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Abstract

Topic models with sparsity enhancement

have been proven to be effective at learn-

ing discriminative and coherent latent top-

ics of short texts, which is critical to

many scientific and engineering applica-

tions. However, the extensions of these

models require carefully tailored graphi-

cal models and re-deduced inference al-

gorithms, limiting their variations and ap-

plications. We propose a novel sparsity-

enhanced topic model, Neural Sparse Top-

ical Coding (NSTC) base on a sparsity-

enhanced topic model called Sparse Top-

ical Coding (STC). It focuses on replac-

ing the complex inference process with the

back propagation, which makes the model

easy to explore extensions. Moreover, the

external semantic information of words in

word embeddings is incorporated to im-

prove the representation of short texts. To

illustrate the flexibility offered by the neu-

ral network based framework, we present

three extensions base on NSTC without

re-deduced inference algorithms. Experi-

ments on Web Snippet and 20Newsgroups

datasets demonstrate that our models out-

perform existing methods.

1 Introduction

Topic models with sparsity enhancement have

proven to be effective tools for exploratory analy-

sis of the overload of short text content. The latent

representations learned by these models are cen-

tral to many applications. However, these mod-

els have trouble to rapidly explore variations for

the approximate inference methods of them. Even

subtle variations on models can increase the com-

plexity of the inference methods, which is espe-

cially apparent for non-conjugate models.

With the development of deep learning, many

works combine topic models with neural language

model to overcome the computation complexity of

topic models (Larochelle and Lauly, 2012a; Cao

et al., 2015; Tian et al., 2016). Most of these meth-

ods adopt multiple neural network layers to model

the generation process of each document. Nev-

ertheless, these methods yield the same poor per-

formance in short texts as traditional topic mod-

els. There are also many works introducing new

techniques such as word embeddings to traditional

topic models. Word embeddings has proven to be

effective at capturing syntactic and semantic infor-

mation of words. Many works (Das et al., 2015;

Hu and Tsujii, 2016; Li et al., 2016) have shown

that the additional semantics in word embeddings

can enhance the performance of traditional topic

models. Yet these models have the same trouble in

making extensions as traditional topic models.

Base on the above observations, we propose

Neural Sparse Topical Coding (NSTC) by jointly

utilizing word embeddings and neural network

with a sparsity-enhanced topic model, Sparse Top-

ical Coding (STC). We adopt neural network to

model the generation process of STC to simplify

the complex inference and improve flexibility, and

incorporate external semantics provided by word

embeddings to improve the overall accuracy. To

illustrate the dramatic flexibility offered by the

end-to-end neural network, we present three ex-

tensions base on NSTC. Our proposed models

all benefit from both sides: 1) when compared

with the neural based topic models, which stuck

in the sparseness of word co-occurrence informa-

tion, they show how the sparsity mechanism and

word embeddings enrich the features and improve

the performance; 2) while with topic models with

sparsity enhancement, our models present how the

black-box inference method of neural network ac-
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celerates the training process and increases the

flexibility. To evaluate the effectiveness of our

models by conducting experiments on 20 News-

groups and Web Snippet datasets.

2 Related Work

Topic models with sparsity enhancement: The

performance of traditional topic models are com-

promised by the sparse word co-occurrence in-

formation when applied in short texts. To over-

come the bottleneck, there have been many ef-

forts to address the problem of sparsity in short

texts. Based on traditional LDA, (Williamson

et al., 2010) introduced a Spike and Slab prior to

model the sparsity in finite and infinite latent topic

structures of text. To consider the dual-sparsity

of topics per document and terms per topic, (Lin

et al., 2014) proposed a dual-sparse topic model

that addresses the sparsity in both the topic mix-

tures and the word usage. There are also some

non-probabilistic sparse topic models, which can

directly control the sparsity by imposing regular-

izers. For example, the non-negative matrix fac-

torization (NMF) (Heiler and Schnörr, 2006) for-

malized topic modeling as a problem of mini-

mizing loss function regularized by lasso. Simi-

larly, (Zhu and Xing, 2011) presented sparse top-

ical coding (STC) by utilizing the Laplacian prior

to directly control the sparsity of inferred repre-

sentations. Additionally, (Peng et al., 2016) pre-

sented sparse topical coding with sparse groups

(STCSG) to find sparse word and document rep-

resentations of texts. However, over complicated

inference procedure of these sparse topic models

make them difficult to rapidly explore variations.

Topic models with word embeddings: There

are many works tried to incorporate word embed-

dings with topic models to improve the perfor-

mance. (Das et al., 2015) proposed a new tech-

nique for topic modeling by treating the document

as a collection of word embeddings and topics it-

self as multivariate Gaussian distributions in the

embedding space. However, the assumption that

topics are unimodal in the embedding space is not

appropriate, since topically related words can oc-

cur distantly from each other in the embedding

space. Therefore, (Hu and Tsujii, 2016) proposed

latent concept topic model (LCTM), which mod-

eled a topic as a distribution of concepts, where

each concept defined another distribution of word

vectors. (Nguyen et al., 2015) proposed Latent

Feature Topic Modeling (LFTM), which extended

LDA to incorporate word embeddings as latent

features. (Li et al., 2016) focused on combing

the local information of word embeddings and

the global information of LDA, thus proposed a

model TopicVec yielded by the variational infer-

ence method. However, these models also have

trouble to rapidly explore variations.

Neural Topic Models: There are also some ef-

forts trying to combine topic models with neural

networks to represent words and documents si-

multaneously. (Larochelle and Lauly, 2012a) pro-

posed a neural network topic model that is sim-

ilarly inspired by the Replicated Softmax. (Cao

et al., 2015) proposed a novel neural topic model

(NTM) where the representation of words and

documents are efficiently and naturally combined

into a uniform framework. (Das et al., 2015) pro-

posed a new technique for topic modeling by treat-

ing the document as a collection of word embed-

dings and topics itself as multivariate Gaussian

distributions in the embedding space. To address

the limitations of the bag-of-words assumption,

(Tian et al., 2016) proposed Sentence Level Re-

current Topic Model (SLRTM) by using a Recur-

rent Neural Networks (RNN) based framework to

model long range dependencies between words.

Nevertheless, most of aforementioned works yield

poor performance in short texts.

3 Neural Sparse Topical Coding

Firstly, we define that D = {1, ...,M} is a doc-

ument set with size M , T = {1, ...,K} is a

topic collection with K topics, V = {1, .., N}
is a vocabulary with N words, and wd =
{wd,1, ..., wd,|I|} is a vector of terms representing

a document d, where I is the index of words in

document d, and wd,n(n ∈ I) is the frequency

of word n in document d. Moreover, we denote

β ∈ R
N×K as a global topic dictionary for the

whole document set with K bases, θd ∈ R
K

is the document code of each document d and

sd,n ∈ R
K is the word code of each word n in

each document d. To yield interpretable patterns,

(θ, s, β) are constrained to be non-negative.

3.1 Sparse Topical Coding

STC is a hierarchical non-negative matrix factor-

ization for learning hierarchical latent representa-

tions of input samples. In STC, each document

and each word is represented as a low-dimensional
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code in topic space, which can be employed in

many tasks. Based on the global topic dictionary

β of all documents with K topic bases sampled

from a uniform distribution, the generative process

of each document d is described as follows:

1. Sample the document code θd from a prior

p(θd) ∼ Laplace(λ−1).

2. For each observed word n in document d:

(a) Sample the word code sd,n from a

conditional distribution p(sd,n|θd) ∼

supergaussian(θd, γ
−1, ρ−1).

(b) Sample the observed word count wd,n

from a distribution p(wd,n|sd,n ∗ βn) ∼
Poisson(sd,n ∗ βn)

To achieve sparse word codes, STC defines

p(sd,n|θd) as a product of two component dis-

tributions p(sd,n|θd) ∼ p(sd,n|θd, γ)p(sd,n|ρ),
where p(sd,n|θd, γ) is an isotropic Gaussian dis-

tribution, and p(sd,n|ρ) is a Laplace distribution.

The composite distribution is super-Gaussian:

p(sd,n|θd) ∝ exp(γ||sd,nθd||22ρ||sd,n||1). With the

Laplace term, the composite distribution tends to

yield sparse word codes. For the same purpose,

the prior distribution p(θd) of document codes

is a Laplace prior. Although STC has closed

form coordinate descent equations for parameters

(θ, s, β), it is inflexible for its complex inference

process.

3.2 Neural Network View of Sparse Topical
Coding

We devote to rebuild STC with a neural network to

simplify it’s inference process via BackPropoga-

tion. After generating the topic dictionary from

neural network, our model follows the generative

story below for each document d:

1. For each word n in document d:

(a) Sample a latent variable word code

sd,n ∼ fg(d, n).

(b) Sample the observed word count

wd,n from p(wd,n|sd,n, βn) ∼

Poisson(sd,n ∗ βn)
In our model, we have several assumptions:

1) To simplify our model and acclerate the infer-

ence process, we collapse the document code from

our model. As illuatrated in (Bai et al., 2013) and

STC paper (Zhu and Xing, 2011), we can naturally

generate each document code via a aggregation of

all sampled word codes among all topics, after in-

ferring the global topic dictionary and the word

codes of words belong to each document:

θd =
D∑

d=1

Nd∑

n=1

sd,nk βkn/
D∑

d=1

Nd∑

n=1

K∑

k=1

sd,nk βkn;

2) We replace the composite super-Gaussian

prior of the word codes and the uniform distri-

bution of the topic dictionary with the neural net-

work. In the topic dictionary neural network, we

introduce the word semantic information via word

embeddings to enrich the feature space for short

texts;

3) Similar to STC, the observed word count is

sampled from Poisson distribution, which is more

appropriate for the discrete count data than other

exponential family distributions.

3.3 Neural Sparse Topical Coding
In this section, we introduce the detailed layer

structures of NSTC in Figure 1. We explicitly ex-

( , )C d n

( , ) ( , ) ( )C d n s d n n

Word basis layer ( )nWord code layer ( , )s d n

Topic dictionaryWord code ,2dW

Lookup tableWE

1( )relu WE W

,2( , ) ( ( ,:))ds d n relu nW

( , )d n

Document d Word n

Figure 1: Schematic overview of NSTC.

plain each layer of NSTC below:

Input layer (n, d): A word n of document d ∈
D, where D is a document set.

Word embedding layer (WE ∈ R
N×300): Sup-

posing the word number of the vocabulary is N ,

this layer devotes to transform each word to a

distributed embedding representation. Here, we

adopt the pre-trained embeddings by GloVe based

on a large Wikipedia dataset1.

Word code layers (sd ∈ R
N×K): These lay-

ers generate the K-dimensional word code of in-

put word n in document d.

s(d, n) = fs(d, n) (1)

where fs is a multilayer perceptron. In order

to achieve interpretable word codes as in STC,

1http://nlp.stanford.edu/projects/glove/
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we constrain s to be non-negative, therefore we

apply the relu activation function on the output

of the neural network. Although imposing non-

negativity constraints could potentially result in

sparser and more interpretable patterns, we exert

l1 norm regularization on s to further keep the

sparse assumption.

Topic dictionary layers (β ∈ R
N×K): These

layers aim at converting WE to a topic dictionary

similar to the one in STC.

β(n) = fβ(WE) (2)

where fβ is a multilayer perceptron. We make a

simplex projection among the output of topic dic-

tionary neural network.We normalize each column

of the dictionary via the simplex projection as fol-

low:

β.k = project(β.k), ∀k (3)

The simplex projection is the same as the sparse-

max activation function in (Martins and Astudillo,

2016), providing the theoretical base of its em-

ployment in a neural network trained with back-

propagation. After the simplex projection, each

column of the topic dictionary is promised to be

sparse, non-negative and united.

Score layer (Cd,n ∈ R
1×1): NSTC outputs the

matching score of a word n and a document d with

the dot product of s(d, n) and β(n) in this layer.

The output score is utilized to approximate the ob-

served word count wd,n.

C(d, n) = s(d, n) ∗ β(n) (4)

Given the count wd,n of word n in document d,

we can directly use it to supervise the training pro-

cess. According to the architecture of our model,

for each word n and each document d, the cost

function is:

L = l(wd,n, C(d, n)) + λ||sd,n||1 (5)

where l is the log-Poisson loss, λ is the regulariza-

tion factors.

3.4 Extensions of NSTC

To future illustrate the benefits of a black box in-

ference method, which allows rapidly explore new

models, we present three variants of NSTC.

Deep l1 Approximation. STC is based on the

idea of sparse coding, in which the sparse code

s of the input w can be obtained by solving the

loss function for a given dictionary β. In (Gre-

gor and LeCun, 2010), the parameterized encoder,

named learned ISTA (LISTA) was proposed to ef-

ficiently approximate the l1 based sparse code.

Based on the consideration, we present a enhanced

NSTC via employing the deep l1 regularized en-

coder similar to LISTA, named NSTCE. We de-

vise a feed-forward neural network as illustrated

in Figure 2, to efficiently approximate the l1 based

sparse code s of the input w.

F (wd;Wd, bd) = relu(wd ∗Wd + bd) (6)

The goal is to make the prediction of neural net-

work predictor F after the fixed depth as close

as possible to the optimal set of coefficients s∗ in

Eq.4. To jointly optimizing all parameters with the

dictionary β together, we add another term to the

loss function in Eq.4, and enforce the representa-

tion s to be as close as possible to the feed forward

prediction (Kavukcuoglu et al., 2010):

L =l(wd,n, C(d, n)) + λ||sd,n||1
+ α

∑

n

||sd − F (wd;Wd, bd)||22 (7)

Minimizing the loss with respect to s produces a

sparse representation that simultaneously recon-

structs the word count and is not too different from

the predicted representation.

w W

b

s

relu

Figure 2: Deep l1 encoder.

Group Sparse Regularization. Based on STC,

(Bai et al., 2013) presented GSTC to discover

document-level sparse or admixture proportion for

short texts, in which the group sparse is employed

to achieve sparse code at document level by taking

into account the structure of bag of words. Here,

we just need to add the group sparse regularization

on the weight matrix, to make a neural network

extension of GSTC, called NGSTC. We consider

each column of sd as a group.

L = l(wd,n, C(d, n)) + λ
K∑

k=1

||sd,.k||2 (8)

Sparse Group Lasso. Similar to GSTC,

STCSG (Peng et al., 2016) was proposed to learn
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sparse word and document codes, which relaxes

the normalization constraint of the inferred rep-

resentations with sparse group lasso. Base on

STCSG, we propose a novel neural topic model

called NSTCSG. We imposse the sparse group

lasso on the word code, and have the following

cost function:

L = l(wd,n, C(d, n))+λ1||sd,n||1+λ2

K∑

k=1

||sd,.k||2
(9)

These three models have the same neural network

structures as NSTC, and can be trained end to

end with out re-deduced mathematical inference.

Moreover, group and sparse group sparsity can

help reduce the intrinsic complexity of the model

by eliminating neurons as shown in Figure 3, and

thus can help obtain practical speed ups in deep

neural networks.

3.5 Optimization
For the first two models with the lasso regular-

izer, we can directly ulitize the end to end stochas-

tic gradient descent (SGD) to perform optimiz-

ing. The last two optimizing objectives of NGSTC

and NSTCSG are formed as a combination of

both smooth and non-smooth terms, they can be

solved via proximal stochastic gradient descent.

The proximal gradient algorithm first obtains the

intermediate solution via SGD on the loss only,

and then optimize for the regularization term via

performing Euclidean projection of it to the solu-

tion space, as in the following formulation:

min
st+1
d,n

R(st+1
d,n ) +

1

2
||st+1

d,n − s
t+ 1

2
d,n ||22 (10)

where R is the regularization, s
t+ 1

2
d,n the intermedi-

ate solution obtained by SGD, st+1
d,n is the variable

to obtain after the current iteration. For the group

lasso, the above problem has the closed-form so-

lution. The proximal operator for the group lasso

regularizer in Eq.8 is given as follow:

proxGL(sd,nk) = (1− λ

||sd,.k||2 )+sd,nk (11)

The proximal operator for the sparse group lasso

regularizer in Eq.9 is given as follow:

proxSGL(sd,nk) =(1− λ2

||sign(sd,.k, λ1)||2 )+
sign(sd,nk, λ1)

(12)

The detailed algorithm framework of NGSTC and

NSTCSG is shown in Algorithm 1.

Algorithm 1 Training Algorithm for our models

Require: a document d ∈ D
1: t = t+ 1
2: repeat
3: Compute the partial derivatives of weight

matrices,s, and β with a non-regularized

objective;

4: Update weight matrices, s, and β using

SGD.

5: Update s using proximal operator

6: Update β using simplex projection.

7: until convergence

4 Experiments

4.1 Data and Setting
We perform our experiments on two benchmark

datasets:

• 20Newsgroups: is comprised of 18775

newsgroup articles with 20 categories, and

contains 60698 unique words2.

• Web Snippet: includes 12340 Web search

snippets with 8 categories, we remove the

words with fewer than 3 characters and

with document frequency less than 3 in the

dataset3.

We compare the performance of the NSTC with

the following baselines:

• LDA (Blei et al., 2001). A classical proba-

bilistic topic model. We use the LDA pack-

age4 for its implementation. We use the set-

tings with iteration number n = 2000, the

Dirichlet parameter for distribution over top-

ics α = 0.1 and the Dirichlet parameter for

distribution over words η = 0.01.

• STC (Zhu and Xing, 2011). It is a sparsity-

enhanced non-probabilistic topic model. We

use the code released by the authors5. We set

the regularization constants as λ = 0.3, ρ =
0.0001 and the maximum number of itera-

tions of hierarchical sparse coding, dictionary

learning as 100.

2http://www.qwone.com/ jason/20Newsgroups/
3http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
4https://pypi.python.org/pypi/lda
5http://bigml.cs.tsinghua.edu.cn/ jun/stc.shtml/
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(a) (b) (c)

Figure 3: (a) Lasso: the Lasso penalty removes elements without optimizing neuron-level considerations

(highlighted in red). (b) Group lasso: when grouping weights from the the same input neuron into each

group, the group sparsity has an effect of completely removing some neurons (highlighted in red). (c)

Sparse group lasso: it combines the advantages of the former two formulations, which can remove some

neurons and elements (highlighted in red).

• DocNADE (Larochelle and Lauly, 2012b).

An unsupervised neural network topic model

of documents and has shown that it is a com-

petitive model both as a generative model and

as a document representation learning algo-

rithm6. In DocNADE, the hidden size is 50,

the learning rate is 0.0004 , the bath size is 64
and the max training number is 50000.

• GaussianLDA (Das et al., 2015). A new

technique for topic modeling by treating the

document as a collection of word embed-

dings and topics itself as multivariate Gaus-

sian distributions in the embedding space7.

We use default values for the parameters.

• TopicVec (Li et al., 2016). A model incorpo-

rates generative word embedding model with

LDA 8. We also use default values for the pa-

rameters.

Our three models are implemented in Python using

TensorFlow9. For both datasets, we use the pre-

trained 300-dimensional word embeddings from

Wikipedia by GloVe, and it is fixed during train-

ing. For each out-of-vocab word, we sample a

random vector from a normal distribution. In

practice, we use a regular learning rate 0.00001
for both dataset. We set the regularization factor

λ = 1, α = 1, λ1 = 0.6, λ2 = 0.4. In initial-

ization, all weight matrices are randomly initial-

ized with the uniformed distribution in the inter-

val [0, 0.001] for web snippet, and [0, 0.0001] for

20Newsgroups.

6https://github.com/huashiyiqike/TMBP/tree/master/DocN
ADE

7https://github.com/rajarshd/Gaussian LDA
8https://github.com/askerlee/topicvec
9https://www.tensorflow.org/

4.2 Classification Accuracy

We perform text classification tasks on Web Snip-

pet dataset and 20Newsgroups. For the Web Snip-

pet, we follow its original partition that consists

of 10060 training documents and 2280 test doc-

uments. On 20Newsgroups, we we keep 60%

documents for training and 40% for testing as in

(Zhu and Xing, 2011). We adopt the SVM as

the classifier with the document representations

learned by topic models. Figure 4 reports the con-

vergence curves of loss and accuracy over itera-

tions. The results show that the loss and accu-

racy of our method can achieve convergence af-

ter almost 100 epochs on web snippets and 50

epochs on 20Newsgroups with appropriate learn-

ing rate. Table 1 reports the classification ac-

curacy on both datasets under different methods

with different settings on the number of topics

K = {50, 100, 150, 200, 250}. We can found

that 1) The NSTCSG yields the highest accuracy,

followed by NGSTC, NSTCE and NSTC which

all outperform the DocNADE, GLDA, STC and

LDA. 2) The embedding based models (NSTCSG,

NGSTC, NSTCE, NSTC, DocNADE and GLDA)

generate better document representations than

STC and LDA separately, demonstrating the rep-

resentative power of neural networks based on

word embeddings. 3) Sparse models (NSTCSG,

NGSTC, NSTCE, NSTC and STC) are superior to

non-sparse models NTM and LDA separately. It

indicates that sparse topic models are more suit-

able to short documents. 4) The NSTCSG perform

better than NGSTC, followed by NSTC, which il-

lustrates both sparse group lasso and group lasso

penalty are contribute to learning the document

representations with clear semantic explanations.

5) The accuracies of DocNADE decrease with the

increasing of the topic K. This is may because

DocNADE may generate the document topic dis-
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tribution with many indistinct non-zeros due to the

data sparsity caused by the increasing number of

topics. Notice that LDA has the same performance

on the web snippet dataset.
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Figure 4: The loss and accuracy curves with the

iterations on two datasets,on different number of

topic K settings.
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Figure 5: The average sparsity ratio of word and

document codes.

4.3 Sparse Ratio

We further compare the sparsity of the learned la-

tent representations of words and documents from

different models on Web Snippet.

Word code: For each word n, we compute

the average word code and average sparsity ra-

tio of them as in (Zhu and Xing, 2011). Fig-

ure 5a presents the average word sparse ratio of

word codes discovered by different models for

Web Snippet. Note that the NGSTC can not yield

sparse word codes but sparse document codes. We

can see that 1) The NSTCSG learns the sparsest

word codes, followed by NSTC and STC, which

perform much better than NTM and LDA. 2) The

word codes discovered by LDA and NTM are

very dense for lacking the mechanism to learn the

focused topics. The sparsity in both models is

mainly caused by the data scarcity. 3)The rep-

resentations learned by sparse models (NSTCSG,

NSTC and STC) are much sparser, which indi-

cates each word concentrates on only a small num-

ber of topics in these models, and therefore the

word codes are more clear and semantically con-

centrated. 4) Meanwhile, the sparse ratio of STC

and NSTC are lower than NSTCSG. It proves the

sparse group lasso penalty can easily allow to pro-

vide networks with a high level of sparsity.

Document code: We further quantitatively

evaluate the average sparse ratio on latent repre-

sentations of documents from different models,

as shown in Figure 5b. We can see that 1) The

NSTCSG yields the highest sparsity ratio, fol-

lowed by NGSTC and STC, which outperform

NTM and LDA by a large margin. 2) The docu-

ment codes discovered by LDA and NTM are still

very dense, while the representations learned by

sparse models (NSTC and STC) are much sparser.

It indicates the sparse models can discover focused

topics and obtain discriminative representations of

documents. 3) Similar to the word code, NGSTC

outperforms NGSTC and STC. It demonstrates

that the sparse group lasso penalty can achieve bet-

ter sparsity than group lasso and lasso. 4) The

sparsity ratios of sparse models increase with the

topic numbers. The possible reason is that the

sparse models tend to learn the focused topic num-

ber which approaches to the real topic number, and

an increasing number of redundant topics can be

discarded. 5) The NSTCSG inherits the advan-

tages of NSTC and NGSTC, which can achieve

the sparse topic representations of words and doc-

uments.

4.4 Generative Model Evaluation

To further evaluate our models as a generative

model of documents, we show the test document

perplexity achieved by each topic model on the

20NewsGroups with 50 topic numbers in table 2.

Notice that the topic number in TopicVec can not

be specified to a fixed value, thus we follow the

set in (Li et al., 2016) with 281 topics. In table 3,

we show the top-9 words of learned focused top-

ics in 20 Newsgroups datasets. For each topic,

we list top-9 words according to their probabili-
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Table 1: Classification accuracy of different models on Web snippet and 20NG, with different number of

topic K settings.

Dataset Snippet 20NG
k 50 100 150 200 250 50 100 150 200 250

LDA 0.682 0.592 0.573 0.615 0.583 0.545 0.615 0.607 0.613 0.623

STC 0.678 0.699 0.724 0.731 0.723 0.602 0.631 0.647 0.652 0.654

DocNADE 0.656 0.656 0.645 0.646 0.647 0.682 0.670 0.646 0.583 0.573

GLDA 0.669 0.689 0.675 0.670 0.623 0.367 0.438 0.465 0.496 0.526

NSTC 0.734 0.756 0.791 0.793 0.789 0.634 0.671 0.682 0.690 0.72

NSTCE 0.739 0.778 0.801 0.803 0.810 0.631 0.681 0.682 0.701 0.721

NGSTC 0.773 0.792 0.813 0.811 0.821 0.670 0.681 0.701 0.712 0.737

NSTCSG 0.788 0.813 0.821 0.823 0.829 0.665 0.687 0.691 0.717 0.735

Table 2: Perplexity on test

dataset.

Model 20NG
LDA 1091

STC 611

DocNADE 896

TopicVec 650

NSTC 517

Table 3: Top Words of Learned Topics for 20Newsgroups.

computer sport drug weapon space-flight
computer hockey tobacco nuclear nasa

windows games drug guns flyers

ibm motorcycl fallacy crime space

drive team aids booming air

disk play hiv controller statelite

system groups dades firearms send

dos came illeg military launch

key rom same wiring apartment

hardware ball adict neutral la

ties under the corresponding topic. It is obvious

that the learned topics are clear and meaningful.

Such as economics, hockey, games, play, ball in

the topic about sport. In Figure 6, we also use

the 2-dimensional t-SNE method to get the visu-

alization of the learned latent representations for

Web Snippet and 20Newsgroups Dataset with 200

topics. For Web Snippet, we sample 10% of the

whole dataset. For 20newsgroups, we sample 30%

of the dataset. It is obvious to see that all doc-

uments are clustered into 8 and 20 distinct cate-

gories. It proves the semantic effectiveness of the

documents codes learned by our model.

5 Conclusion

In this paper, we propose a novel neural sparsity-

enhanced topic model NSTC, which improves

STC by incorporating the neural network and

word embeddings. Compared with other word

embedding based and neural network based topic

models, it overcomes the computation complex-

ity of topic models, and improve the generation of

representation over short documents. We present

Figure 6: T-SNE embeddings of learned document

representations for Web Snippet and 20News-

Groups. Different colors mean different cate-

gories.

three variants of NSTC to illustrate the great flex-

ibility of our framework. Experimental results

demonstrate the effectiveness and efficiency of our

models. For future work, we are interested in vari-

ous extensions, including combining STC with au-

toencoding variational Bayes (AVB).
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