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Abstract

Multimodal research is an emerging field
of artificial intelligence, and one of the
main research problems in this field is mul-
timodal fusion. The fusion of multimodal
data is the process of integrating multiple
unimodal representations into one compact
multimodal representation. Previous re-
search in this field has exploited the ex-
pressiveness of tensors for multimodal rep-
resentation. However, these methods often
suffer from exponential increase in dimen-
sions and in computational complexity in-
troduced by transformation of input into
tensor. In this paper, we propose the Low-
rank Multimodal Fusion method, which
performs multimodal fusion using low-rank
tensors to improve efficiency. We evaluate
our model on three different tasks: mul-
timodal sentiment analysis, speaker trait
analysis, and emotion recognition. Our
model achieves competitive results on all
these tasks while drastically reducing com-
putational complexity. Additional experi-
ments also show that our model can per-
form robustly for a wide range of low-rank
settings, and is indeed much more efficient
in both training and inference compared to
other methods that utilize tensor represen-
tations.

1 Introduction

Multimodal research has shown great progress in a
variety of tasks as an emerging research field of arti-
ficial intelligence. Tasks such as speech recognition
(Yuhas et al., 1989), emotion recognition, (De Silva
et al., 1997), (Chen et al., 1998), (Wöllmer et al.,
2013), sentiment analysis, (Morency et al., 2011)

∗ equal contributions

as well as speaker trait analysis and media descrip-
tion (Park et al., 2014a) have seen a great boost
in performance with developments in multimodal
research.

However, a core research challenge yet to be
solved in this domain is multimodal fusion. The
goal of fusion is to combine multiple modalities
to leverage the complementarity of heterogeneous
data and provide more robust predictions. In this
regard, an important challenge has been on scaling
up fusion to multiple modalities while maintaining
reasonable model complexity. Some of the recent
attempts (Fukui et al., 2016), (Zadeh et al., 2017)
at multimodal fusion investigate the use of tensors
for multimodal representation and show significant
improvement in performance. Unfortunately, they
are often constrained by the exponential increase
of cost in computation and memory introduced by
using tensor representations. This heavily restricts
the applicability of these models, especially when
we have more than two views of modalities in the
dataset.

In this paper, we propose the Low-rank Mul-
timodal Fusion, a method leveraging low-rank
weight tensors to make multimodal fusion efficient
without compromising on performance. The over-
all architecture is shown in Figure 1. We evalu-
ated our approach with experiments on three mul-
timodal tasks using public datasets and compare
its performance with state-of-the-art models. We
also study how different low-rank settings impact
the performance of our model and show that our
model performs robustly within a wide range of
rank settings. Finally, we perform an analysis of
the impact of our method on the number of param-
eters and run-time with comparison to other fusion
methods. Through theoretical analysis, we show
that our model can scale linearly in the number of
modalities, and our experiments also show a corre-
sponding speedup in training when compared with
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Figure 1: Overview of our Low-rank Multimodal Fusion model structure: LMF first obtains the unimodal
representation za, zv, zl by passing the unimodal inputs xa, xv, xl into three sub-embedding networks
fv, fa, fl respectively. LMF produces the multimodal output representation by performing low-rank
multimodal fusion with modality-specific factors. The multimodal representation can be then used for
generating prediction tasks.

other tensor-based models.
The main contributions of our paper are as fol-

lows:

• We propose the Low-rank Multimodal Fusion
method for multimodal fusion that can scale
linearly in the number of modalities.

• We show that our model compares to state-of-
the-art models in performance on three multi-
modal tasks evaluated on public datasets.

• We show that our model is computationally
efficient and has fewer parameters in compari-
son to previous tensor-based methods.

2 Related Work

Multimodal fusion enables us to leverage comple-
mentary information present in multimodal data,
thus discovering the dependency of information on
multiple modalities. Previous studies have shown
that more effective fusion methods translate to bet-
ter performance in models, and there’s been a wide
range of fusion methods.

Early fusion is a technique that uses feature
concatenation as the method of fusion of differ-
ent views. Several works that use this method of
fusion (Poria et al., 2016) , (Wang et al., 2016)
use input-level feature concatenation and use the

concatenated features as input, sometimes even re-
moving the temporal dependency present in the
modalities (Morency et al., 2011). The drawback
of this class of method is that although it achieves
fusion at an early stage, intra-modal interactions
are potentially suppressed, thus losing out on the
context and temporal dependencies within each
modality.

On the other hand, late fusion builds sepa-
rate models for each modality and then integrates
the outputs together using a method such as ma-
jority voting or weighted averaging (Wortwein
and Scherer, 2017), (Nojavanasghari et al., 2016).
Since separate models are built for each modality,
inter-modal interactions are usually not modeled
effectively.

Given these shortcomings, more recent work
focuses on intermediate approaches that model
both intra- and inter-modal dynamics. Fukui et al.
(2016) proposes to use Compact Bilinear Pooling
over the outer product of visual and linguistic repre-
sentations to exploit the interactions between vision
and language for visual question answering. Sim-
ilar to the idea of exploiting interactions, Zadeh
et al. (2017) proposes Tensor Fusion Network,
which computes the outer product between uni-
modal representations from three different modal-
ities to compute a tensor representation. These
methods exploit tensor representations to model
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inter-modality interactions and have shown a great
success. However, such methods suffer from expo-
nentially increasing computational complexity, as
the outer product over multiple modalities results in
extremely high dimensional tensor representations.

For unimodal data, the method of low-rank ten-
sor approximation has been used in a variety of
applications to implement more efficient tensor op-
erations. Razenshteyn et al. (2016) proposes a mod-
ified weighted version of low-rank approximation,
and Koch and Lubich (2010) applies the method
towards temporally dependent data to obtain low-
rank approximations. As for applications, Lei et al.
(2014) proposes a low-rank tensor technique for
dependency parsing while Wang and Ahuja (2008)
uses the method of low-rank approximation applied
directly on multidimensional image data (Datum-
as-is representation) to enhance computer vision
applications. Hu et al. (2017) proposes a low-rank
tensor-based fusion framework to improve the face
recognition performance using the fusion of facial
attribute information. However, none of these previ-
ous work aims to apply low-rank tensor techniques
for multimodal fusion.

Our Low-rank Multimodal Fusion method pro-
vides a much more efficient method to com-
pute tensor-based multimodal representations with
much fewer parameters and computational com-
plexity. The efficiency and performance of our ap-
proach are evaluated on different downstream tasks,
namely sentiment analysis, speaker-trait recogni-
tion and emotion recognition.

3 Low-rank Multimodal Fusion

In this section, we start by formulating the problem
of multimodal fusion and introducing fusion meth-
ods based on tensor representations. Tensors are
powerful in their expressiveness but do not scale
well to a large number of modalities. Our proposed
model decomposes the weights into low-rank fac-
tors, which reduces the number of parameters in
the model. This decomposition can be performed
efficiently by exploiting the parallel decomposition
of low-rank weight tensor and input tensor to com-
pute tensor-based fusion. Our method is able to
scale linearly with the number of modalities.

3.1 Multimodal Fusion using Tensor
Representations

In this paper, we formulate multimodal fusion as
a multilinear function f ∶ V1 × V2 × ... × VM →

H where V1, V2, ..., VM are the vector spaces of
input modalities and H is the output vector space.
Given a set of vector representations, {zm}Mm=1
which are encoding unimodal information of the
M different modalities, the goal of multimodal
fusion is to integrate the unimodal representations
into one compact multimodal representation for
downstream tasks.

Tensor representation is one successful approach
for multimodal fusion. It first requires a transfor-
mation of the input representations into a high-
dimensional tensor and then mapping it back to a
lower-dimensional output vector space. Previous
works have shown that this method is more effec-
tive than simple concatenation or pooling in terms
of capturing multimodal interactions (Zadeh et al.,
2017), (Fukui et al., 2016). Tensors are usually
created by taking the outer product over the input
modalities. In addition, in order to be able to model
the interactions between any subset of modalities
using one tensor, Zadeh et al. (2017) proposed a
simple extension to append 1s to the unimodal rep-
resentations before taking the outer product. The
input tensor Z formed by the unimodal representa-
tion is computed by:

Z =
M

⊗
m=1

zm, zm ∈ Rdm (1)

where⊗M
m=1 denotes the tensor outer product over

a set of vectors indexed by m, and zm is the input
representation with appended 1s.

The input tensor Z ∈ Rd1×d2×...dM is then passed
through a linear layer g(⋅) to to produce a vector
representation:

h = g(Z;W, b) =W ⋅Z + b, h, b ∈ Rdy (2)

where W is the weight of this layer and b is the
bias. With Z being an order-M tensor (where
M is the number of input modalities), the weight
W will naturally be a tensor of order-(M + 1) in
Rd1×d2×...×dM×dh . The extra (M +1)-th dimension
corresponds to the size of the output representation
dh. In the tensor dot productW ⋅Z , the weight ten-
sorW can be then viewed as dh order-M tensors.
In other words, the weight W can be partitioned
into W̃k ∈ Rd1×...×dM , k = 1, ..., dh. Each W̃k con-
tributes to one dimension in the output vector h, i.e.
hk = W̃k ⋅Z . This interpretation of tensor fusion is
illustrated in Figure 2 for the bi-modal case.

One of the main drawbacks of tensor fusion
is that we have to explicitly create the high-
dimensional tensor Z . The dimensionality of Z
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Figure 2: Tensor fusion via tensor outer product

will increase exponentially with the number of
modalities as∏M

m=1 dm. The number of parameters
to learn in the weight tensorW will also increase
exponentially. This not only introduces a lot of
computation but also exposes the model to risks of
overfitting.

3.2 Low-rank Multimodal Fusion with
Modality-Specific Factors

As a solution to the problems of tensor-based fu-
sion, we propose Low-rank Multimodal Fusion
(LMF). LMF parameterizes g(⋅) from Equation
2 with a set of modality-specific low-rank factors
that can be used to recover a low-rank weight ten-
sor, in contrast to the full tensorW . Moreover, we
show that by decomposing the weight into a set
of low-rank factors, we can exploit the fact that
the tensor Z actually decomposes into {zm}Mm=1,
which allows us to directly compute the output h
without explicitly tensorizing the unimodal repre-
sentations. LMF reduces the number of parameters
as well as the computation complexity involved
in tensorization from being exponential in M to
linear.

3.2.1 Low-rank Weight Decomposition
The idea of LMF is to decompose the weight tensor
W into M sets of modality-specific factors. How-
ever, since W itself is an order-(M + 1) tensor,
commonly used methods for decomposition will
result in M + 1 parts. Hence, we still adopt the
view introduced in Section 3.1 thatW is formed by
dh order-M tensors W̃k ∈ Rd1×...×dM , k = 1, ..., dh
stacked together. We can then decompose each W̃k

separately.
For an order-M tensor W̃k ∈ Rd1×...×dM , there

always exists an exact decomposition into vectors
in the form of:

W̃k =
R

∑
i=1

M

⊗
m=1

w
(i)
m,k, w

(i)
m,k ∈ R

d
m (3)

The minimal R that makes the decomposition valid
is called the rank of the tensor. The vector sets

{{w(i)m,k}
M
m=1}Ri=1 are called the rank R decomposi-

tion factors of the original tensor.
In LMF, we start with a fixed rank r, and pa-

rameterize the model with r decomposition factors
{{w(i)m,k}

M
m=1}ri=1, k = 1, ..., dh that can be used to

reconstruct a low-rank version of these W̃k.
We can regroup and concatenate these vectors

into M modality-specific low-rank factors. Let
w
(i)
m = [w(i)m,1,w

(i)
m,2, ...,w

(i)
m,dh

], then for modality

m, {w(i)m }ri=1 is its corresponding low-rank factors.
And we can recover a low-rank weight tensor by:

W =
r

∑
i=1

M

⊗
m=1

w(i)m (4)

Hence equation 2 can be computed by

h = (
r

∑
i=1

M

⊗
m=1

w(i)m ) ⋅Z (5)

Note that for all m, w
(i)
m ∈ Rdm×dh shares the

same size for the second dimension. We define
their outer product to be over only the dimensions
that are not shared: w(i)m ⊗w

(i)
n ∈ Rdm×dn×dh . A

bimodal example of this procedure is illustrated in
Figure 3.

Nevertheless, by introducing the low-rank fac-
tors, we now have to compute the reconstruction
ofW = ∑r

i=1⊗M
m=1w

(i)
m for the forward computa-

tion. Yet this introduces even more computation.

3.2.2 Efficient Low-rank Fusion Exploiting
Parallel Decomposition

In this section, we will introduce an efficient pro-
cedure for computing h, exploiting the fact that
tensor Z naturally decomposes into the original
input {zm}Mm=1, which is parallel to the modality-
specific low-rank factors. In fact, that is the main
reason why we want to decompose the weight ten-
sor into M modality-specific factors.

Using the fact that Z =⊗M
m=1 zm, we can sim-

plify equation 5:

h = (
r

∑
i=1

M

⊗
m=1

w(i)m ) ⋅Z

=
r

∑
i=1

(
M

⊗
m=1

w(i)m ⋅Z)

=
r

∑
i=1

(
M

⊗
m=1

w(i)m ⋅
M

⊗
m=1

zm)

=
M

Λ
m=1

[
r

∑
i=1

w(i)m ⋅ zm] (6)
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Figure 3: Decomposing weight tensor into low-rank factors (See Section 3.2.1 for details.)

where ΛM
m=1 denotes the element-wise product

over a sequence of tensors: Λ3
t=1 xt = x1 ○ x2 ○ x3.

An illustration of the trimodal case of equation 6
is shown in Figure 1. We can also derive equation
6 for a bimodal case to clarify what it does:

h = (
r

∑
i=1

w(i)a ⊗w(i)v ) ⋅Z

= (
r

∑
i=1

w(i)a ⋅ za) ○ (
r

∑
i=1

w(i)v ⋅ zv) (7)

An important aspect of this simplification is that
it exploits the parallel decomposition of both Z
andW , so that we can compute h without actually
creating the tensor Z from the input representa-
tions zm. In addition, different modalities are de-
coupled in the simplified computation of h, which
allows for easy generalization of our approach to
an arbitrary number of modalities. Adding a new
modality can be simply done by adding another
set of modality-specific factors and extend Equa-
tion 7. Last but not least, Equation 6 consists of
fully differentiable operations, which enables the
parameters {w(i)m }ri=1m = 1, ...,M to be learned
end-to-end via back-propagation.

Using Equation 6, we can compute h directly
from input unimodal representations and their
modal-specific decomposition factors, avoiding the
weight-lifting of computing the large input ten-
sor Z and W , as well as the r linear transfor-
mation. Instead, the input tensor and subsequent
linear projection are computed implicitly together
in Equation 6, and this is far more efficient than
the original method described in Section 3.1. In-
deed, LMF reduces the computation complexity of
tensorization and fusion from O(dy∏M

m=1 dm) to
O(dy × r ×∑M

m=1 dm).
In practice, we use a slightly different form of

Equation 6, where we concatenate the low-rank

factors into M order-3 tensors and swap the or-
der in which we do the element-wise product and
summation:

h =
r

∑
i=1

[
M

Λ
m=1

[w(1)m ,w(2)m , ...,w(r)m ] ⋅ ẑm]
i,∶

(8)

and now the summation is done along the first di-
mension of the bracketed matrix. [⋅]i,∶ indicates the
i-th slice of a matrix. In this way, we can parame-
terize the model with M order-3 tensors, instead of
parameterizing with sets of vectors.

4 Experimental Methodology

We compare LMF with previous state-of-the-art
baselines, and we use the Tensor Fusion Networks
(TFN) (Zadeh et al., 2017) as a baseline for tensor-
based approaches, which has the most similar struc-
ture with us except that it explicitly forms the large
multi-dimensional tensor for fusion across different
modalities.

We design our experiments to better understand
the characteristics of LMF. Our goal is to answer
the following four research questions:
(1) Impact of Multimodal Low-rank Fusion: Di-
rect comparison between our proposed LMF model
and the previous TFN model.
(2) Comparison with the State-of-the-art: We
evaluate the performance of LMF and state-of-the-
art baselines on three different tasks and datasets.
(3) Complexity Analysis: We study the modal
complexity of LMF and compare it with the TFN
model.
(4) Rank Settings: We explore performance of
LMF with different rank settings.

The results of these experiments are presented
in Section 5.

4.1 Datasets
We perform our experiments on the following multi-
modal datasets, CMU-MOSI (Zadeh et al., 2016a),
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Dataset CMU-MOSI IEMOCAP POM
Level Segment Segment Video
# Train 1284 6373 600
# Valid 229 1775 100
# Test 686 1807 203

Table 1: The speaker independent data splits for
training, validation, and test sets.

POM (Park et al., 2014b), and IEMOCAP (Busso
et al., 2008) for sentiment analysis, speaker traits
recognition, and emotion recognition task, where
the goal is to identify speakers emotions based on
the speakers’ verbal and nonverbal behaviors.
CMU-MOSI The CMU-MOSI dataset is a collec-
tion of 93 opinion videos from YouTube movie
reviews. Each video consists of multiple opinion
segments and each segment is annotated with the
sentiment in the range [-3,3], where -3 indicates
highly negative and 3 indicates highly positive.
POM The POM dataset is composed of 903 movie
review videos. Each video is annotated with the fol-
lowing speaker traits: confident, passionate, voice
pleasant, dominant, credible, vivid, expertise, enter-
taining, reserved, trusting, relaxed, outgoing, thor-
ough, nervous, persuasive and humorous.
IEMOCAP The IEMOCAP dataset is a collection
of 151 videos of recorded dialogues, with 2 speak-
ers per session for a total of 302 videos across the
dataset. Each segment is annotated for the presence
of 9 emotions (angry, excited, fear, sad, surprised,
frustrated, happy, disappointed and neutral).

To evaluate model generalization, all datasets are
split into training, validation, and test sets such that
the splits are speaker independent, i.e., no identical
speakers from the training set are present in the
test sets. Table 1 illustrates the data splits for all
datasets in detail.

4.2 Features

Each dataset consists of three modalities, namely
language, visual, and acoustic modalities. To reach
the same time alignment across modalities, we
perform word alignment using P2FA (Yuan and
Liberman, 2008) which allows us to align the three
modalities at the word granularity. We calculate the
visual and acoustic features by taking the average
of their feature values over the word time interval
(Chen et al., 2017).
Language We use pre-trained 300-dimensional
Glove word embeddings (Pennington et al., 2014)
to encode a sequence of transcribed words into a
sequence of word vectors.

Visual The library Facet1 is used to extract a set of
visual features for each frame (sampled at 30Hz) in-
cluding 20 facial action units, 68 facial landmarks,
head pose, gaze tracking and HOG features (Zhu
et al., 2006).
Acoustic We use COVAREP acoustic analysis
framework (Degottex et al., 2014) to extract a set
of low-level acoustic features, including 12 Mel
frequency cepstral coefficients (MFCCs), pitch,
voiced/unvoiced segmentation, glottal source, peak
slope, and maxima dispersion quotient features.

4.3 Model Architecture
In order to compare our fusion method with previ-
ous work, we adopt a simple and straightforward
model architecture 2 for extracting unimodal rep-
resentations. Since we have three modalities for
each dataset, we simply designed three unimodal
sub-embedding networks, denoted as fa, fv, fl, to
extract unimodal representations za, zv, zl from uni-
modal input features xa, xv, xl. For acoustic and
visual modality, the sub-embedding network is a
simple 2-layer feed-forward neural network, and
for language modality, we used an LSTM (Hochre-
iter and Schmidhuber, 1997) to extract represen-
tations. The model architecture is illustrated in
Figure 1.

4.4 Baseline Models
We compare the performance of LMF to the follow-
ing baselines and state-of-the-art models in multi-
modal sentiment analysis, speaker trait recognition,
and emotion recognition.
Support Vector Machines Support Vector Ma-
chines (SVM) (Cortes and Vapnik, 1995) is a
widely used non-neural classifier. This baseline
is trained on the concatenated multimodal features
for classification or regression task (Pérez-Rosas
et al., 2013), (Park et al., 2014a), (Zadeh et al.,
2016b).
Deep Fusion The Deep Fusion model (DF) (No-
javanasghari et al., 2016) trains one deep neural
model for each modality and then combine the out-
put of each modality network with a joint neural
network.
Tensor Fusion Network The Tensor Fusion Net-
work (TFN) (Zadeh et al., 2017) explicitly models
view-specific and cross-view dynamics by creat-
ing a multi-dimensional tensor that captures uni-

1goo.gl/1rh1JN
2The source code of our model is available on Github at

https://github.com/Justin1904/Low-rank-Multimodal-Fusion
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modal, bimodal and trimodal interactions across
three modalities.
Memory Fusion Network The Memory Fusion
Network (MFN) (Zadeh et al., 2018a) accounts for
view-specific and cross-view interactions and con-
tinuously models them through time with a special
attention mechanism and summarized through time
with a Multi-view Gated Memory.
Bidirectional Contextual LSTM The Bidirec-
tional Contextual LSTM (BC-LSTM) (Zadeh et al.,
2017), (Fukui et al., 2016) performs context-
dependent fusion of multimodal data.
Multi-View LSTM The Multi-View LSTM (MV-
LSTM) (Rajagopalan et al., 2016) aims to capture
both modality-specific and cross-modality interac-
tions from multiple modalities by partitioning the
memory cell and the gates corresponding to multi-
ple modalities.
Multi-attention Recurrent Network The Multi-
attention Recurrent Network (MARN) (Zadeh et al.,
2018b) explicitly models interactions between
modalities through time using a neural component
called the Multi-attention Block (MAB) and storing
them in the hybrid memory called the Long-short
Term Hybrid Memory (LSTHM).

4.5 Evaluation Metrics

Multiple evaluation tasks are performed during our
evaluation: multi-class classification and regres-
sion. The multi-class classification task is applied
to all three multimodal datasets, and the regres-
sion task is applied to the CMU-MOSI and the
POM dataset. For binary classification and multi-
class classification, we report F1 score and accu-
racy Acc−k where k denotes the number of classes.
Specifically, Acc−2 stands for the binary classifica-
tion. For regression, we report Mean Absolute Er-
ror (MAE) and Pearson correlation (Corr). Higher
values denote better performance for all metrics
except for MAE.

5 Results and Discussion

In this section, we present and discuss the results
from the experiments designed to study the re-
search questions introduced in section 4.

5.1 Impact of Low-rank Multimodal Fusion

In this experiment, we compare our model directly
with the TFN model since it has the most similar
structure to our model, except that TFN explic-
itly forms the multimodal tensor fusion. The com-

parison reported in the last two rows of Table 2
demonstrates that our model significantly outper-
forms TFN across all datasets and metrics. This
competitive performance of LMF compared to TFN
emphasizes the advantage of Low-rank Multimodal
Fusion.

5.2 Comparison with the State-of-the-art

We compare our model with the baselines and state-
of-the-art models for sentiment analysis, speaker
traits recognition and emotion recognition. Results
are shown in Table 2. LMF is able to achieve com-
petitive and consistent results across all datasets.

On the multimodal sentiment regression task,
LMF outperforms the previous state-of-the-art
model on MAE and Corr. Note the multiclass
accuracy is calculated by mapping the range of
continuous sentiment values into a set of intervals
that are used as discrete classes.

On the multimodal speaker traits Recognition
task, we report the average evaluation score over
16 speaker traits and shows that our model achieves
the state-of-the-art performance over all three eval-
uation metrics on the POM dataset.

On the multimodal emotion recognition task, our
model achieves better results compared to the state-
of-the-art models across all emotions on the F1
score. F1-emotion in the evaluation metrics indi-
cates the F1 score for a certain emotion class.

5.3 Complexity Analysis

Theoretically, the model complexity of our fu-
sion method is O(dy × r × ∑M

m=1 dm) compared
to O(dy∏M

m=1 dm) of TFN from Section 3.1. In
practice, we calculate the total number of parame-
ters used in each model, where we choose M = 3,
d1 = 32, d2 = 32, d3 = 64, r = 4, dy = 1. Under
this hyper-parameter setting, our model contains
about 1.1e6 parameters while TFN contains about
12.5e6 parameters, which is nearly 11 times more.
Note that, the number of parameters above counts
not only the parameters in the multimodal fusion
stage but also the parameters in the subnetworks.

Furthermore, we evaluate the computational
complexity of LMF by measuring the training and
testing speeds between LMF and TFN. Table 3
illustrates the impact of Low-rank Multimodal Fu-
sion on the training and testing speeds compared
with TFN model. Here we set rank to be 4 since
it can generally achieve fairly competent perfor-
mance.
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Dataset CMU-MOSI POM IEMOCAP
Metric MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Happy F1-Sad F1-Angry F1-Neutral
SVM 1.864 0.057 50.2 50.1 17.5 0.887 0.104 33.9 81.5 78.8 82.4 64.9
DF 1.143 0.518 72.3 72.1 26.8 0.869 0.144 34.1 81.0 81.2 65.4 44.0
BC-LSTM 1.079 0.581 73.9 73.9 28.7 0.840 0.278 34.8 81.7 81.7 84.2 64.1
MV-LSTM 1.019 0.601 73.9 74.0 33.2 0.891 0.270 34.6 81.3 74.0 84.3 66.7
MARN 0.968 0.625 77.1 77.0 34.7 - - 39.4 83.6 81.2 84.2 65.9
MFN 0.965 0.632 77.4 77.3 34.1 0.805 0.349 41.7 84.0 82.1 83.7 69.2
TFN 0.970 0.633 73.9 73.4 32.1 0.886 0.093 31.6 83.6 82.8 84.2 65.4
LMF 0.912 0.668 76.4 75.7 32.8 0.796 0.396 42.8 85.8 85.9 89.0 71.7

Table 2: Results for sentiment analysis on CMU-MOSI, emotion recognition on IEMOCAP and personality
trait recognition on POM. Best results are highlighted in bold.

Model Training Speed (IPS) Testing Speed (IPS)
TFN 340.74 1177.17
LMF 1134.82 2249.90

Table 3: Comparison of the training and testing
speeds between TFN and LMF. The second and
the third columns indicate the number of data point
inferences per second (IPS) during training and
testing time respectively. Both models are imple-
mented in the same framework with equivalent run-
ning environment.

Based on these results, performing a low-rank
multimodal fusion with modality-specific low-rank
factors significantly reduces the amount of time
needed for training and testing the model. On an
NVIDIA Quadro K4200 GPU, LMF trains with
an average frequency of 1134.82 IPS (data point
inferences per second) while the TFN model trains
at an average of 340.74 IPS.

5.4 Rank Settings

To evaluate the impact of different rank settings for
our LMF model, we measure the change in perfor-
mance on the CMU-MOSI dataset while varying

Figure 4: The Impact of different rank settings on
Model Performance: As the rank increases, the
results become unstable and low rank is enough in
terms of the mean absolute error.

the number of rank. The results are presented in
Figure 4. We observed that as the rank increases,
the training results become more and more unstable
and that using a very low rank is enough to achieve
fairly competent performance.

6 Conclusion

In this paper, we introduce a Low-rank Multi-
modal Fusion method that performs multimodal fu-
sion with modality-specific low-rank factors. LMF
scales linearly in the number of modalities. LMF
achieves competitive results across different mul-
timodal tasks. Furthermore, LMF demonstrates
a significant decrease in computational complex-
ity from exponential to linear time. In practice,
LMF effectively improves the training and testing
efficiency compared to TFN which performs multi-
modal fusion with tensor representations.

Future work on similar topics could explore the
applications of using low-rank tensors for attention
models over tensor representations, as they can be
even more memory and computationally intensive.
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