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Abstract

Recurrent neural network (RNN) has
achieved remarkable performance in text
categorization. RNN can model the en-
tire sequence and capture long-term de-
pendencies, but it does not do well in ex-
tracting key patterns. In contrast, convo-
lutional neural network (CNN) is good at
extracting local and position-invariant fea-
tures. In this paper, we present a novel
model named disconnected recurrent neu-
ral network (DRNN), which incorporates
position-invariance into RNN. By limiting
the distance of information flow in RNN,
the hidden state at each time step is re-
stricted to represent words near the current
position. The proposed model makes great
improvements over RNN and CNN mod-
els and achieves the best performance on
several benchmark datasets for text cate-
gorization.

1 Introduction

Text categorization is a fundamental and tradi-
tional task in natural language processing (NLP),
which can be applied in various applications such
as sentiment analysis (Tang et al., 2015), ques-
tion classification (Zhang and Lee, 2003) and topic
classification (Tong and Koller, 2001). Nowadays,
one of the most commonly used methods to han-
dle the task is to represent a text with a low dimen-
sional vector, then feed the vector into a softmax
function to calculate the probability of each cate-
gory. Recurrent neural network (RNN) and con-
volutional neural network (CNN) are two kinds of
neural networks usually used to represent the text.

RNN can model the whole sequence and cap-
ture long-term dependencies (Chung et al., 2014).
However, modeling the entire sequence sometimes

case1: One of the seven great unsolved
mysteries of mathematics may have been
cracked by a reclusive Russian.
case2: A reclusive Russian may have cracked
one of the seven great unsolved mysteries
of mathematics.

Table 1: Examples of topic classification

can be a burden, and it may neglect key parts for
text categorization (Yin et al., 2017). In contrast,
CNN is able to extract local and position-invariant
features well (Scherer et al., 2010; Collobert et al.,
2011). Table 1 is an example of topic classi-
fication, where both sentences should be classi-
fied as Science and Technology. The key phrase
that determines the category is unsolved myster-
ies of mathematics, which can be well extracted
by CNN due to position-invariance. RNN, how-
ever, doesn’t address such issues well because the
representation of the key phrase relies on all the
previous terms and the representation changes as
the key phrase moves.

In this paper, we incorporate position-
invariance into RNN and propose a novel model
named Disconnected Recurrent Neural Network
(DRNN). Concretely, we disconnect the informa-
tion transmission of RNN and limit the maximal
transmission step length as a fixed value k, so that
the representation at each step only depends on
the previous k − 1 words and the current word.
In this way, DRNN can also alleviate the burden
of modeling the entire document. To maintain
the position-invariance, we utilize max pooling to
extract the important information, which has been
suggested by Scherer et al. (2010).

Our proposed model can also be regarded as a
special 1D CNN where convolution kernels are re-
placed with recurrent units. Therefore, the maxi-
mal transmission step length can also be consid-
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ered as the window size in CNN. Another differ-
ence to CNN is that DRNN can increase the win-
dow size k arbitrarily without increasing the num-
ber of parameters.

We also find that there is a trade-off between
position-invariance and long-term dependencies in
the DRNN. When the window size is too large,
the position-invariance will disappear like RNN.
By contrast, when the window size is too small,
we will lose the ability to model long-term depen-
dencies just like CNN. We find that the optimal
window size is related to the type of task, but af-
fected little by training dataset sizes. Thus, we can
search the optimal window size by training on a
small dataset.

We conduct experiments on seven large-scale
text classification datasets introduced by Zhang
et al. (2015). The experimental results show that
our proposed model outperforms the other models
on all of these datasets.

Our contributions can be concluded as follows:
1. We propose a novel model to incorporate

position-variance into RNN. Our proposed model
can both capture long-term dependencies and local
information well.

2. We study the effect of different recurrent
units, pooling operations and window sizes on
model performance. Based on this, we propose an
empirical method to find the optimal window size.

3. Our proposed model outperforms the other
models and achieves the best performance on
seven text classification datasets.

2 Related Work

Deep neural networks have shown great success
in many NLP tasks such as machine translation
(Bahdanau et al., 2015; Tu et al., 2016), reading
comprehension (Hermann et al., 2015), sentiment
classification (Tang et al., 2015), etc. Nowadays,
nearly most of deep neural networks models are
based on CNN or RNN. Below, we will introduce
some important works about text classification
based on them.

Convolutional Neural Networks CNN has
been used in natural language processing because
of the local correlation and position-invariance.
Collobert et al. (2011) first utilize 1D CNN in
part of speech (POS), named entity recognition
(NER) and semantic role labeling (SRL). Kim
(2014) proposes to classify sentence by encoding

a sentence with multiple kinds of convolutional
filters. To capture the relation between words,
Kalchbrenner et al. (2014) propose a novel CNN
model with a dynamic k-max pooling. Zhang
et al. (2015) introduce an empirical exploration
on the use of character-level CNN for text classi-
fication. Shallow CNN cannot encode long-term
information well. Therefore, Conneau et al.
(2017) propose to use very deep CNN in text
classification and achieve good performance.
Similarly, Johnson and Zhang (2017) propose a
deep pyramid CNN which both achieves good
performance and reduces training time.

Recurrent Neural Networks RNN is suitable
for handling sequence input like natural lan-
guage. Thus, many RNN variants are used in text
classification. Tang et al. (2015) utilize LSTM
to model the relation of sentences. Similarly,
Yang et al. (2016) propose hierarchical attention
model which incorporates attention mechanism
into hierarchical GRU model so that the model
can better capture the important information of
a document. Wang and Tian (2016) incorporate
the residual networks (He et al., 2016) into RNN,
which makes the model handle longer sequence.
Xu et al. (2016) propose a novel LSTM with a
cache mechanism to capture long-range sentiment
information.

Hybrid model Some researchers attempt
to combine the advantages of CNN and RNN.
(Xiao and Cho, 2016) extract local and global
features by CNN and RNN separately. (Lai et al.,
2015) firstly model sentences by RNN, and then
use CNN to get the final representation. Shi
et al. (2016) replace convolution filters with deep
LSTM, which is similar to what is proposed in
this paper. The main differences are as follows.
Firstly, they regard their models as CNN and set a
small window size of 3, while we propose to use
a large window size. We argue that small window
size makes the model lose the ability to capture
long-term dependencies. Secondly, we utilize
max pooling but not mean pooling, because max
pooling can maintain position-invariance better
(Scherer et al., 2010). Finally, our DRNN model
is more general and can make use of different
kinds of recurrent units. We find that using GRU
as recurrent units outperforms LSTM which is
utilized by Shi et al. (2016).
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Figure 1: Three model architectures. In order to ensure the consistency of the hidden output, we pad
k − 1 zero vectors on the left of the input sequence for DRNN and CNN. Here window size k is 3.

3 Method

3.1 Recurrent Neural Network (RNN)
RNN is a class of neural network which models a
sequence by incorporating the notion of time step
(Lipton et al., 2015). Figure 1(a) shows the struc-
ture of RNN. Hidden states at each step depend on
all the previous inputs, which sometimes can be a
burden and neglect the key information (Yin et al.,
2017).

A variant of RNN has been introduced by Cho
et al. (2014) with the name of gated recurrent unit
(GRU). GRU is a special type of RNN, capable of
learning potential long-term dependencies by us-
ing gates. The gating units can control the flow of
information and mitigate the vanishing gradients
problem. GRU has two types of gates: reset gate
rt and update gate zt. The hidden state ht of GRU
is computed as

ht = (1− zt)� ht−1 + zt � h̃t (1)

where ht−1 is the previous state, h̃t is the candi-
date state computed with new input information
and � is the element-wise multiplication. The up-
date gate zt decides how much new information is
updated. zt is computed as follows:

zt = σ(Wzxt +Uzht−1) (2)

here xt is the input vector at step t. The candidate
state h̃t is computed by

h̃t = tanh(Wxt +U(rt � ht−1)) (3)

where rt is the reset gate which controls the flow
of previous information. Similarly to the update
gate, the reset gate rt is computed as:

rt = σ(Wrxt +Urht−1) (4)

We can see that the representation of step t de-
pends upon all the previous input vectors. Thus,
we can also express the tth step state shown in
Equation (5).

ht = GRU(xt,xt−1,xt−2, ...,x1) (5)

3.2 Disconntected Recurrent Neural
Networks (DRNN)

To reduce the burden of modeling the entire sen-
tence, we limit the distance of information flow in
RNN. Like other RNN variants, we feed the input
sequence into an RNN model and generate an out-
put vector at each step. One important difference
from RNN is that the state of our model at each
step is only related to the previous k−1 words but
not all the previous words. Here k is a hyperpa-
rameter called window size that we need to set.

Our proposed model DRNN is illustrated in Fig-
ure 1(b). Since the output at each step only de-
pends on the previous k − 1 words and current
word, the output can also be regarded as a repre-
sentation of a phrase with k words. Phrases with
the same k words will always have the same rep-
resentation no matter where they are. That is, we
incorporate the position-invariance into RNN by
disconnecting the information flow of RNN.

Similarly, we can get the state ht as follows:

ht = RNN(xt,xt−1,xt−2, ...,xt−k+1) (6)

Here k is the window size, and RNN can be
naive RNN, LSTM (Hochreiter and Schmidhuber,
1997), GRU or any other kinds of recurrent units.

3.3 Comparison with Convolutional Neural
Network (CNN)

DRNN can be considered as a special 1D CNN
which replace the convolution filters with recur-
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Figure 2: Model architecture

rent units. Let xt denote the tth input word vector.
Then for each position t we can get a window vec-
tor ct.

ct = [xt,xt−1,xt−2, ...,xt−k+1] (7)

here, we concatenate k word vectors and generate
vector ct. Then we can get the output of convolu-
tion as follows:

ht = Wct + b (8)

where W is a set of convolution filters and b is a
bias vector. Then a pooling operation can be ap-
plied after the convolutional layer and generate a
fixed size vector (Kim, 2014). Similarly to RNN
and DRNN, we can also represent the context vec-
tor of CNN as followings:

ht = Conv(xt,xt−1,xt−2, ...,xt−k+1) (9)

Obviously, the parameters of convolution filters
W increase as the window size k increases. By
contrast, for DRNN the parameters do not increase
with the increase of window size. Hence, DRNN
can mitigate overfitting problem caused by the in-
crease of parameters.

3.4 DRNN for Text Classification
DRNN is a general model framework, which can
be used for a variety of tasks. In this paper, we
only discuss how to apply DRNN in text catego-
rization.

We utilize GRU as recurrent units of DRNN and
get the context representation of each step. Every
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Figure 3: Dropout in DRNN. The dashed arrows
indicate connections where dropout is applied.
The left model only applies dropout in input and
output layers, but the right model applies dropout
in hidden states.

context vector can be considered as a representa-
tion of a text fragment. Then we feed the con-
text vectors into a multi-layer perceptron (MLP)
to extract high-level features as illustrated in Fig-
ure 2. Before feeding the vectors into MLP, we
utilize Batch Normalization (Ioffe and Szegedy,
2015) after DRNN, so that the model can allevi-
ate the internal covariate shift problem. To get the
text representation vector, we apply max pooing
after MLP layer to extract the most important in-
formation and position-invariant features (Scherer
et al., 2010).

Finally, We feed the text representation vector
into an MLP with rectified linear unit (ReLU) ac-
tivation and send the output of MLP to a softmax
function to predict the probability of each cate-
gory. We use cross entropy loss function as fol-
lows:

H(y, ŷ) =
∑
i

yi log ŷi (10)

where ŷi is the predicted probability and yi is the
true probability of class i.

To alleviate the overfitting problem, we apply
dropout regularization (Srivastava et al., 2014) in
DRNN model. Dropout is usually applied in the
input and output layers but not the hidden states
of RNN, because the number of previous states is
variable (Zaremba et al., 2014). In contrast, our
DRNN model has a fixed window size for output at
each step, so we also apply dropout in the hidden
states. In this paper, we apply dropout in the input
layer, output layer, and hidden states. The Figure
3 shows the difference to apply dropout between
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AG DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Tasks News Ontology SA SA QA SA SA
Train dataset 120k 560k 560k 650k 1.4M 3.6M 3M
Test dataset 7.6k 70k 38k 50k 60k 400k 650k
Average Lengths 45 55 153 155 112 93 91
Classes Number 4 14 2 5 10 5 2

Table 2: Dataset information. Here SA refers to sentiment analysis, and QA refers to question answering.

RNN and DRNN.

4 Experiments

4.1 Experimental Settings
Datasets Introduction We use 7 large-scale
text classification datasets which are proposed by
Zhang et al. (2015). We summarize the datasets
in Table 2. AG corpus is news and DBPedia is
an ontology which comes from the Wikipedia.
Yelp and Amazon corpus are reviews for which
we should predict the sentiment. Here P. means
that we only need to predict the polarities of the
dataset, while F. indicates that we need predict
the star number of the review. Yahoo! Answers
(Yah. A.) is a question answering dataset. We can
see that these datasets contain various domains
and sizes, which would be credible to validate our
models.

Implementation Details We tokenize all
the corpus with NLTK’s tokenizer (Bird and
Loper, 2004). We limit the vocabulary size of
each dataset as shown in Table 3. The words not
in vocabulary are replaced with a special token
UNK. Table 3 also shows the window sizes that
we set for these datasets.

We utilize the 300D GloVe 840B vectors (Pen-
nington et al., 2014) as our pre-trained word em-
beddings. For words that do not appear in GloVe,
we average the vector representations of 8 words
around the word in training dataset as its word vec-
tor, which has been applied by Wang and Jiang
(2016). When training our model, word embed-
dings are updated along with other parameters.

We use Adadelta (Zeiler, 2012) to optimize all
the trainable parameters. The hyperparameter of
Adadelta is set as Zeiler (2012) suggest that ε is
1e − 6 and ρ is 0.95. To avoid the gradient ex-
plosion problem, we apply gradient norm clipping
(Pascanu et al., 2013). The batch size is set to 128
and all the dimensions of input vectors and hidden

Corpus Window size Vocabulary size

AG 15 100k
DBP. 15 500k
Yelp P. 20 200k
Yelp F. 20 200k
Yah. A. 20 500k
Amz. F. 15 500k
Amz. P. 15 500k

Table 3: Experimental settings

states are set to 300.

4.2 Experimental Results

Table 4 shows that our proposed model signif-
icantly outperforms all the other models in 7
datasets. DRNN does not have too many hyper-
parameters. The main hyperparameter is the win-
dow size which can be determined by an empirical
method.

The top block shows the traditional methods
and some other neural networks which are not
based on RNN or CNN. The linear model (Zhang
et al., 2015) achieves a strong baseline in small
datasets, but performs not well in large data. Fast-
Text (Joulin et al., 2017) and region embedding
methods (Qiao et al., 2018) achieve comparable
performance with other CNN and RNN based
models.

The RNN based models are listed in the sec-
ond block and CNN based models are in the third
block. The D-LSTM (Yogatama et al., 2017) is a
discriminative LSTM model. Hierarchical atten-
tion network (HAN) (Yang et al., 2016) is a hier-
archical GRU model with attentive pooling. We
can see that very deep CNN (VDCNN) (Conneau
et al., 2017) performs well in large datasets. How-
ever, VDCNN is a CNN model with 29 convolu-
tional layers, which needs to be tuned more care-
fully. By contrast, our proposed model can achieve
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Models AG DBP. Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Linear model (Zhang et al., 2015) 7.64 1.31 4.36 40.14 28.96 44.74 7.98
FastText (Joulin et al., 2017) 7.5 1.4 4.3 36.1 27.7 39.8 5.4
Region.emb (Qiao et al., 2018) 7.2 1.1 4.7 35.1 26.3 39.1 4.7

D-LSTM (Yogatama et al., 2017) 7.9 1.3 7.4 40.4 26.3 - -
HAN (Yang et al., 2016) - - - - 24.2 36.4 -

char-CNN (Zhang et al., 2015) 9.51 1.55 4.88 37.95 28.80 40.43 4.93
word-CNN (Zhang et al., 2015) 8.55 1.37 4.60 39.58 28.84 42.39 5.51
VDCNN (Conneau et al., 2017) 8.67 1.29 4.28 35.28 26.57 37.00 4.28

char-CRNN (Xiao and Cho, 2016) 8.64 1.43 5.51 38.18 28.26 40.77 5.87

DRNN 5.53 0.81 2.73 30.85 23.74 35.57 3.51

Table 4: Error rates (%) on seven datasets
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Figure 4: DGRU compared with CNN

better performance in these datasets by simply set-
ting a large window size.

Char-CRNN (Xiao and Cho, 2016) in the
fourth block is a model which combines position-
invariance of CNN and long-term dependencies of
RNN. Nevertheless, they do not achieve great im-
provements over other models. They first utilize
convolution operation to extract position-invariant
features, and then use RNN to capture long-term
dependencies. Here, modeling the whole sequence
with RNN leads to a loss of position-invariance.
Compared with their model, our model can bet-
ter maintain the position-invariance by max pool-
ing (Scherer et al., 2010). Table 4 shows that our
model achieves 10-50% relative error reduction
compared with char-CRNN in these datasets.

4.3 Comparison with RNN and CNN

In this section, we compare DRNN with CNN,
GRU and LSTM (Hochreiter and Schmidhuber,
1997). To make these models comparable, we im-

Models AG DBP. Yelp P.

CNN 6.30 1.13 4.08
GRU 6.25 0.96 3.41
LSTM 6.20 0.90 3.20
DRNN 5.53 0.81 2.73

Table 5: Comparison with RNN and CNN. Table
shows the error rate (%) on three datasets.

plement these models with the same architecture
shown in Figure 2. We just replace the DRNN with
CNN or RNN.

we firstly compare DRNN with CNN on AG
dataset. Figure 4 shows that DRNN performs far
better than CNN. In addition, the optimal window
size of CNN is 3, while for DRNN the optimal
window size is 15. It indicates that DRNN can
model longer sequence as window size increases.
By contrast, simply increasing the window size
of CNN only results in overfitting. That is also
why Conneau et al. (2017) design complex CNN
models to learn long-term dependencies other than
simply increase the window size of convolution
filters.

In addition, we also compare our model with
GRU and LSTM. The experimental results are
shown in Table 5. Our model DRNN achieves
much better performance than GRU and LSTM.

Qualitative Analysis To investigate why
DGRU performs better than CNN and GRU, we
do some error analysis on Yelp P. dataset. Table
6 shows two examples which have been both
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case1: I love Hampton Inn but this location is in serious need of remodeling and some deep cleaning.
Musty smell everywhere.
case2: Pretty good service, but really busy and noisy!! It gets a little overwhelming because the sales
people are very knowledgeable and bombard you with useless techy information to I guess impress
you?? Anyways I bought the Ipad 3 and it is freaking awesome and makes up for the store. I would
give the Ipad 3 a gazillion stars if I could. I left it at home today and got really sad when I was
driving away. Boo Hoo!!

Table 6: Examples of error analysis. The case 1 is a negative review and case 2 is a positive review.
The first example is misclassified by CNN and classified correctly by GRU. The second one is just the
contrary. DGRU classify both examples correctly.
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Figure 5: Component comparison

classified correctly by DRNN. The first example
is misclassified by CNN and classified correctly
by GRU. It is just contrary to the second example.
Considering the first example, CNN may extract
some key phrases such as I love and misclassifies
the example as Positive, while GRU can model
long sequence and capture the information after
but. For the second example, however, GRU still
captures the information after but and neglects
the key phrases such as pretty good service and
freaking awesome, which leads to the wrong
classification.

DGRU can both extract the local key features
such as pretty good service and capture long-term
information such as the sentence after but, which
makes it perform better than GRU and CNN.

4.4 Component Analysis
Recurrent Unit In this part, we study the im-
pact of different recurrent units on the effective-
ness of DRNN. We choose three types of recurrent
units: naive RNN, LSTM and GRU which have
been compared by Chung et al. (2014). We carry
out the experiments with different window sizes
to eliminate the impact of window sizes. All the
experiments in this part are conducted on the AG

dataset.

We find that the disconnected naive RNN per-
forms just a little worse than disconnected LSTM
(DLSTM) and disconnected GRU (DGRU) when
the window size is lower than 5. However, when
the window size is more than 10, its performance
decreases rapidly and the error rate becomes even
more than 20%. We believe that it is due to van-
ishing gradient problem of naive RNN.

From Figure 5(a), we can see that window sizes
affect the performance of DGRU and DLSTM.
DGRU achieves the best performance when the
window size is 15, while the best window size
for DLSTM is 5. The performance of DGRU is
always better than DLSTM no matter what the
window size is. We also find that the DGRU
model converges faster than DLSTM in the
process of training. Therefore, we apply GRU as
recurrent units of DRNN in this paper for all the
other experiments.

Pooling Method Pooling is a kind of method to
subsample the values to capture more important
information. In NLP, pooling can also convert a
variable-length tensor or vector into a fixed-length
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Figure 6: Window size analysis. For better comparing the trends of different tasks, (a) shows the error
reduction rates with different window sizes. (b) and (c) show the error rates of DBP. and Yelp P. with
different training set numbers.

one, so that it can be dealt with more easily.
There’re several kinds of pooling methods such as
max pooling, mean pooling and attentive pooling
(dos Santos et al., 2016).

We still conduct the experiments on AG dataset.
Figure 5(b) shows the experimental results of
three pooling methods along with different win-
dow sizes. From Figure 5(b), we can see that
the DRNN model with max pooling performs bet-
ter than the others. This may be because that
max pooling can capture position-invariant fea-
tures better (Scherer et al., 2010). We find atten-
tive pooling is not significantly affected by win-
dow sizes. However, the performance of mean
pooling becomes worse as the window becomes
larger.

4.5 Window size analysis

In this section, we mainly study what factors affect
the optimal window size. In addition to the recur-
rent units and pooling methods discussed above,
we believe the optimal window size may be also
related to the amount of training data and the type
of task.

In order to study the factors that affect the op-
timal window size, we conduct experiments on
three datasets: AG, DBP and Yelp Polarity. To
eliminate the influence of differrnt training data
sizes, we conduct experiments with the same train-
ing data size. From Figure 6(a) we can see that the
type of task has a great impact on the optimal win-
dow size. For AG and DBPedia, the optimal win-
dow size is 15. However, for Yelp P. the optimal
window size is 40 or even larger. The result is intu-
itive, because sentiment analysis such as Yelp of-
ten involves long-term dependencies (Tang et al.,
2015), while topic classification such as AG and
DBPedia relys more on the key phrases.

From Figure 6(b) and Figure 6(c) we can see the
effect of different training data sizes on the opti-
mal window size. Surprisingly, the effect of differ-
ent training data sizes on the optimal window size
seems little. We can see that for both DBPedia and
Yelp corpus, the trend of error rate with the win-
dow size is similar. This shows that the number of
training data has little effect on the choice of the
optimal window size. It also provides a good em-
pirical way for us to choose the optimal window
size. That is, conducting experiments on a small
dataset first to select the optimal window size.

5 Conclusion

In this paper, we incorporate position-invariance
into RNN, so that our proposed model DRNN can
both capture key phrases and long-term dependen-
cies. We conduct experiments to compare the ef-
fects of different recurrent units and pooling op-
erations. In addition, We also analyze what fac-
tors affect the optimal window size of DRNN and
present an empirical method to search it. The ex-
perimental results show that our proposed model
outperforms CNN and RNN models, and achieve
the best performance in seven large-scale text clas-
sification datasets.
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