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Abstract

Most previous supervised event extraction
methods have relied on features derived
from manual annotations, and thus can-
not be applied to new event types without
extra annotation effort. We take a fresh
look at event extraction and model it as a
generic grounding problem: mapping each
event mention to a specific type in a tar-
get event ontology. We design a trans-
ferable architecture of structural and com-
positional neural networks to jointly rep-
resent and map event mentions and types
into a shared semantic space. Based on
this new framework, we can select, for
each event mention, the event type which
is semantically closest in this space as
its type. By leveraging manual annota-
tions available for a small set of exist-
ing event types, our framework can be
applied to new unseen event types with-
out additional manual annotations. When
tested on 23 unseen event types, this zero-
shot framework, without manual annota-
tions, achieves performance comparable
to a supervised model trained from 3,000
sentences annotated with 500 event men-
tions.1

1 Introduction

The goal of event extraction is to identify event
triggers and their arguments in unstructured text
data, and then to assign an event type to each trig-
ger and a semantic role to each argument. An ex-
ample is shown in Figure 1. Traditional supervised
methods have typically modeled this task of event

1The programs are publicly available for research purpose
at: https://github.com/wilburOne/ZeroShotEvent

extraction as a classification problem, by assign-
ing event triggers to event types from a pre-defined
fixed set. These methods rely heavily on man-
ual annotations and features specific to each event
type, and thus are not easily adapted to new event
types without extra annotation effort. Handling
new event types may even entail starting over,
without being able to re-use annotations from pre-
vious event types.

To make event extraction effective as new real-
world scenarios emerge, we take a look at this
task from the perspective of zero-shot learning,
ZSL (Frome et al., 2013; Norouzi et al., 2013;
Socher et al., 2013a). ZSL, as a type of trans-
fer learning, makes use of separate, pre-existing
classifiers to build a semantic, cross-concept space
that maps between their respective classes. The
resulting shared semantic space then allows for
building a novel “zero-shot” classifier, i,e,, requir-
ing no (zero) additional training examples, to han-
dle unseen cases. We observe that each event
mention has a structure consisting of a candidate
trigger and arguments, with corresponding pre-
defined name labels for the event type and argu-
ment roles. We propose to enrich the semantic
representations of each event mention and event
type with rich structures, and determine the type
based on the semantic similarity between an event
mention and each event type defined in a target on-
tology. Let’s consider two example sentences:

E1. The Government of China has ruled Tibet
since 1951 after dispatching troops to the
Himalayan region in 1950.

E2. Iranian state television stated that the con-
flict between the Iranian police and the
drug smugglers took place near the town of
mirjaveh.

In E1, as also diagrammed in Figure 1, dis-
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Figure 1: Event Mention Example: dispatching is the trigger of a Transport-Person event with four
arguments: the solid lines show the event annotations for the sentence while the dotted lines show the
Abstract Meaning Representation parsing output.

patching is the trigger for the event mention of
type Transport Person and in E2, conflict is the
trigger for the event mention of type Attack. We
make use of Abstract Meaning Representations
(AMR) (Banarescu et al., 2013) to identify the
candidate arguments and construct event mention
structures as shown in Figure 2 (top). Figure 2
(bottom) also shows event type structures defined
in the Automatic Content Extraction (ACE) guide-
line.2 We can see that a trigger and its event type
name usually have some shared meaning. Further-
more, their structures also tend to be similar: a
Transport Person event typically involves a Per-
son as its patient role, while an Attack event in-
volves a Person or Location as an Attacker. This
observation matches the theory by Pustejovsky
(1991): “the semantics of an event structure can
be generalized and mapped to event mention struc-
tures in a systematic and predictable way”.

Figure 2: Examples of Event Mention Structures
and Type Structures from ACE.

Inspired by this theory, for the first time, we
model event extraction as a generic grounding
problem, by mapping each mention to its semanti-
cally closest event type. Given an event ontology,

2https://en.wikipedia.org/wiki/Automatic content extraction

where each event type structure is well-defined,
we will refer to the event types for which we have
annotated event mentions as seen types, while
those without annotations as unseen types. Our
goal is to learn a generic mapping function inde-
pendent of event types, which can be trained from
annotations for a limited number of seen event
types and then used for any new unseen event
types. We design a transferable neural architec-
ture, which jointly learns and maps the structural
representations of event mentions and types into a
shared semantic space, by minimizing the distance
between each event mention and its corresponding
type. For event mentions with unseen types, their
structures will be projected into the same seman-
tic space using the same framework and assigned
types with top-ranked similarity values.

To summarize, to apply our new zero-shot trans-
fer learning framework to any new unseen event
types, we only need (1) a structured definition of
the unseen event type (its type name along with
role names for its arguments, from the event on-
tology); and (2) some annotations for one or a few
seen event types. Without requiring any additional
manual annotations for the new unseen types, our
ZSL framework achieves performance compara-
ble to supervised methods trained from a substan-
tial amount of training data for the same types.

2 Approach Overview

Briefly here, we overview the phases involved in
building our framework’s shared semantic space
that, in turn, is the basis for the ZSL framework.
Given a sentence s, we start by identifying candi-
date triggers and arguments based on AMR pars-
ing (Wang et al., 2015b). For the example shown
in Figure 1, we identify dispatching as a trigger,
and its candidate arguments: China, troops, Hi-
malayan and 1950. The details will be described
in Section 3.
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Figure 3: Architecture Overview. The blue circles denote event types and event type representations.
The dark grey diamonds and circles denote triggers and trigger representations from training set. The
light grey diamonds and circles denote triggers and trigger representations from testing set.

After this identification phase, we use our new
neural architecture, as depicted in Figure 3, to
classify triggers into event types. (The classifi-
cation of arguments into roles follows the same
pipeline.) For each trigger t, e.g., dispatch-01,
we determine its type by comparing its seman-
tic representation with that of any event type in
the event ontology. In order to incorporate the
contexts into the semantic representation of t, we
build a structure St using AMR as shown in Fig-
ure 3. Each structure is composed of a set of tu-
ples, e.g, 〈dispatch-01, :ARG0, China〉. We use a
matrix to represent each AMR relation, compos-
ing its semantics with two concepts for each tuple
(in Section 4), and feed all tuple representations
into a CNN to generate a dense vector represen-
tation VSt for the event mention structure (in Sec-
tion 5.1).

Given a target event ontology, for each type y,
e.g., Transport Person, we construct a type struc-
ture Sy consisting of its predefined roles, and use
a tensor to denote the implicit relation between
any type and argument role. We compose the se-
mantics of type and argument role with the ten-
sor for each tuple, e.g., 〈Transport Person, Des-
tination〉 (in Section 4). Then we generate the
event type structure representation VSy using the
same CNN (in Section 5.1). By minimizing the
semantic distance between dispatch-01 and Trans-

port Person using their dense vectors, VSt and VSy

respectively, we jointly map the representations of
event mention and event types into a shared se-
mantic space, where each mention is closest to its
annotated type.

After training that completes the construction
of the semantic space, the compositional functions
and CNNs are then used to project any new event
mention (e.g., donate-01) into the semantic space
and find its closest event type (e.g., Donation) (in
Section 5.3). In the next sections we will elaborate
each step in great detail.

3 Trigger and Argument Identification

Similar to Huang et al. (2016), we identify candi-
date triggers and arguments based on AMR Pars-
ing (Wang et al., 2015b) and apply the same word
sense disambiguation (WSD) tool (Zhong and Ng,
2010) to disambiguate word senses and link each
sense to OntoNotes, as shown in Figure 1.

Given a sentence, we consider all noun and verb
concepts that can be mapped to OntoNotes senses
by WSD as candidate event triggers. In addition,
the concepts that can be matched with verbs or
nominal lexical units in FrameNet (Baker et al.,
1998) are also considered as candidate triggers.
For each candidate trigger, we consider any con-
cepts that are involved in a subset of AMR rela-
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tions as candidate arguments 3. We manually se-
lect this subset of AMR relations that are useful for
capturing generic relations between event triggers
and arguments, as shown in Table 1.

Categories Relations
Core roles ARG0, ARG1, ARG2, ARG3, ARG4

Non-core roles mod, location, instrument, poss,
manner, topic, medium, prep-X

Temporal year, duration, decade, weekday, time
Spatial destination, path, location

Table 1: Event-Related AMR Relations.

4 Trigger and Type Structure
Composition

As Figure 3 shows, for each candidate trigger t,
we construct its event mention structure St based
on its candidate arguments and AMR parsing. For
each type y in the target event ontology, we con-
struct a structure Sy by including its pre-defined
roles and using its type as the root.

Each St or Sy is composed of a collection of
tuples. For each event mention structure, a tuple
consists of two AMR concepts and an AMR rela-
tion. For each event type structure, a tuple con-
sists of a type name and an argument role name.
Next we will describe how to compose semantic
representations for event mention and event type
respectively based on these structures.

Event Mention Structure For each tuple u =
〈w1, λ, w2〉 in an event mention structure, we use
a matrix to represent each AMR relation λ, and
compose the semantics of λ between two concepts
w1 and w2 as:

Vu = [V
′
w1
;V
′
w2
] = f([Vw1 ;Vw2 ] ·Mλ)

where Vw1 , Vw2 ∈ Rd are the vector representa-
tions of words w1 and w2. d is the dimension size
of each word vector. [ ; ] denotes the concatena-
tion of two vectors. Mλ ∈ R2d×2d is the matrix
representation for AMR relation λ. Vu is the com-
position representation of tuple u, which consists
of two updated vector representations V

′
w1

, V
′
w2

for
w1 and w2 by incorporating the semantics of λ.

Event Type Structure For each tuple u
′
= 〈y, r〉

in an event type structure, where y denotes the

3On the whole ACE2005 corpus, using the AMR
parser (Wang et al., 2015b), the coverage for trigger identi-
fication is 89.4% and the coverage for argument candidate
identification is 66.0%.

event type and r denotes an argument role, fol-
lowing Socher et al. (2013b), we assume an im-
plicit relation exists between any pair of type and
argument, and use a single and powerful tensor to
represent the implicit relation:

Vu′ = [V
′
y ;V

′
r ] = f([Vy;Vr]

T · U [1:2d] · [Vy;Vr])

where Vy and Vr are vector representations for y
and r. U [1:2d] ∈ R2d×2d×2d is a 3-order tensor.
V
′
u is the composition representation of tuple u

′
,

which consists of two updated vector representa-
tions V

′
y , V

′
r for y and r by incorporating the se-

mantics of their implicit relation U [1:2d].

5 Trigger and Argument Classification

5.1 Trigger Classification for Seen Types

Both event mention and event type structures are
relatively simple and can be represented with a set
of tuples. CNNs have been demonstrated effective
at capturing sentence level information by aggre-
gating compositional n-gram representations. In
order to generate structure-level representations,
we use CNN to learn to aggregate all edge and tu-
ple representations.

Input layer is a sequence of tuples, where the or-
der of tuples is from top to bottom in the structure.
Each tuple is represented by a d × 2 dimensional
vector, thus each mention structure and each type
structure are represented as a feature map of di-
mensionality d × 2h∗ and d × 2p∗ respectively,
where h∗ and p∗ are the maximal number of tu-
ples for event mention and type structures. We use
zero-padding to the right to make the volume of all
input structures consistent.

Convolution layer Take St with h∗ tuples:
u1, u2, ..., uh∗ as an example. The input matrix of
St is a feature map of dimensionality d× 2h∗. We
make ci as the concatenated embeddings of n con-
tinuous columns from the feature map, where n is
the filter width and 0 < i < 2h∗ + n. A convolu-
tion operation involves a filter W ∈ Rnd, which is
applied to each sliding window ci:

c
′
i = tanh(W · ci + b)

where c
′
i is the new feature representation, and

b ∈ Rd is a biased vector. We set filter width as
2 and stride as 2 to make the convolution function
operate on each tuple with two input columns.
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Max-Pooling: All tuple representations c
′
i are

used to generate the representation of the input se-
quence by max-pooling.

Learning: For each event mention t, we name
the correct type as positive and all the other types
in the target event ontology as negative. To train
the composition functions and CNN, we first con-
sider the following hinge ranking loss:

L1(t, y) =
∑

j∈Y, j 6=y
max{0,m− Ct,y + Ct,j}

Ct,y = cos([Vt;VSt ], [Vy;VSy ])

where y is the positive event type for t. Y is the
type set of the target event ontology. [Vt;VSt ] de-
notes the concatenation of representations of t and
St. j is a negative event type for t from Y . m is a
margin. Ct,y denotes the cosine similarity between
t and y.

The hinge loss is commonly used in zero-shot
visual object classification task. However, it tends
to overfit the seen types in our experiments. While
clever data augmentation can help alleviate over-
fitting, we design two strategies: (1) we add “neg-
ative” event mentions into the training process.
Here a “negative” event mention means that the
mention has no positive event type among all seen
types, namely it belongs to Other. (2) we design a
new loss function as follows:

Ld1(t, y) ={
max

j∈Y,j 6=y
max{0,m− Ct,y + Ct,j}, y 6= Other

max
j∈Y ′

,j 6=y
′
max{0,m− Ct,y

′ + Ct,j}, y = Other

where Y is the type set of the event ontology. Y
′
is

the seen type set. y is the annotated type. y
′

is the
type which ranks the highest among all event types
for event mention t, while t belongs to Other.

By minimizing Ld1, we can learn the optimized
model which can compose structure representa-
tions and map both event mention and types into
a shared semantic space, where the positive type
ranks the highest for each mention.

5.2 Argument Classification for Seen Types
For each mention, we map each candidate ar-
gument to a specific role based on the seman-
tic similarity of the argument path. Take E1 as
an example. China is matched to Agent based
on the semantic similarity between dispatch-01→
:ARG0→ China and Transport-Person→Agent.

Given a trigger t and a candidate argument a,
we first extract a path Sa = (u1, u2, ..., up), which
connects t and a and consists of p tuples. Each
predefined role r is also represented as a structure
by incorporating the event type, Sr = 〈y, r〉. We
apply the same framework to take the sequence
of tuples contained in Sa and Sr into a weight-
sharing CNN to rank all possible roles for a.

Ld2(a, r) = max
j∈Ry,j 6=r

max{0,m− Ca,r + Ca,j} r 6= Other

max
j∈R

Y
′ ,j 6=r

′
max{0,m− Ca,r

′ + Ca,j} r|y = Other

where Ry and RY ′ are the set of argument roles
which are predefined for trigger type y and all seen
types Y

′
. r is the annotated role and r

′
is the ar-

gument role which ranks the highest for a when a
or y is annotated as Other.

In our experiments, we sample various size of
“negative” training data for trigger and argument
labeling respectively. In the following section, we
describe how the negative training instances are
generated.

5.3 Zero-Shot Classification for Unseen
Types

During test, given a new event mention t
′
, we

compute its mention structure representation for
St′ and all event type structure representations for
SY = {Sy1 , Sy2 , ..., Syn} using the same param-
eters trained from seen types. Then we rank all
event types based on their similarity scores with
mention t

′
. The top ranked prediction for t

′
from

the event type set, denoted as ŷ(t
′
, 1), is given by:

ŷ(t
′
, 1) = argmax

y∈Y
cos([Vt′ ;VSt

′ ], [Vy;VSy ])

Moreover, ŷ(t
′
, k) denotes the kth most proba-

ble event type predicted for t
′
. We will investigate

the event extraction performance based on the top-
k predicted event types.

After determining the type y
′

for mention t
′
, for

each candidate argument, we adopt the same rank-
ing function to find the most appropriate role from
the role set defined for y

′
.

6 Experiments

6.1 Hyper-Parameters
We used the English Wikipedia dump to learn
trigger sense and argument embeddings based on
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the Continuous Skip-gram model (Mikolov et al.,
2013). Table 2 shows the hyper-parameters we
used to train models.

Parameter Name Value
Word Sense Embedding Size 200
Initial Learning Rate 0.1
# of Filters in Convolution Layer 500
Maximal # of Tuples for Mention Structure 10
Maximal # of Tuples for Argument Path 5
Maximal # of Tuples for Event Type Structure 5
Maximal # of Tuples for Argument Role Path 1

Table 2: Hyper-parameters.

6.2 ACE Event Classification

Setting N Seen Types for Training/Dev
A 1 Attack
B 3 Attack, Transport, Die
C 5 Attack, Transport, Die, Meet, Arrest-Jail
D 10 Attack, Transport, Die, Meet, Sentence,

Arrest-Jail, Transfer-Money, Elect,
Transfer-Ownership, End-Position

Table 3: Seen Types in Each Experiment Setting.

We first used the ACE event schema 4 as our
target event ontology and assumed the boundaries
of triggers and arguments as given. Of the 33 ACE
event types, we selected the top-N most popular
event types from ACE05 data as “seen” types, and
used 90% event annotations of these for training
and 10% for development. We set N as 1, 3, 5, 10
respectively. We tested the zero-shot classification
performance on the annotations for the remaining
23 unseen types. Table 3 shows the types that we
selected for training in each experiment setting.

The negative event mentions and arguments that
belong to Other were sampled from the output
of the system developed by Huang et al. (2016)
based on ACE05 training sentences, which groups
all candidate triggers and arguments into clusters
based on semantic representations and assigns a
type/role name to each cluster. We sampled the
negative event mentions from the clusters (e.g.,
Build, Threaten) which do not map to ACE event
types. We sampled the negative arguments from
the arguments of negative event mentions. Table 4
shows the statistics of the training, development
and testing data sets.

To show the effectiveness of structural similar-
ity in our approach, we designed a baseline, WSD-

4ACE event schema specification is at:
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-
events-guidelines-v5.4.3.pdf

Embedding, which directly maps event mentions
and arguments to their candidate types and roles
using our pre-trained word sense embeddings. Ta-
ble 5 makes the contrast clear: structural similarity
(our approach) is much more effective than lexical
similarity (baseline) for both trigger and argument
classification. Also, as the number of seen types in
training increases, the performance of the transfer
model improves.

We further evaluated the performance of our
transfer approach on similar and distinct unseen
types. The 33 subtypes defined in ACE fall within
8 coarse-grained main types, such as Life and Jus-
tice. Each subtype belongs to one main type.
Subtypes that belong to the same main type tend
to have similar structures. For example, Trial-
Hearing and Charge-Indict have the same set of
argument roles. For training our transfer model,
we selected 4 subtypes of Justice: Arrest-Jail,
Convict, Charge-Indict, Execute. For testing,
we selected 3 other subtypes of Justice: Sentence,
Appeal, Release-Parole. Additionally, we selected
one subtype from each of the other seven main
types for comparison. Table 6 shows that, when
testing on a new unseen type, the more similar
it is to the seen types, the better performance is
achieved.

6.3 ACE Event Identification & Classification

The ACE2005 corpus includes the richest event
annotations currently available for 33 types. How-
ever, in real-world scenarios, there may be thou-
sands of event types of interest. To enrich the
target event ontology and assess our transferable
neural architecture on a large number of unseen
types, when trained on limited annotations of seen
types, we manually constructed a new event on-
tology which combined 33 ACE event types and
argument roles, and 1,161 frames from FrameNet,
except for the most generic frames such as En-
tity and Locale. Some ACE event types were eas-
ily aligned to frames, e.g., Die aligned to Death.
Some frames were instead more accurately treated
as inheritors of ACE types, such as Suicide-Attack,
which inherits from Attack. We manually mapped
the selected frames to ACE types.

We then compared our approach with the fol-
lowing state-of-the-art supervised methods:

• LSTM: A long short-term memory neural
network (Hochreiter and Schmidhuber, 1997)
based on distributed semantic features, similar
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Setting Training Development Test
# of Types,

Roles
# of Events # of

Arguments
# of

Events
# of

Arguments
# of

Types/Roles
# of

Events
# of

Arguments
A 1, 5 953/900 894/1,097 105/105 86/130

23/59 753 879B 3, 14 1,803/1,500 2,035/1,791 200/200 191/237
C 5, 18 2,033/1,300 2,281/1,503 225/225 233/241
D 10, 37 2537/700 2,816/879 281/281 322/365

Table 4: Statistics for Positive/Negative Instances in Training, Dev, and Test Sets for Each Experiment.

Setting Method Hit@k Trigger Classification (%) Hit@k Argument Classification (%)
k=1 k=3 k=5 k=1 k=3 k=5

WSD-Embedding 1.7 13.0 22.8 2.4 2.8 2.8
A

Our Approach

4.0 23.8 32.5 1.3 3.4 3.6
B 7.0 12.5 36.8 3.5 6.0 6.3
C 20.1 34.7 46.5 9.6 14.7 15.7
D 33.5 51.4 68.3 14.7 26.5 27.7

Table 5: Comparison between Structural Representation (Our Approach) and Word Sense Embedding
based Approaches on Hit@K Accuracy (%) for Trigger and Argument Classification.

Type Subtype Hit@k Trigger Classification
1 3 5

Justice Sentence 68.3 68.3 69.5
Justice Appeal 67.5 97.5 97.5
Justice Release-Parole 73.9 73.9 73.9
Conflict Attack 26.5 44.5 46.7
TransactionTransfer-Money 48.4 68.9 79.5
Business Start-Org 0 33.3 66.7
Movement Transport 2.6 3.7 7.8
Personnel End-Position 9.1 50.4 53.7
Contact Phone-Write 60.8 88.2 90.2
Life Injure 87.6 91.0 91.0

Table 6: Performance on Various Types Using Jus-
tice Subtypes for Training

to (Feng et al., 2016).

• Joint: A structured perceptron model based on
symbolic semantic features (Li et al., 2013).

For our approach, we followed the experiment
setting D in the previous section, using the same
training and development data sets for the 10 seen
types, but targeted all 1,194 event types in our
new event ontology, instead of just the 33 ACE
event types. For evaluation, we sampled 150 sen-
tences from the remaining ACE05 data, including
129 annotated event mentions for the 23 unseen
types. For both LSTM and Joint approaches, we
used the entire ACE05 annotated data for 33 ACE
event types for training except for the held-out 150
evaluation sentences.

We first identified the candidate triggers and ar-
guments, then mapped each of these to the target
event ontology. We evaluated our model on their
extracting of event mentions which were classified
into 23 testing ACE types. Table 7 shows the per-

formance.
To further demonstrate the effectiveness of

zero-shot learning in our framework and its im-
pact in saving human annotation effort, we used
the supervised LSTM approach for comparison.
The training data of LSTM contained 3,464 sen-
tences with 905 annotated event mentions for the
23 unseen event types. We divided these event an-
notations into 10 subsets and successively added
one subset at a time (10% of annotations) into the
training data of LSTM. Figure 4 shows the LSTM
learning curve. By contrast, without any anno-
tated mentions on the 23 unseen test event types
in its training set, our transfer learning approach
achieved performance comparable to that of the
LSTM, which was trained on 3,000 sentences5

with 500 annotated event mentions.

Figure 4: Comparison between Our Approach and
Supervised LSTM model on 23 Unseen Event
Types.

5The 3,000 sentences included all the sentences which
even have not any event annotations.
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Method Trigger Identification Trigger Identification
+ Classification

Arg Identification Arg Identification +
Classification

P R F P R F P R F P R F
Supervised LSTM 94.7 41.8 58.0 89.4 39.5 54.8 47.8 22.6 30.6 28.9 13.7 18.6
Supervised Joint 55.8 67.4 61.1 50.6 61.2 55.4 36.4 28.1 31.7 33.3 25.7 29.0

Transfer 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8

Table 7: Event Trigger and Argument Extraction Performance (%) on Unseen ACE Types.

6.4 Impact of AMR

Recall that we used AMR parsing output to iden-
tify triggers and arguments in constructing event
structures. To assess the impact of the AMR
parser (Wang et al., 2015a) on event extraction, we
chose a subset of the ERE (Entity, Relation, Event)
corpus (Song et al., 2015) which has ground-truth
AMR annotations. This subset contains 304 doc-
uments with 1,022 annotated event mentions of
40 types. We selected the top-6 most popular
event types (Arrest-Jail, Execute, Die, Meet, Sen-
tence, Charge-Indict) with manual annotations of
548 event mentions as seen types. We sampled
500 negative event mentions from distinct types of
clusters generated from the system (Huang et al.,
2016) based on ERE training sentences. We com-
bined the annotated events for seen types and the
negative event mentions, and used 90% for train-
ing and 10% for development. For evaluation, we
selected 200 sentences from the remaining ERE
subset, which contains 128 Attack event mentions
and 40 Convict event mentions. Table 8 shows the
event extraction performances based on ground-
truth AMR and system AMR respectively.

We also compared AMR analyses with Seman-
tic Role Labeling (SRL) output (Palmer et al.,
2010) by keeping only the core roles (e.g., :ARG0,
:ARG1) from AMR annotations. As Table 8
shows, comparing the full AMR (top row) to this
SRL proxy (middle row), the fine-grained AMR
semantic relations such as :location, :instrument
appear to be more informative for inferring event
argument role labeling.

Method Trigger
Labeling

Argument
Labeling

P R F1 P R F1

Perfect AMR 79.1 47.1 59.1 25.4 21.4 23.2
Perfect AMR with
Core Roles only
(SRL)

77.1 47.0 58.4 19.7 16.9 18.2

System AMR 85.7 32.0 46.7 22.6 15.8 18.6

Table 8: Impact of AMR and Semantic Roles on
Trigger and Argument Extraction (%).

7 Related Work

Most previous event extraction methods have been
based on supervised learning, using either sym-
bolic features (Ji and Grishman, 2008; Miwa et al.,
2009; Liao and Grishman, 2010; Liu et al., 2010;
Hong et al., 2011; McClosky et al., 2011; Riedel
and McCallum, 2011; Li et al., 2013; Liu et al.,
2016) or distributional features (Chen et al., 2015;
Nguyen and Grishman, 2015; Feng et al., 2016;
Nguyen et al., 2016) derived from a large amount
of training data, and treating event types and ar-
gument role labels as symbols. These approaches
can achieve high quality for known event types,
but cannot be applied to new types without addi-
tional annotation effort. In contrast, we provide
a new angle on event extraction, modeling it as a
generic grounding task by taking advantage of rich
semantics of event types.

Some other IE paradigms such as Open IE
(Etzioni et al., 2005; Banko et al., 2007, 2008;
Etzioni et al., 2011; Ritter et al., 2012), Pre-
emptive IE (Shinyama and Sekine, 2006), On-
demand IE (Sekine, 2006), Liberal IE (Huang
et al., 2016, 2017), and semantic frame-based
event discovery (Kim et al., 2013) can discover
many events without pre-defined event schema.
These paradigms however rely on information re-
dundancy, and so they are not effective when the
input data only consists of a few sentences. Our
work can discover events from any size of input
corpus and can also be complementary with these
paradigms.

Our event extraction paradigm is similar to the
task of entity linking (Ji and Grishman, 2011)
in semantic mapping. However, entity linking
aims to map entity mentions to the same concept,
while our framework maps each event mention to
a specific category. In addition, Bronstein et al.
(2015) and Peng et al. (2016) employ an event-
independent similarity-based function for event
trigger detection, which follows few-shot learn-
ing setting and requires some trigger examples as
seeds. Lu and Roth (2012) design a structure pref-
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erence modeling framework, which can automati-
cally predict argument roles without any annotated
data, but it relies on manually constructed patterns.

Zero-Shot learning has been widely applied in
visual object classification (Frome et al., 2013;
Norouzi et al., 2013; Socher et al., 2013a; Chen
et al., 2017; Li et al., 2017; Xian et al., 2017;
Changpinyo et al., 2017), fine-grained name tag-
ging (Ma et al., 2016; Qu et al., 2016), relation
extraction (Verga et al., 2016; Levy et al., 2017),
semantic parsing (Bapna et al., 2017) and do-
main adaptation (Romera-Paredes and Torr, 2015;
Kodirov et al., 2015; Peng et al., 2017). In contrast
to these tasks, for our case, the number of seen
types in event extraction with manual annotations
is quite limited. The most popular event schemas,
such as ACE, define 33 event types while most vi-
sual object training sets contain more than 1,000
types. Therefore, methods proposed for zero-shot
visual-object classification cannot be directly ap-
plied to event extraction due to overfitting. In this
work, we designed a new loss function by creating
“negative” training instances to avoid overfitting.

8 Conclusions and Future Work

In this work, we take a fresh look at the event ex-
traction task and model it as a generic ground-
ing problem. We propose a transferable neu-
ral architecture, which leverages existing human-
constructed event schemas and manual annota-
tions for a small set of seen types, and transfers
the knowledge from the existing types to the ex-
traction of unseen types, to improve the scalability
of event extraction as well as to save human ef-
fort. To the best of our knowledge, this work is
the first time that zero-shot learning has been ap-
plied to event extraction. Without any annotation,
our approach can achieve performance compara-
ble to state-of-the-art supervised models trained
on a large amount of labeled data. In the future,
we will extend this framework to other Informa-
tion Extraction problems.
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