particular challenge,
we decided to reimplement their system to serve

CONLL DQM ours RRIE
lang. Winner Reimpl.
cs cac 90.72 94.66 96.41 27.9
ru syn. 94.55 96.70 97.53 23.1
cs 93.14 96.32 97.14 22.3
la ittb 94.28 96.45 97.12 18.9
sl 90.08 95.26 96.03 16.2
ca 97.23 97.85 98.13 13.0
fi ftb 93.43 95.96 96.42 11.4
no bok. 95.56 96.95 97.26 10.2
grc proiel 90.24 91.35 92.22 10.1
fr sequoia 96.10 96.62 97.62 10.1
la proiel 89.22 91.52 92.35 9.8
es ancora 97.72 98.15 98.32 9.7
da 94.83 96.62 96.94 9.5
fi 92.43 94.29 94.83 9.5
sv 95.15 96.52 96.84 9.2
pt 94.62 95.89 96.27 9.2
grc 88.00 90.39 91.13 9.0
no nyn. 95.25 96.79 97.08 9.0
de 83.11 89.78 90.70 9.0
ru 87.27 91.99 92.69 8.7
hi 91.03 90.72 91.78 8.1
cu 88.90 88.93 89.82 8.0
fa 96.34 97.23 97.45 7.9
tr 87.03 89.39 90.21 7.7
en partut 92.69 93.93 94.40 7.7
sk 81.23 87.54 88.48 7.5
eu 89.57 92.48 93.04 7.4
pt br 99.73 99.73 99.75 7.4
es 96.34 96.42 96.68 7.3
ko 99.41 99.44 99.48 7.1
ar 87.15 85.45 88.29 6.7
it 97.37 97.72 97.86 6.1
nl lassy 97.55 98.04 98.15 5.2
nl 90.04 92.06 92.47 5.2
pl 86.53 91.71 92.14 5.2
ur 81.03 83.16 84.02 5.1
bg 96.47 97.71 97.82 4.8
hr 85.82 90.64 91.50 3.8
he 85.06 79.34 79.76 2.0
et 84.62 88.18 88.25 0.6
zh 92.90 87.67 87.74 0.6
vi 86.92 82.23 82.30 0.4
ja 96.84 89.65 89.66 0.1
en lines 99.96 99.99 99.99 0.0
fr 96.12 95.98 95.98 0.0
gl 99.78 99.72 99.72 0.0
id 99.55 99.50 99.50 0.0
ro 96.24 97.26 97.26 0.0
sv lines 99.98 99.98 99.98 0.0
cs cltt 87.88 90.41 90.36 -0.5
lv 84.14 87.00 86.92 -0.6
el 91.37 94.00 93.92 -1.3
hu 72.61 82.67 82.44 -1.3
en 94.49 95.93 95.71 -5.4
macro-avg 91.51 92.89 93.31 -

Table 4: Results for morphological features. The
column CoNLL Winner shows the top system of
the ST 17, the DQM Reimpl. shows our reimple-
mentation of Dozat et al. (2017), the column ours
shows our system with a sentence-based charac-
ter model; RRIE gives the relative reduction in
error between the Reimpl. DQM and sentence-
based character system. Our system outperforms
the CoNLL Winner by 48 out of 54 treebanks and
the reimplementation of DQM, by 43 of 54 tree-
banks, with 6 ties.

2649

as a strong baseline. As expected, our reimple-
mentation of Dozat et al. (2017) tends to signif-
icantly outperform the winners of the CONLL
2017 Shared Task. However, in general, our mod-
els still obtain better results, outperforming Dozat
et al. on 43 of the 54 treebanks, with an absolute
difference of 0.42% on average.

5 Ablation Study

The model proposed in this paper of a Meta-
BiLSTM with a sentence-based character model
differs from prior work in multiple aspects. In this
section, we perform ablations to determine the rel-
ative impact of each modeling decision.

For the experimental setup of the ablation ex-
periments, we report accuracy scores for the de-
velopment sets. We split off 5% of the sentences
from each training corpus and we use this part for
early stopping. Ablation experiments are either
performed on a few selected treebanks to show
individual language results or averaged across all
treebanks for which tagging is non-trivial.

Impact of the Training Schema We first com-
pare jointly training the three model components
(Meta-BiLSTM, character model, word model) to
training each separately. Table 5 shows that sep-
arately optimized models are significantly more
accurate on average than jointly optimized mod-
els. Separate optimization leads to better accu-
racy for 34 out of 40 treebanks for the morpho-
logical features task and for 30 out of 39 tree-
banks for xpos tagging. Separate optimization out-
performed joint optimization by up to 2.1 percent
absolute, while joint never out-performed separate
by more than 0.5% absolute. We hypothesize that
separately training the models forces each sub-
model (word and character) to be strong enough
to make high accuracy predictions and in some
sense serves as a regularizer in the same way that
dropout does for individual neurons.

Impact of the Sentence-based Character Model
We compared the setup with sentence-based char-
acter context (Figure 1a) to word-based character
context (Figure 1b). We selected for these experi-
ments a number of morphological rich languages.
The results are shown in Table 6. The accuracy
of the word-based character model joint with a
word-based model were significantly lower than
a sentence-based character model. We conclude
also from these results and comparing with results

Optimization Avg. F1 Score Avg. F1 Score
morphology xpos

separate 94.57 94.85
jointly 94.15 94.48

Table 5: Comparison of optimization methods:
Separate optimization of the word, character and
meta model is more accurate on average than full
back-propagation using a single loss function.The
results are statistically significant with two-tailed
paired t-test for xpos with p<0.001 and for mor-
phology with p <0.0001.

dev. set word char model sentence char model
el 89.05 93.41
la ittb 93.22 95.69
ru 88.94 92.31
tr 87.78 90.77

Table 6: F1 score for selected languages on sen-
tence vs. word level character models for the pre-
diction of morphology using late integration.

dev. set num. mean mean mean stdev stdev stdev
lang. exp. char word joint char word joint
el 10 96.43 95.36 97.01 0.13 0.11 0.09
grc 10 88.28 73.52 88.85 0.21 0.29 0.22
la ittb 10 91.45 87.98 91.94 0.14 0.30 0.05
ru 10 95.98 93.50 96.61 0.06 0.17 0.07
tr 10 93.77 90.48 94.67 0.11 0.33 0.14

Table 7: F1 score for the character, word and
joint models. The standard deviation of 10 ran-
dom restarts of each model is show in the last three
columns. The differences in means are all statisti-
cally significant at p < 0.001 (paired t-test).

of the reimplementation of DQM that early inte-
gration of the word-based character model per-
forms much better as late integration via Meta-
BiLSTM for a word-based character model.

Impact of the Meta-BiLSTM Model Combina-
tion The proposed model trains word and char-
acter models independently while training a joint
model on top. Here we investigate the part-of-
speech tagging performance of the joint model
compared with the word and character models on
their own (using hyperparameters from in 4.1).

Table 5 shows, for selected languages, the re-
sults averaged over 10 runs in order to measure
standard deviation. The examples show that the
combined model has significantly higher accuracy
compared with either the character and word mod-
els individually.

2650

dev. set. Flast F1st Flast F1st

lang. B1st Blast Blast B1st DQM |xpos|
el 96.6 96.6 96.2 96.1 95.9 16
grc 87.3 87.1 87.1 86.8 86.7 3130
la ittb 91.1 91.5 91.9 91.3 91.0 811
ru 95.6 95.4 95.6 95.3 95.8 49
tr 93.5 93.3 93.2 92.5 93.9 37

Table 8: F1 score of char models and their per-
formance on the dev. set for selected languages
with different gather strategies, concatenate to gi
(Equation 1). DQM shows results for our reimple-
mentation of Dozat et al. (2017) (cf. §3.2), where
we feed in only the characters. The final column
shows the number of xpos tags in the training set.

Concatenation Strategies for the Context-
Sensitive Character Encodings The proposed
model bases a token encoding on both the for-
ward and the backward character representations
of both the first and last character in the token
(see Equation 1). Table 8 reports, for a few mor-
phological rich languages, the part-of-speech tag-
ging performance of different strategies to gather
the characters when creating initial word encod-
ings. The strategies were defined in §3.1. The
Table also contains a column with results for our
reimplementation of Dozat et al. (2017). We re-
moved, for all systems, the word model in order to
assess each strategy in isolation. The performance
is quite different per language. E.g., for Latin, the
outputs of the forward and backward LSTMs of
the last character scored highest.

Sensitivity to Hyperparameter Search We
picked Vietnamese for a more in-depth analysis
since it did not perform well and investigated the
influence of the sizes of LSTMs for the word and
character model on the accuracy of development
set. With larger network sizes, the capacity of the
network increases, however, on the other hand it
is prune to overfitting. We fixed all the hyperpa-
rameters except those for the network size of the
character model and the word model, and ran a
grid search over dimension sizes from 200 to 500
in steps of 50. The surface plot in 3 shows that
the grid peaks with more moderate settings around
350 LSTM cells which might lead to a higher ac-
curacy. For all of the network sizes in the grid
search, we still observed during training that the
accuracy reach a high value and degrades with
more iterations for the character and word model.
This suggests that future variants of this model
might benefit from higher regularization.

Figure 3: 3D surface plot for development set ac-
curacy for XPOS (y-axis) depending on LSTM
size of the character and word model for the
Vietnamese treebank. The snapshot is take after
195 training epochs and we average the values of
neighboring epochs.

Discussion Generally, the fact that different
techniques for creating word encodings from char-
acter encodings and different network sizes can
lead to different accuracies per language suggests
that it should be possible to increase the accuracy
of our model on a per language basis via a grid
search over all possibilities. In fact, there are many
variations on the models we presented in this work
(e.g., how the character and word models are com-
bined with the meta-BiLSTM). Since we are using
separate losses, we could also change our train-
ing schema. For example, one could use methods
like stack-propagation (Zhang and Weiss, 2016)
where we burn-in the character and word models
and then train the meta-BiLSTM backpropagating
throughout the entire network.

6 Conclusions

We presented an approach to morphosyntactic tag-
ging that combines context-sensitive initial char-
acter and word encodings with a meta-BiLSTM
layer to obtain state-of-the art accuracies for a
wide variety of languages.

Acknowledgments

We would like to thank the anonymous reviewers
as well as Terry Koo, Slav Petrov, Vera Axelrod,
Kellie Websterk, Jan Botha, Kuzman Ganchev,
Zhuoran Yu, Yuan Zhang, Eva Schlinger, Ji Ma,
and John Alex for their helpful suggestions, com-
ments and discussions.

2651

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry Koo,
Ji Ma, Mark Omernick, Slav Petrov, Chayut
Thanapirom, Zora Tung, and David Weiss. 2017.
Syntaxnet models for the conll 2017 shared task
http://arxiv.org/abs/1703.04929.

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing and
tagging with neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing. pages 1354–1359.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
Berlin, Germany, pages 2442–2452.

Anders Björkelund, Agnieszka Falenska, Xiang Yu,
and Jonas Kuhn. 2017. Ims at the conll 2017 ud
shared task: Crfs and perceptrons meet neural net-
works. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Association for Computational
Linguistics, Vancouver, Canada, pages 40–51.

Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov,
Alex Salcianu, David Weiss, Ryan McDonald, and
Slav Petrov. 2017. Natural language processing with
small feed-forward networks. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, pages 2879–2885.

Kris Cao and Marek Rei. 2016. A joint model for word
embedding and word morphology. In Proceedings
of the 1st Workshop on Representation Learning for
NLP. pages 18–26.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP). pages 740–750.

Jinho D. Choi. 2016. Dynamic Feature Induction: The
Last Gist to the State-of-the-Art. In Proceedings of
the 15th Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. San Diego, CA, NAACL’16, pages 271–
281.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.

2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
Vancouver, Canada, August 3-4, 2017. pages 20–30.

Jesús Giménez and Lluis Marquez. 2004. Fast and ac-
curate part-of-speech tagging: The svm approach re-
visited. Recent Advances in Natural Language Pro-
cessing III pages 153–162.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging
http://arxiv.org/abs/1508.01991.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1520–1530.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations http://arxiv.org/abs/1802.05365.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
412–418.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14). pages
1818–1826.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Anders Søgaard. 2011. Semisupervised condensed
nearest neighbor for part-of-speech tagging. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, HLT ’11, pages 48–52.

http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365

2652

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Association for Computational
Linguistics, Vancouver, Canada, pages 88–99.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. Association for Computational Linguistics,
Vancouver, Canada, pages 1–19.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1557–
1566.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun
Chen. 2015. A neural probabilistic structured-
prediction model for transition-based dependency
parsing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Beijing, China, pages 1213–
1222.

