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Abstract

We propose a novel approach to OCR
post-correction that exploits repeated texts
in large corpora both as a source of noisy
target outputs for unsupervised training
and as a source of evidence when decod-
ing. A sequence-to-sequence model with
attention is applied for single-input correc-
tion, and a new decoder with multi-input
attention averaging is developed to search
for consensus among multiple sequences.
We design two ways of training the cor-
rection model without human annotation,
either training to match noisily observed
textual variants or bootstrapping from a
uniform error model. On two corpora of
historical newspapers and books, we show
that these unsupervised techniques cut the
character and word error rates nearly in
half on single inputs and, with the addi-
tion of multi-input decoding, can rival su-
pervised methods.

1 Introduction

Optical character recognition (OCR) software has
made vast quantities of printed material available
for retrieval and analysis, but severe recognition
errors in corpora with low quality of printing and
scanning or physical deterioration often hamper
accessibility (Chiron et al., 2017). Many digitiza-
tion projects have employed manual proofreading
to further correct OCR output (Holley, 2009), but
this is time consuming and depends on fostering
a community of volunteer workers. These prob-
lems with OCR are exacerbated in library-scale
digitization by commercial (e.g., Google Books,
Newspapers.com), government (e.g., Library of
Congress, Bibliotheque nationale de France), and
nonprofit (e.g., Internet Archive) organizations.

The scale of these projects not only makes it dif-
ficult to adapt OCR models to their diverse lay-
outs and typefaces but also makes it impractical to
present any OCR output other than a single-best
transcript.

Existing methods for automatic OCR post-
correction are mostly supervised methods that cor-
rect recognition errors in a single OCR output (Ko-
lak and Resnik, 2002; Kolak et al., 2003; Yama-
zoe et al., 2011). Those systems are not scalable
since human annotations are expensive to acquire,
and they are not capable of utilizing complemen-
tary sources of information. Another line of work
is ensemble methods (Lund et al., 2013, 2014)
combining OCR results from multiple scans of the
same document. Most of these ensemble meth-
ods, however, require aligning multiple OCR out-
puts (Lund and Ringger, 2009; Lund et al., 2011),
which is intractable in general and might introduce
noise into the later correction stage. Furthermore,
voting-based ensemble methods (Lund and Ring-
ger, 2009; Wemhoener et al., 2013; Xu and Smith,
2017) only work where the correct output exists
in one of the inputs, while classification methods
(Boschetti et al., 2009; Lund et al., 2011; Al Azawi
etal., 2015) are also trained on human annotations.

To address these challenges, we propose an un-
supervised OCR post-correction framework both
to correct single input text sequences and also to
exploit multiple candidate texts by simultaneously
aligning, correcting, and voting among input se-
quences. Our proposed method is based on the
observation that significant number of duplicate
and near-duplicate documents exist in many cor-
pora (Xu and Smith, 2017), resulting in OCR out-
put containing repeated texts with various quality.
As shown by the example in Table 1, different er-
rors (characters in red) are introduced when the
OCR system scans the same text in multiple edi-
tions, each with its own layout, fonts, etc. For ex-
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ample, in is recognized as m in the first output and
a is recognized as u in the third output, while the
second output is correctly recognized. Therefore,
duplicated texts with diverse errors could serve
as complementary information sources for each
other.

OCR eor**y that I have been slam in battle, for 1
Output sorry that I have been slain in battle, for I

sorry tha’ I have been s_uin in battle, f_r I
?;;%mal sorry that I have been slain in battle, for I

Table 1: Example duplicate texts in OCR’d digital corpora

In this paper, we aim to train an unsupervised
correction model via utilizing the duplication in
OCR output. We propose to map each erroneous
OCR’d text unit to either its high-quality dupli-
cation or a consensus correction among its du-
plications via bootstrapping from an uniform er-
ror model. The baseline correction system is a
sequence-to-sequence model with attention (Bah-
danau et al., 2015), which has been shown to be ef-
fective in text correction tasks (Chollampatt et al.,
2016; Xie et al., 2016).

We also seek to improve the correction perfor-
mance for duplicated texts by integrating multi-
ple inputs. Previous work on combining mul-
tiple inputs in neural translation deal with data
from different domains, e.g., multilingual (Zoph
and Knight, 2016) or multimodal (Libovicky and
Helcl, 2017) data. Therefore, their models need
to be trained on multiple inputs to learn parame-
ters to combine inputs from each domain. Given
that the inputs of our task are all from the same
domain, our model is trained on a single input
and introduces multi-input attention to generate
a consensus result merely for decoding. It does
not require learning extra parameters for atten-
tion combination and thus is more efficient to
train. Furthermore, average attention combina-
tion, a simple multi-input attention mechanism, is
proposed to improve both the effectiveness and ef-
ficiency of multi-input combination on the OCR
post-correction task.

We experiment with both supervised and un-
supervised training and with single- and multi-
input decoding on data from two manually tran-
scribed collections in English with diverse type-
faces, genres, and time periods: newspaper arti-
cles from the Richmond (Virginia) Daily Dispatch
(RDD) from 1860-1865 and books from 1500—

1800 from the Text Creation Partnership (TCP).
For both collections, which were manually tran-
scribed by other researchers and are in the pub-
lic domain, we aligned the one-best output of an
OCR system to the manual transcripts. We also
aligned the OCR in the training and evaluation sets
to other public-domain newspaper issues (from the
Library of Congress) and books (from the Inter-
net Archive) to find multiple duplicates as “wit-
nesses”’, where available, for each line. Experi-
mental results on both datasets show that our pro-
posed averarge attention combination mechanism
is more effective than existing methods in integrat-
ing multiple inputs. Moreover, our noisy error cor-
rection model achieves comparable performance
with the supervised model via multiple-input de-
coding on duplicated texts.

In summary, our contributions are: (1) a scal-
able framework needing no supervision from hu-
man annotations to train the correction model; (2)
a multi-input attention mechanism incorporating
aligning, correcting, and voting on multiple se-
quences simultaneously for consensus decoding,
which is more efficient and effective than exist-
ing ensemble methods; and (3) a method that cor-
rects text either with or without duplicated ver-
sions, while most existing methods can only deal
with one of these cases.

2 Data Collection

We perform experiments on one-best OCR out-
put from two sources: two million issues from the
Chronicling America collection of historic U.S.
newspapers, which is the largest public-domain
full-text collection in the Library of Congress;'
and three million public-domain books in the In-
ternet Archive.’

For supervised training and for evaluation, we
aligned manually transcribed texts to these one-
best OCR transcripts: 1384 issues of the Rich-
mond (Virginia) Daily Dispatch from 1860-1865
(RDD)? and 934 books from 1500-1800 from the

'chroniclingamerica.loc.gov: Historical
newspapers also constitute the largest digitized text col-
lections in the Australian National Library (Trove) and the
Europeana consortium.

Mttps://archive.org/details/texts.
Google Books and the Hathi Trust consortium also hold
many in-copyright books and require licensing agreements
to access public-domain materials.

*dlxs.richmond.edu/d/ddr/: the transcription
from the University of Richmond includes all articles but only
some advertisements.
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Text Creation Partnership (TCP).* Both of these
manually transcribed collections, which were pro-
duced independently from the current authors, are
in the public domain and in English, although both
Chronicling America and the Internet Archive also
contain much non-English text.

To get more evidence for the correct reading of
an OCR’d line, we aligned each OCR’d RDD is-
sue to other issues of the RDD and other newspa-
pers from Chronicling America and aligned each
OCR’d TCP page to other pre-1800 books in the
Internet Archive. To perform these alignments be-
tween noisy OCR transcripts efficiently, we used
methods from our earlier work on text-reuse anal-
ysis (Smith et al., 2014; Wilkerson et al., 2015).
An inverted index of hashes of word 5-grams was
produced, and then all pairs from different pages
in the same posting list were extracted. Pairs of
pages with more than five shared hashed 5-grams
were aligned with the Smith-Waterman algorithm
with equal costs for insertion, deletion, and sub-
stitution, which returns a maximally aligned sub-
sequence in each pair of pages (Smith and Water-
man, 1981). Aligned passages that were at least
five lines long in the target RDD or TCP text were
output. For each target OCR line—i.e., each line
in the training or test set—there are thus, in addi-
tion to the ground-truth manual transcript, zero or
more witnesses from similar texts, to use the term
from textual criticism.

In our experiments on OCR correction, each
training and test example is a line of text follow-
ing the layout of the scanned image documents>.
The average number of characters per line is 42.4
for the RDD newspapers and 53.2 for the TCP
books. Table 2 lists statistics for the number of
OCR’d text lines with manual transcriptions and
additional witnesses. 43% of the manually tran-
scribed lines have witnesses in the RDD newspa-
pers, and 64% of them have witnesses in the TCP
books. In the full Chronicling America data, 44%
of lines align to at least one other witness. Al-
though not all OCR collections will have this level
of repetition, it is notable that these collections,
which are some of the largest public-domain dig-
ital libraries, do exhibit this kind of reprinting.
Similarly, at least 25% of the pages in Google’s
web crawls are duplicates (Henzinger, 2006). Al-
though we exploit text reuse, where available, to

. textcreationpartnership.org

SThe datasets can be downloaded from http://www.
ccs.neu.edu/home/dongrui/ocr.html

improve decoding and unsupervised training, we
also show (Table 5) significant improvements to
OCR accuracy with only a single transcript.

Dataset # Lines # Lines_
w/manual | w/manual & witnesses

RDD 2.2M 0.95M (43%)

TCP 8.6M 5.5M (64%)

Table 2: Statistics for the number of OCR’d lines in million
(M) from the Richmond Dispatch and TCP Books with man-
ual transcriptions (Column 1) or with both transcriptions and
multiple witnesses (Column 2).

3 Methods

In this section, we first define our problem in
§3.1, followed by model description. In gen-
eral, we train an OCR error correction model via
an attention-based RNN encoder-decoder, which
takes a single erroneous OCR’d line as input and
outputs the corrected text (§3.2). At decoding
time, multi-input attention combination strategies
are introduced to allow the decoder to integrate in-
formation from multiple inputs (§3.3). Finally, we
discuss several unsupervised settings for training
the correction model in §3.4.

3.1 Problem Definition

Given a line of OCR’d text x, comprising the se-
quence of characters [x1, - -, z7g], our goal is to
map it to an error-free text y = [y1,- -, yp,] via
modeling p(y|x). Given p(y|x), we also seek to
model p(y|X) to search for consensus among du-
plicated texts X, where X = [x1, -+, x] are du-
plicated lines of OCR’d text.

3.2 Attention-based Seq2Seq Model

Similar to previous work (Bahdanau et al., 2015),
the encoder is a bidrectional RNN (Schuster and
Paliwal, 1997) that converts source sequence x =
[x1,---,z7,] into a sequence of RNN states h =
[h1,- -+, hrg], where h; = [ﬁl, %1] is a concate-
nation of both forward and backward hidden states
at time step i(1 < i < Tg). We have

W= (4, ﬁifl); W= f(l‘i,%iﬂ), (1)
here f is the dynamic function, e.g., LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014).

The decoder RNN predicts the output sequence
y = [y1,- -, yr,], through the following dynam-
ics and prediction model:

st = f(Yt—1,5t—1,¢t); ()
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P(Ytly<t, X) = g(Ye—1, 5t, 1), 3)

where s; is the RNN state and ¢; is the context
vector at time t. ¥, is the predicted symbol from
the target vocabulary at time ¢ via prediction func-
tion g(-). The context vector is given as a linear
combination of the encoder hidden states:

Ts
ct = E apihi; o=
i1

where a4 ; is the weight for each hidden state h;
and 7 is the function that computes the strength of
each encoder hidden state according to current de-
coder hidden state. The loss function is the cross-
entropy loss per time step summed over the output
sequence y:

eN(se—1,hi)

5, e i @

Ts

= > logp(yilx,y<t) (5
t=1

3.3 Multi-input Attention

L(x,y)

Given a trained Seq2Seq model p(y|x), our goal
is to combine multiple input sequences X to gen-
erate the target sequence y, i.e., to utilize infor-
mation from multiple sources at decoding time.
Assume that N relevant source sequences X =
[x1,---,xn] are observed, where each sequence
x; = [z11,--, 2] (1 <1 < N)and T is the
length of the [*" sequence. Then, a sequence of
hidden states h; = [h; 1, - -, by 1;] is generated by
the encoder network for each input sequence x;.
At each decoding time step ¢, the decoder searches
through encoder hidden states H = [hy,---, hy]
to compute a global context vector ¢;. Different
strategies to combine attention from multiple en-
coders are described as follows.

Flat Attention Combination. Flat attention com-
bination assigns a weight oy ;; to each encoder
hidden state h; ; for each input sequence x; as:

en(st—1,h:)
Qi = . 6
H S ZTZ, n(se—1,hy ) ©
Therefore, the global context vector is given by
N T
Ct = Z Z atih;. (7
I=1i=1

Flat attention combination is similar to single-
input decoding in that it concatenates all inputs
into a long sequence, except that the encoder hid-
den states are computed independently for each in-
put.

Hierarchical Attention Combination. The struc-
ture of hierarchical attention combination is pre-
sented in Figure 1. We first compute a context
vector for each input as:

en(st—1,h:)

T,
Ci = Zat,l,ihl,i; gl =
i=1

ZZIZI en(st—1,h17)

®)
Then a global context vector ¢; is computed as a
weighted sum of all the context vectors:

N
Ct = Z/Bt,lct,h 9
i=1

where (3, is the weight assigned to each context
vector ¢;; and computed in different ways as fol-
lows:

(a) Weighted Attention Combination. In
weighted attention combination, the weight for
each context vector is given by its dot product
with the decoder state in the transformed common
space:

en(st—lvct,l)
Bra = SC=E (10)
(b) Average Attention Combination. In aver-

age attention combination, each input sequence is

: 1
treated as equally weighted. Thus 3;; = 4 for
each input sequence x;. It is more efficient than
the weighted attention combination in that it does
not need to compute a weight for each input.

Decoder

<space> n <eos>

wm N “ ' “

i h e<space>0 N Attentlon

i i ; ’ .
Encoder U: pa :D (
< Attention

<space> O

Figure 1: Hierarchical attention combination.

These attention-combination methods do not
have parameters trained on multiple inputs and are
only introduced at decoding time. In contrast, Li-
bovicky and Helcl (2017) and Zoph and Knight
(2016) introduce parameters for each type of input
and require training and decoding with the same
number of inputs.
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3.4 Training Settings

In this section, we introduce different settings
for training our correction model, a single-input
attention-based Seq2Seq model (§3.2), which
transforms each OCR’d text line into a corrected
version generated via different mechanisms.
Supervised Training. In this setting, the correc-
tion model is trained to map each OCR’d line into
the corresponding manual transcription, i.e., the
human annotation. We call the correction model
trained in this setting Seq2Seq-Super.
Unsupervised Training. In the absence of ground
truth transcriptions, we can use different meth-
ods to generate a noisy corrected version for each
OCR’d line.

(a) Noisy Training. In this setting, the correc-
tion model is trained to transform each OCR’d text
line to a selected high-quality witness. The quality
of the witnesses is measured by a 5-gram charac-
ter language model built on the New York Time
Corpus (Sandhaus, 2008) with KenLLM toolkit
(Heafield, 2011). For each OCR’d line with mul-
tiple witnesses, a score is assigned to each witness
by the language model, divided by the number of
characters in it to reduce the effect of the length of
a witness. Then a witness with the highest score
is chosen as the noisy ground truth for each line.
Those lines with low score for all witnesses are
removed. We call the correction model trained in
this setting Seq2Seq-Noisy.

(b) Synthetic Training. In this setting, the er-
ror correction model is trained to recover a man-
ually corrupted out-of-domain corpus. We con-
struct the synthetic dataset by injecting uniformly
distributed insertion, deletion and substitution er-
rors into the New York Times corpus. Firstly,
the news articles are split into lines with random
length between [1, 70] following a Gaussian distri-
bution N (45, 5), which is similar to that of the real
world dataset. Then, a certain number of lines are
randomly selected and injected with equal num-
ber of insertion, deletion and substitution errors.
The correction model is then trained to recover the
original line from each corrupted line. We call this
model Seq2Seq-Syn.

(c) Synthetic Training with Bootstrapping. In
this setting, we propose to further improve the per-
formance of synthetic training via bootstrapping.
The correction model trained on synthetic dataset
does not perform well when correcting a given in-
put from real world dataset, due to their difference

in error distributions. But it achieves compara-
ble performance with the supervised model when
decoding lines with multiple witnesses, since the
model could further benefit from jointly aligning
and voting among multiple inputs. Thus, with
the multi-input attention mechanism introduced
in §3.3, we first generate a high-quality consen-
sus correction for each OCR’d line with witnesses
via the correction model trained on synthetic data.
Then, the a bootstrapped model is trained to trans-
form those lines into their consensus correction re-
sults. We call the correction model trained in this
setting Seq2Seq-Bootstrap.

4 Experiments

In this section, we first introduce the details of
our experimental setup (§4.1). Then, the results
of preliminary experiments comparing the perfor-
mance of different options for the single-input
Seq2Seq model and the multi-input attention com-
bination strategies are presented in §4.2. The main
experimental results for evaluating the correction
model trained in different training settings and de-
coded with/without multi-input attention are re-
ported and explained in §4.3. Further discussions
of our model are described in §4.4.

4.1 Experimental Setup

We begin by describing the data split, training de-
tails, baseline systems, and evaluation metrics.

4.1.1 Training Details

For both RDD newspapers and TCP books, we
randomly split the OCR’d lines into 80% training
and 20% test either by the date of the newspaper or
by the name of the books. For the RDD newspa-
pers, we have 1.7M training lines and 0.44M test
lines. For the TCP books, 2.8M lines are randomly
sampled from the whole training set for different
training settings to conduct a fair comparison with
noisy training, and about 1.6M lines are used for
testing.

Both the encoder and decoder of our model
has 3 layers with 400 hidden units for each layer,
where GRU is applied as the dynamic function.
Adam optimizer with a learning rate of 0.0003 and
default decay rates is used to train the correction
model . We train up to 40 epochs with a mini-
batch size of 128 and select the model with the
lowest perplexity on the development set. The de-
coder implements beam search with a beam width
of 100.
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4.1.2 Baselines and Comparisons

In preliminary experiments, we first compare the
neural translation model (§3.2) with a commonly
used Seq2Seq model, pruned conditional random
fields (PCRF) (Schnober et al., 2016) on the
single-input correction task. CRF models have
been shown to be very competitve on tasks such
as OCR post-correction, spelling correction, and
lemmatization. After that, we compare the differ-
ent multi-input attention strategies introduced in
§3.3 on multi-input correction task to choose the
best strategy for the main experiments.

In the main experiment, we compare the per-
formance of correction models trained in differ-
ent training settings and decode with and with-
out multiple witnesses. Two ensembles methods,
language model ranking (LMR) and majority vote
(Xu and Smith, 2017), are also considered as un-
supervised baseline methods. LMR chooses a sin-
gle high-quality witness for each OCR’d line by
a language model as the correction for that line.
Majority vote first aligns multiple input sequences
using a greedy pairwise algorithm (since multiple
sequence alignment is intractable) and then votes
on each position in the alignment, with a slight ad-
vantage given to the original OCR output in case
of ties. We also tried to use an exact unsupervised
method for consensus decoding based on dual de-
composition (Paul and Eisner, 2012). Their imple-
mentation, unfortunately, turned out not to return a
certificate of completion on most lines in our data
even after thousands of iterations.

4.1.3 Evaluation Metrics

Word error rate (WER) and character error rate
(CER) are used to compare the performance of
each method. Case is ignored. Lattice word er-
ror rate (LWER) and lattice character error rate
(LCER) are also computed as the oracle perfor-
mance for each method, which could reveal the
capability of each model to be applied to down-
stream tasks taking lattices as input, e.g., re-
ranking or retrieval of the correction hypothe-
ses (Taghva et al., 1996; Lam-Adesina and Jones,
2006). We compute the macro average for each
type of error rate, which allows us to use a paired
permutation significance test.

4.2 Preliminary Experiments

In this section, we conduct two preliminary ex-
periments to study different options for both the

single-input correction models and the multi-input
attention combination strategies.

4.2.1 Single Input Correction Model
Model CER WER
None 0.18133 0.41780
PCRF(order:S,wz4) 01 1403 0251 1 6
PCRF(order=5,w=6) | 0.11535 0.25617
Attn 0.11028* | 0.23405*

Table 3: CER and WER on single-input correction for
PCRF and Attn-Seq2Seq on RDD newspapers. Results from
Attn-Seq2Seq that are significantly better than the PCRF are
highlighted with *(p < 0.05, paired permutation test). The
best result for each column is in bold.

We first compare the attention-based Seq2Seq
(Attn-Seq2Seq) model, with a traditional Seq2Seq
model, PCRF, on single input correction task.
As the PCRF implementation of Schnober et al.
(2016) is highly memory and time consuming for
training on long sequences, we compare it with
Attn-Seq2Seq model on a smaller dataset with
100K lines randomly sampled from RDD news-
papers training set. The trained correction model
is then applied to correct the full test set. CER
and WER of the correction results from both mod-
els are listed in Table 3. We can find that the
Attn-Seq2Seq neural translation model works sig-
nificantly better than the PCRF when trained on a
dataset of the same size. The performance of the
Attn-Seq2seq model could be further improved by
including more training data or by multi-input de-
coding for duplicated texts, while the PCRF could
only be trained on limited data and is not able to
work on multiple inputs. Thus, we choose Attn-
Seq2Seq as our error correction model.

4.2.2 Multi-input Attention Combination

We also compare different attention combination
strategies on a multi-input decoding task. The re-
sults from Table 4 reveal that average attention
combination performs best among all the decod-
ing strategies on RDD newspapers and TCP books
datasets. It reduces the CER of single input de-
coding by 41.5% for OCR’d lines in RDD news-
papers and 9.76% for TCP books. = The com-
parison between two hierarchical attention com-
bination strategies shows that averaging evidence
from each input works better than a weighted sum-
mation mechanism. Flat attention combination,
which merges all the inputs into a long sequence
when computing the strength of each encoder hid-
den state, obtains the worst performance in terms
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Decode RDD Newspapers TCP Books
CER LCER WER LWER CER LCER WER LWER
None 0.15149 0.04717 | 0.37111 | 0.13799 0.10590 0.07666 0.30549 0.23495
Single 0.07199 0.03300 | 0.14906 | 0.06948 0.04508 0.01407 0.11283 0.03392
Flat 0.07238 | 0.02904* | 0.15818 | 0.06241* | 0.05554 0.01727 0.13487 0.04079
Weighted | 0.06882* | 0.02145* | 0.15221 | 0.05375 0.05516 | 0.01392* 0.1330 0.03669
Average | 0.04210* | 0.01399 * | 0.09397 | 0.02863* | 0.04072* | 0.01021* | 0.09786* | 0.02092*

Table 4: Results of correcting lines in the RDD newspapers and TCP books with multiple witnesses when decoding with
different strategies using the same supervised model. Attention combination strategies that statistically significantly outperform
single-input decoding are highlighted with * (p < 0.05, paired-permutation test). Best result for each column is in bold.

of both CER and WER.

4.3 Main Results

We now present results on the full training and
test sets for the Richmond Daily Dispatch news-
papers and Text Creation Partnership books. All
results are on the same test set. The multi-input de-
coding experiments have access to additional wit-
nesses for each line, where available, but fall back
to single-input decoding when no additional wit-
nesses are present for a given line.

Table 5 presents the results for our model
trained in different training settings as well as
the baseline language model reranking (LMR) and
majority vote methods. Multiple input decoding
performs better than single input decoding for ev-
ery training setting, and the model trained in su-
pervised mode with multi-input decoding achieves
the best performance. The majority vote base-
line, which works only on more than two in-
puts, performs worst on both the TCP books
and RDD newspapers. Our proposed unsuper-
vised framework Seq2Seq-Noisy and Seq2Seq-
Boots achieves performance comparable with the
supervised model via multi-input decoding on the
RDD newspaper dataset. The performance of
Seq2Seq-Noisy is worse on the TCP Books than
the RDD newspapers, since those old books con-
tain the character long s ®, which is formerly used
where s occurred in the middle or at the begin-
ning of a word. These characters are recognized
as f in all the witnesses because of similar shape.
Thus, the model trained on noisy data are unable
to correct them into s. Nonetheless, by removing
the factor of long s, i.e., replacing the long s in the
ground truth with f, Seq2Seq-Noisy could achieve
a CER of 0.062 for single-input decoding and
0.058 for multi-input decoding on the TCP books.
Both Seq2Seq-Syn and Seq2Seq-Boots work bet-
ter on the RDD newspapers than the TCP books

*https://en.wikipedia.org/wiki/Long_s

dataset. We conjecture that it is because the syn-
thetic dataset is trained on (modern) newspapers,
which are more similar to the nineteenth-century
RDD newspapers. The long s problem also makes
it more difficult for the model trained on synthetic
data to work on the TCP books.

4.4 Discussion

In this section, we provide further analysis on dif-
ferent aspects of our method.

Does Corruption Rate Affect Synthetic Train-
ing? We first examine how the corruption rate of
the synthetic dataset would affect the performance
of the correction model. Figure 2 presents the
results of single-input correction and multi-input
correction tasks on the RDD newspapers and TCP
books when trained on synthetic data corrupted
with different error rate: 0.9, 0.12, 0.15. For both
tasks, the character error rate increases a little bit
when the correction model is trained to recover the
synthetic date with higher corruption rate. How-
ever, the performance is more stable on the RDD
newspapers than the TCP books when more errors
are introduced.
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Figure 2: Performance of Seq2Seq-Syn trained on syn-
thetic data with different corruption rates.

Does Number of Witnesses Matter for
Multiple-Input Decoding? Here we want to
study the impact of the number of witnesses on
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RDD Newspapers TCP Books

Decode Model CER LCER WER | LWER CER LCER WER TWER
None 0.18133 | 0.13552 | 0.41780 | 0.31544 | 0.10670 | 0.08800 | 0.31734 | 0.27227
Seq2Seq-Super | 0.09044 | 0.04469 | 0.17812 | 0.09063 | 0.04944 | 0.01498 | 0.12186 | 0.03500

Single | Sed2Sea-Noisy | 0.10524 | 0.05565 | 0.20600 | 0.11416 | 0.08704 | 0.05889 | 0.25994 | 0.15725
Seq2Seq-Syn | 0.16136 | 0.11986 | 0.35802 | 0.26547 | 0.09551 | 0.06160 | 0.27845 | 0.18221
Seq2Seq-Boots | 0.11037 | 0.06149 | 0.22750 | 0.13123 | 0.07196 | 0.03684 | 021711 | 0.11233

LMR 0.15507 | 0.13552 | 0.34653 | 0.31544 | 0.10862 | 0.08800 | 0.33983 | 0.27227

Majority Vote | 0.16285 | 0.13552 | 0.40063 | 0.31544 | 0.11096 | 0.08800 | 0.34151 | 0.27227

Multi | Seq2Seq-Super | 0.07731 | 0.03634 | 0.15393 | 0.07269 | 0.04668 | 0.01252 | 0.11236 | 0.02667
Seq2Seq-Noisy | 0.09203+ | 0.04554+ | 0.17940 | 0.09269 | 0.08317 | 0.05588 | 0.24824 | 0.14885
Seq2Seq-Syn | 0.12948 | 0.09112 | 0.28901 | 0.19977 | 0.08506 | 0.05002 | 0.24942 | 0.15169
Seq2Seq-Boots | 0.09435 | 0.04976 | 0.19681 | 0.10604 | 0.06824« | 0.03343+ | 0.20325+ | 0.09995-

Table 5: Results from model trained under different settings on single-input decoding and multiple-input decoding for both
the RDD newspapers and TCP books. All training is unsupervised except for supervised results in italics. Unsupervised
training settings with multi-input decoding that are significantly better than other unsupervised counterparts are highlighted

with * (p < 0.05, paired-permutation test). Best result among unsupervised training in each column is in bold.

0.14
— Seq2Seqg-Syn
0.12 —— Seq25eq-Noisy
[@)] —— Seq2Seqg-Boots
<>E 0.10 —— Seq2Seqg-Super

10 12 14 16 18 20
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Number of Withesses

(a) RDD Newspapers

0.14
—— Seq2Seq-Syn

0.121 —— Seq25eq-Noisy
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% 0.10 —— Seq2Seq-Super
S 0.08
= 0.06
T 0.04

0.024

0.00

0 2 4 6 8 10 12 14 16 18 20
Number of Withesses

(b) TCP Books

Figure 3: Performance of different models on multiple decoding of lines with different number of witnesses.

the performance of multiple-input decoding. The
test set is divided into subgroups with varying
size according to their number of witnesses. Fig-
ure 3 presents the performance of multi-input cor-
rection on subgroups with different number of
witnesses. We can see that supervised training
achieves the best performance on each subgroup
for both datasets. On the RDD newspapers, the
performance of each training setting is signifi-
cantly improved when the number of witnesses in-
creases from O to 2, then the error rate tends to
be flat when more witnesses are observed. For
the TCP books, the character error rate for both
Seq2Seq-Syn and Seq2Seq-Boots decreases with
small fluctuation when the number of witnesses
increases. Seq2Seq-Noisy performs the worst al-
most on all subgroups on the TCP books since all
the witnesses suffers from the long s problem.

Can More Training Data Benefit Learning?
Figure 4 shows the test results for our correction
model trained on datasets of different size. As

the size of the training set increases, the CER of
our model decreases consistently for both single
and multiple input correction on the RDD newspa-
pers. However, the performance curve of correc-
tion model on TCP books dataset is flatter since it
is larger overall than RDD newspapers.

0.110

0.0600

—— Single Input
—— Multiple Input

—— Single Input

0.0575- —— Multiple Input

0.105-,

0.100- 0.0550

o
2
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0.070y5 100 0.0400, 50 75 100
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(b) TCP Books

50 "
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Figure 4: Performance of the supervised correction model
trained on different proportions of the RDD newspapers and
TCP books dataset.
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5 Related Work

Multi-Input OCR Correction. Ensemble meth-
ods have been shown to be effective in OCR post-
correction by combining OCR output from mul-
tiple scans of the same document (Lopresti and
Zhou, 1997; Klein and Kopel, 2002; Cecotti and
Belaid, 2005; Lund et al., 2013). Existing methods
aim at generating consensus results by aligning
multiple inputs, followed by supervised methods
such as classification (Boschetti et al., 2009; Lund
et al., 2011; Al Azawi et al., 2015), or unsuper-
vised methods such as dictionary-based selection
(Lund and Ringger, 2009) and voting (Wemhoener
et al., 2013; Xu and Smith, 2017). While super-
vised ensemble methods require human annota-
tion for training, unsupervised selection methods
work only when the correct word or character ex-
ists in one of the inputs. Furthermore, those meth-
ods could not correct single inputs.

Multi-Input Attention. Multi-input attention has
already been explored in tasks such as machine
translation (Zoph and Knight, 2016; Libovicky
and Helcl, 2017) and summarization (Wang and
Ling, 2016). Wang and Ling (2016) propose to
concatenate multiple inputs to generate a sum-
mary; this flat attention combination model might
be affected by the order of input sequences. Zoph
and Knight (2016) aims at developing a multi-
source translation model on a trilingual corpus
where the encoder for each language is combined
to pass to the decoder; however, it requires the
same number of inputs at training and decoding
time since the parameters depend on the number
of inputs. Libovicky and Helcl (2017) explore dif-
ferent attention combination strategies for multi-
ple information sources such as image and text.
In contrast, our method does not require multi-
ple inputs for training, and the attention combina-
tion strategies are used to integrate multiple inputs
when decoding.

6 Conclusions

We have proposed an unsupervised framework
for OCR error correction, which can handle
both single-input and multi-input correction tasks.
An attention-based sequence-to-sequence model
is applied for single-input correction, based on
which a strategy of multi-input attention combi-
nation is designed to correct multiple input se-
quences simultaneously. The proposed strategy
naturally incorporates aligning, correcting, and

voting among multiple sequences, and is thus ef-
fective in improving the correction performance
for corpora containing duplicated text. We pro-
pose two ways of training the correction model
without human annotation by exploiting the dupli-
cation in the corpus. Experimental results on his-
torical books and newspapers show that these un-
supervised approaches significantly improve OCR
accuracy and, when multiple inputs are avail-
able, achieve performance comparable to super-
vised methods.
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