
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2083–2093
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

2083

Marrying Up Regular Expressions with Neural Networks:
A Case Study for Spoken Language Understanding

Bingfeng Luo1, Yansong Feng∗1, Zheng Wang2,
Songfang Huang3, Rui Yan1 and Dongyan Zhao1

1ICST, Peking University, China
2MetaLab, Lancaster University, UK
3IBM China Research Lab, China

{bf luo,fengyansong,ruiyan,zhaody}@pku.edu.cn
z.wang@lancaster.ac.uk, huangsf@cn.ibm.com

Abstract

The success of many natural language pro-
cessing (NLP) tasks is bound by the num-
ber and quality of annotated data, but there
is often a shortage of such training data. In
this paper, we ask the question: “Can we
combine a neural network (NN) with regu-
lar expressions (RE) to improve supervised
learning for NLP?”. In answer, we develop
novel methods to exploit the rich expres-
siveness of REs at different levels within a
NN, showing that the combination signifi-
cantly enhances the learning effectiveness
when a small number of training examples
are available. We evaluate our approach
by applying it to spoken language under-
standing for intent detection and slot fill-
ing. Experimental results show that our
approach is highly effective in exploiting
the available training data, giving a clear
boost to the RE-unaware NN.

1 Introduction

Regular expressions (REs) are widely used in
various natural language processing (NLP) tasks
like pattern matching, sentence classification, se-
quence labeling, etc. (Chang and Manning, 2014).
As a technique based on human-crafted rules, it is
concise, interpretable, tunable, and does not rely
on much training data to generate. As such, it is
commonly used in industry, especially when the
available training examples are limited – a prob-
lem known as few-shot learning (GC et al., 2015).

While powerful, REs have a poor generaliza-
tion ability because all synonyms and variations
in a RE must be explicitly specified. As a re-
sult, REs are often ensembled with data-driven
methods, such as neural network (NN) based tech-
niques, where a set of carefully-written REs are

used to handle certain cases with high precision,
leaving the rest for data-driven methods.

We believe the use of REs can go beyond sim-
ple pattern matching. In addition to being a sepa-
rate classifier to be ensembled, a RE also encodes
a developer’s knowledge for the problem domain.
The knowledge could be, for example, the infor-
mative words (clue words) within a RE’s surface
form. We argue that such information can be uti-
lized by data-driven methods to achieve better pre-
diction results, especially in few-shot learning.

This work investigates the use of REs to im-
prove NNs – a learning framework that is widely
used in many NLP tasks (Goldberg, 2017). The
combination of REs and a NN allows us to ex-
ploit the conciseness and effectiveness of REs and
the strong generalization ability of NNs. This also
provides us an opportunity to learn from various
kinds of REs, since NNs are known to be good at
tolerating noises (Xie et al., 2016).

This paper presents novel approaches to com-
bine REswith a NN at different levels. At the input
layer, we propose to use the evaluation outcome of
REs as the input features of a NN (Sec.3.2). At the
network module level, we show how to exploit the
knowledge encoded in REs to guide the attention
mechanism of a NN (Sec. 3.3). At the output layer,
we combine the evaluation outcome of a RE with
the NN output in a learnable manner (Sec. 3.4).

We evaluate our approach by applying it to
two spoken language understanding (SLU) tasks,
namely intent detection and slot filling, which re-
spectively correspond to two fundamental NLP
tasks: sentence classification and sequence label-
ing. To demonstrate the usefulness of REs in real-
world scenarios where the available number of an-
notated data can vary, we explore both the few-
shot learning setting and the one with full train-
ing data. Experimental results show that our ap-
proach is highly effective in utilizing the available

2084

flights from Boston to Miami

Intent RE: Intent Label: flight

 /from (__CITY) to (__CITY)/

 O O B-fromloc.city O B-toloc.city

Sentence:

Slot Labels:

Slot RE:

/^flights? from/
REtag: flight

city / toloc.cityREtag: city / fromloc.city

Figure 1: A sentence from the ATIS dataset. REs
can be used to detect the intent and label slots.

annotated data, yielding significantly better learn-
ing performance over the RE-unaware method.

Our contributions are as follows. (1) We present
the first work to systematically investigate meth-
ods for combining REs with NNs. (2) The pro-
posed methods are shown to clearly improve the
NN performance in both the few-shot learning and
the full annotation settings. (3) We provide a set
of guidance on how to combine REswith NNs and
RE annotation.

2 Background
2.1 Typesetting
In this paper, we use italic for emphasis like
intent detection, the Courier typeface for ab-
breviations like RE, bold italic for the first ap-
pearance of a concept like clue words, Courier
surrounded by / for regular expressions like
/list(the)? AIRLINE/, and underlined italic
for words of sentences in our dataset like Boston.

2.2 Problem Definition
Our work targets two SLU tasks: intent detection
and slot filling. The former is a sentence classifi-
cation task where we learn a function to map an
input sentence of n words, x = [x1, ..., xn], to a
corresponding intent label, c. The latter is a se-
quence labeling task for which we learn a func-
tion to take in an input query sentence of n words,
x = [x1, ..., xn], to produce a corresponding label-
ing sequence, y = [y1, ..., yn], where yi is the slot
label of the corresponding word, xi.

Take the sentence in Fig. 1 as an example. A
successful intent detector would suggest the in-
tent of the sentence as flight, i.e., querying about
flight-related information. A slot filler, on the
other hand, should identify the slots fromloc.city
and toloc.city by labeling Boston and Miami, re-
spectively, using the begin-inside-outside (BIO)
scheme.

2.3 The Use of Regular Expressions
In this work, a RE defines a mapping from a text
pattern to several REtags which are the same as

or related to the target labels (i.e., intent and slot
labels). A search function takes in a RE, applies it
to all sentences, and returns any texts that match
the pattern. We then assign the REtag (s) (that
are associated with the matching RE) to either the
matched sentence (for intent detection) or some
matched phrases (for slot filling).

Specifically, our REtags for intent detection
are the same as the intent labels. For example, in
Fig. 1, we get a REtag of flight that is the same
as the intent label flight.

For slot filling, we use two different sets of REs.
Given the group functionality of RE, we can assign
REtags to our interested RE groups (i.e., the ex-
pressions defined inside parentheses). The transla-
tion from REtags to slot labels depends on how
the corresponding REs are used. (1) When REs
are used at the network module level (Sec. 3.3),
the corresponding REtags are the same as the tar-
get slot labels. For instance, the slot RE in Fig. 1
will assign fromloc.city to the first RE group and
toloc.city to the second one. Here, CITY is a list
of city names, which can be replaced with a RE
string like /Boston|Miami|LA|.../. (2) If REs
are used in the input (Sec. 3.2) and the output lay-
ers (Sec. 3.4) of a NN, the corresponding REtag
would be different from the target slot labels. In
this context, the two RE groups in Fig. 1 would
be simply tagged as city to capture the commonal-
ity of three related target slot labels: fromloc.city,
toloc.city, stoploc.city. Note that we could use the
target slot labels as REtags for all the settings.
The purpose of abstracting REtags to a simpli-
fied version of the target slot labels here is to show
that REs can still be useful when their evaluation
outcome does not exactly match our learning ob-
jective. Further, as shown in Sec. 4.2, using sim-
plified REtags can also make the development of
REs easier in our tasks.

Intuitively, complicated REs can lead to bet-
ter performance but require more efforts to gen-
erate. Generally, there are two aspects affecting
RE complexity most: the number of RE groups1

and or clauses (i.e., expressions separated by the
disjunction operator |) in a RE group. Having a
larger number of RE groups often leads to better

1 When discussing complexity, we consider each
semantically independent consecutive word sequence
as a RE group (excluding clauses, such as \w+,
that can match any word). For instance, the RE:
/how long(\w+){1,2}? (it take|flight)/ has
two RE groups: (how long) and (it take|flight).

2085

precision but lower coverage on pattern matching,
while a larger number of or clauses usually gives
a higher coverage but slightly lower precision.

3 Our Approach

As depicted in Fig. 2, we propose to combine NNs
and REs from three different angles.

3.1 Base Models
We use the Bi-directional LSTM (BLSTM) as our
base NNmodel because it is effective in both intent
detection and slot filling (Liu and Lane, 2016).

Intent Detection. As shown in Fig. 2, the BLSTM
takes as input the word embeddings [x1, ..., xn] of
a n-word sentence, and produces a vector hi for
each word i. A self-attention layer then takes in
the vectors produced by the BLSTM to compute
the sentence embedding s:

s =
∑
i

αihi, αi =
exp(hᵀ

i Wc)∑
i exp(h

ᵀ
i Wc)

(1)

where αi is the attention for word i, c is a ran-
domly initialized trainable vector used to select
informative words for classification, and W is a
weight matrix. Finally, s is fed to a softmax clas-
sifier for intent classification.

Slot Filling. The model for slot filling is straight-
forward – the slot label prediction is generated by
a softmax classier which takes in the BLSTM’s out-
put hi and produces the slot label of word i. Note
that attention aggregation in Fig. 2 is only em-
ployed by the network module level method pre-
sented in Sec. 3.3.

3.2 Using REs at the Input Level
At the input level, we use the evaluation outcomes
of REs as features which are fed to NN models.

Intent Detection. Our REtag for intent detec-
tion is the same as our target intent label. Be-
cause real-world REs are unlikely to be perfect,
one sentence may be matched by more than one
RE. This may result in several REtags that are
conflict with each other. For instance, the sentence
list the Delta airlines flights to Miami can match
a RE: /list(the)? AIRLINE/ that outputs
tag airline, and another RE: /list(\w+){0,3}
flights?/ that outputs tag flight.

To resolve the conflicting situations illustrated
above, we average the randomly initialized train-
able tag embeddings to form an aggregated em-
bedding as the NN input. There are two ways to

use the aggregated embedding. We can append the
aggregated embedding to either the embedding of
every input word, or the input of the softmax clas-
sifier (see 1 in Fig. 2(a)). To determine which
strategy works best, we perform a pilot study. We
found that the first method causes the tag embed-
ding to be copied many times; consequently, the
NN tends to heavily rely on the REtags, and the
resulting performance is similar to the one given
by using REs alone in few-shot settings. Thus, we
adopt the second approach.

Slot Filling. Since the evaluation outcomes of slot
REs are word-level tags, we can simply embed
and average the REtags into a vector fi for each
word, and append it to the corresponding word
embedding wi (as shown in 1 in Fig. 2(b)). Note
that we also extend the slot REtags into the BIO
format, e.g., the REtags of phrase New York are
B-city and I-city if its original tag is city.

3.3 Using REs at the Network Module Level
At the network module level, we explore ways to
utilize the clue words in the surface form of a RE
(bold blue arrows and words in 2 of Fig. 2) to
guide the attention module in NNs.

Intent Detection. Taking the sentence in Fig. 1
for example, the RE: /ˆflights? from/ that leads
to intent flight means that flights from are the key
words to decide the intent flight. Therefore, the
attention module in NNs should leverage these two
words to get the correct prediction. To this end,
we extend the base intent model by making two
changes to incorporate the guidance from REs.

First, since each intent has its own clue words,
using a single sentence embedding for all intent la-
bels would make the attention less focused. There-
fore, we let each intent label k use different atten-
tion ak, which is then used to generate the sentence
embedding sk for that intent:

sk =
∑
i

αkihi, αki =
exp(hᵀ

i Wack)∑
i exp(h

ᵀ
i Wack)

(2)

where ck is a trainable vector for intent k which
is used to compute attention ak, hi is the BLSTM
output for word i, and Wa is a weight matrix.

The probability pk that the input sentence ex-
presses intent k is computed by:

pk =
exp(logitk)∑
k exp(logitk)

, logitk = wksk + bk

(3)

2086

x1 x2

h1 h2

x3

h3

s

BLSTM

Intent: flight

h4 h5

x4 x5

flights from Boston to Miami

feat Attention
Aggregation

/^flights? from/

RE
1

2

3

RE
Instance

Softmax Classifier

(a) Intent Detection

RE

x1 x2

h1 h2

x3

h3

s3

BLSTM

Slot3: B-fromloc.city

h4 h5

x4 x5

flights from Boston to Miami
f1 f2 f3 f4 f5

1

2
3

Attention
Aggregation

/from __CITY to __CITY/

RE
Instance

Softmax Classifier

(b) Slot Filling (predicting slot label for Boston)

Figure 2: Overview of our methods. 1 , 2 , 3 refers to the methods in Sec. 3.2, 3.3, 3.4 respectively.

where wk, logitk, bk are weight vector, logit, and
bias for intent k, respectively.

Second, apart from indicating a sentence for
intent k (positive REs), a RE can also indicate
that a sentence does not express intent k (negative
REs). We thus use a new set of attention (negative
attentions, in contrast to positive attentions), to
compute another set of logits for each intent with
Eqs. 2 and 3. We denote the logits computed by
positive attentions as logitpk, and those by nega-
tive attentions as logitnk, the final logit for intent
k can then be calculated as:

logitk = logitpk − logitnk (4)

To use REs to guide attention, we add an atten-
tion loss to the final loss:

lossatt =
∑
k

∑
i

tki log(αki) (5)

where tki is set to 0 when none of the matched
REs (that leads to intent k) marks word i as a clue
word – otherwise tki is set to 1/lk, where lk is the
number of clue words for intent k (if no matched
RE leads to intent k, then tk∗ = 0). We use Eq. 5 to
compute the positive attention loss, lossatt p, for
positive REs and negative attention loss, lossatt n,
for negative ones. The final loss is computed as:

loss = lossc + βplossatt p + βnlossatt n (6)

where lossc is the original classification loss, βp
and βn are weights for the two attention losses.

Slot Filling. The two-side attention (positive and
negative attention) mechanism introduced for in-
tent prediction is unsuitable for slot filling. Be-
cause for slot filling, we need to compute atten-
tion for each word, which demands more compu-

tational and memory resources than doing that for
intent detection2.

Because of the aforementioned reason, we use a
simplified version of the two-side attention, where
all the slot labels share the same set of positive and
negative attention. Specifically, to predict the slot
label of word i, we use the following equations,
which are similar to Eq. 1, to generate a sentence
embedding spi with regard to word i from positive
attention:

spi =
∑
j

αpijhj , αpij =
exp(hᵀ

jWsphi)∑
j exp(h

ᵀ
jWsphi)

(7)
where hi and hj are the BLSTM outputs for word
i and j respectively, Wsp is a weight matrix, and
αpij is the positive attention value for word j with
respect to word i. Further, by replacing Wsp with
Wsn, we use Eq. 7 again to compute negative at-
tention and generate the corresponding sentence
embedding sni.

Finally, the prediction pi for word i can be cal-
culated as:

pi = softmax((Wp[spi;hi] + bp)

−(Wn[sni;hi] + bn))
(8)

where Wp, Wn, bp, bn are weight matrices and
bias vectors for positive and negative attention, re-
spectively. Here we append the BLSTM output hi

to spi and sni because the word i itself also plays a
crucial part in identifying its slot label.

3.4 Using REs at the Output Level
At the output level, REs are used to amend the
output of NNs. At this level, we take the same

2Since we need to assign a label to each word, if we still
compute attention for each slot label, we will have to compute
2× L× n2 attention values for one sentence. Here, L is the
number of tags and n is the sentence length. The BIO tagging
format will further double the number of tags.

2087

approach used for intent detection and slot filling
(see 3 in Fig. 2).

As mentioned in Sec. 2.3, the slot REs used in
the output level only produce a simplified version
of target slot labels, for which we can further an-
notate their corresponding target slot labels. For
instance, a RE that outputs city can lead to three
slot labels: fromloc.city, toloc.city, stoploc.city.

Let zk be a 0-1 indicator of whether there is at
least one matched RE that leads to target label k
(intent or slot label), the final logits of label k for
a sentence (or a specific word for slot filling) is:

logitk = logit′k + wkzk (9)

where logit′k is the logit produced by the origi-
nal NN, and wk is a trainable weight indicating the
overall confidence for REs that lead to target la-
bel k. Here we do not assign a trainable weight
for each RE because it is often that only a few sen-
tences match a RE.

We modify the logit instead of the final prob-
ability because a logit is an unconstrained real
value, which matches the property of wkzk bet-
ter than probability. Actually, when performing
model ensemble, ensembling with logits is often
empirically better than with the final probability3.
This is also the reason why we choose to operate
on logits in Sec. 3.3.

4 Evaluation Methodology

Our experiments aim to answer three questions:
Q1: Does the use of REs enhance the learning
quality when the number of annotated instances is
small? Q2: Does the use of REs still help when
using the full training data? Q3: How can we
choose from different combination methods?

4.1 Datasets
We use the ATIS dataset (Hemphill et al., 1990)
to evaluate our approach. This dataset is widely
used in SLU research. It includes queries of
flights, meal, etc. We follow the setup of Liu and
Lane (2016) by using 4,978 queries for training
and 893 for testing, with 18 intent labels and 127
slot labels. We also split words like Miami’s into
Miami ’s during the tokenization phase to reduce
the number of words that do not have a pre-trained
word embedding. This strategy is useful for few-
shot learning.

3 An example can be found in the ensemble version that
Juan et al. (2016) used in the Avazu Kaggle competition.

To answer Q1 , we also exploit the full few-shot
learning setting. Specifically, for intent detection,
we randomly select 5, 10, 20 training instances
for each intent to form the few-shot training set;
and for slot filling, we also explore 5, 10, 20 shots
settings. However, since a sentence typically con-
tains multiple slots, the number of mentions of fre-
quent slot labels may inevitably exceeds the target
shot count. To better approximate the target shot
count, we select sentences for each slot label in as-
cending order of label frequencies. That is k1-shot
dataset will contain k2-shot dataset if k1 > k2. All
settings use the original test set.

Since most existing few-shot learning meth-
ods require either many few-shot classes or some
classes with enough data for training, we also ex-
plore the partial few-shot learning setting for in-
tent detection to provide a fair comparison for ex-
isting few-shot learning methods. Specifically, we
let the 3 most frequent intents have 300 training
instances, and the rest remains untouched. This
is also a common scenario in real world, where
we often have several frequent classes and many
classes with limited data. As for slot filling, how-
ever, since the number of mentions of frequent slot
labels already exceeds the target shot count, the
original slot filling few-shot dataset can be directly
used to train existing few-shot learning methods.
Therefore, we do not distinguish full and partial
few-shot learning for slot filling.

4.2 Preparing REs

We use the syntax of REs in Perl in this work. Our
REs are written by a paid annotator who is famil-
iar with the domain. It took the annotator in total
less than 10 hours to develop all the REs, while
a domain expert can accomplish the task faster.
We use the 20-shot training data to develop the
REs, but word lists like cities are obtained from
the full training set. The development of REs
is considered completed when the REs can cover
most of the cases in the 20-shot training data with
resonable precision. After that, the REs are fixed
throughout the experiments.

The majority of the time for writing the REs is
proportional to the number of RE groups. It took
about 1.5 hours to write the 54 intent REs with on
average 2.2 groups per RE. It is straightforward to
write the slot REs for the input and output level
methods, for which it took around 1 hour to write
the 60 REs with 1.7 groups on average. By con-

2088

trast, writing slot REs to guide attention requires
more efforts as the annotator needs to carefully se-
lect clue words and annotate the full slot label. As
a result, it took about 5.5 hours to generate 115
REswith on average 3.3 groups. The performance
of the REs can be found in the last line of Table 1.

In practice, a positive RE for intent (or slot) k
can often be treated as negative REs for other in-
tents (or slots). As such, we use the positive REs
for intent (or slot) k as the negative REs for other
intents (or slots) in our experiments.

4.3 Experimental Setup

Hyper-parameters. Our hyper-parameters for the
BLSTM are similar to the ones used by Liu and
Lane (2016). Specifically, we use batch size 16,
dropout probability 0.5, and BLSTM cell size 100.
The attention loss weight is 16 (both positive and
negative) for full few-shot learning settings and 1
for other settings. We use the 100d GloVe word
vectors (Pennington et al., 2014) pre-trained on
Wikipedia and Gigaword (Parker et al., 2011), and
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001.

Evaluation Metrics. We report accuracy and
macro-F1 for intent detection, and micro/macro-
F1 for slot filling. Micro/macro-F1 are the har-
monic mean of micro/macro precision and re-
call. Macro-precision/recall are calculated by av-
eraging precision/recall of each label, and micro-
precision/recall are averaged over each prediction.

Competitors and Naming Conventions. Here,
a bold Courier typeface like BLSTM denotes the
notations of the models that we will compare in
Sec. 5.

Specifically, we compare our methods with the
baseline BLSTMmodel (Sec. 3.1). Since our atten-
tion loss method (Sec. 3.3) uses two-side attention,
we include the raw two-side attention model with-
out attention loss (+two) for comparison as well.
Besides, we also evaluate the RE output (REO),
which uses the REtags as prediction directly, to
show the quality of the REs that we will use in the
experiments.4

As for our methods for combinging REs with
NN, +feat refers to using REtag as input fea-
tures (Sec. 3.2), +posi and +neg refer to using
positive and negative attention loss respectively,

4 For slot filling, we evaluate the REs that use the target
slot labels as REtags.

+both refers to using both postive and negative
attention losses (Sec. 3.3), and +logitmeans us-
ing REtag to modify NN output (Sec. 3.4).

Moverover, since the REs can also be format-
ted as first-order-logic (FOL) rules, we also com-
pare our methods with the teacher-student frame-
work proposed by Hu et al. (2016a), which is a
general framework for distilling knowledge from
FOL rules into NN (+hu16). Besides, since we
consider few-short learning, we also include the
memory module proposed by Kaiser et al. (2017),
which performs well in various few-shot datasets
(+mem)5. Finally, the state-of-art model on the
ATIS dataset is also included (L&L16), which
jointly models the intent detection and slot filling
in a single network (Liu and Lane, 2016).

5 Experimental Results

5.1 Full Few-Shot Learning
To answer Q1 , we first explore the full few-shot
learning scenario.

Intent Detection. As shown in Table 1, except
for 5-shot, all approaches improve the baseline
BLSTM. Our network-module-level methods give
the best performance because our attention mod-
ule directly receives signals from the clue words
in REs that contain more meaningful information
than the REtag itself used by other methods. We
also observe that since negative REs are derived
from positive REs with some noises, posi per-
forms better than neg when the amount of avail-
able data is limited. However, neg is slightly bet-
ter in 20-shot, possibly because negative REs sig-
nificantly outnumbers the positive ones. Besides,
two alone works better than the BLSTM when
there are sufficient data, confirming the advantage
of our two-side attention architecture.

As for other proposed methods, the output level
method (logit) works generally better than the
input level method (feat), except for the 5-shot
case. We believe this is due to the fewer number
of RE related parameters and the shorter distance
that the gradient needs to travel from the loss to
these parameters – both make logit easier to
train. However, since logit directly modifies the
output, the final prediction is more sensitive to the
insufficiently trained weights in logit, leading
to the inferior results in the 5-shot setting.

5 We tune C and π0 of hu16, and choose (0.1, 0.3) for
intent, and (1, 0.3) for slot. We tune memory-size and k of
mem, and choose (1024, 64) for intent, and (2048, 64) for slot.

2089

Model Type Model Name
Intent Slot

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
Macro-F1 / Accuracy Macro-F1 / Accuracy

Base Model BLSTM 45.28 / 60.02 60.62 / 64.61 63.60 / 80.52 60.78 / 83.91 74.28 / 90.19 80.57 / 93.08
Input Level +feat 49.40 / 63.72 64.34 / 73.46 65.16 / 83.20 66.84 / 88.96 79.67 / 93.64 84.95 / 95.00

+logit 46.01 / 58.68 63.51 / 77.83 69.22 / 89.25 63.68 / 86.18 76.12 / 91.64 83.71 / 94.43Output Level
+hu16 47.22 / 56.22 61.83 / 68.42 67.40 / 84.10 63.37 / 85.37 75.67 / 91.06 80.85 / 93.47

Network Module
Level

+two 40.44 / 57.22 60.72 / 75.14 62.88 / 83.65 60.38 / 83.63 73.22 / 90.08 79.58 / 92.57
+two+posi 50.90 / 74.47 68.69 / 84.66 72.43 / 85.78 59.59 / 83.47 73.62 / 89.28 78.94 / 92.21
+two+neg 49.01 / 68.31 64.67 / 79.17 72.32 / 86.34 59.51 / 83.23 72.92 / 89.11 78.83 / 92.07
+two+both 54.86 / 75.36 71.23 / 85.44 75.58 / 88.80 59.47 / 83.35 73.55 / 89.54 79.02 / 92.22
+mem - - - 61.25 / 83.45 77.83 / 90.57 82.98 / 93.49Few-Shot Model
+mem+feat - - - 65.08 / 88.07 80.64 / 93.47 85.45 / 95.39

RE Output REO 70.31 / 68.98 42.33 / 70.79

Table 1: Results on Full Few-Shot Learning Settings. For slot filling, we do not distinguish full and
partial few-shot learning settings (see Sec. 4.1).

To compare with existing methods of combin-
ing NN and rules, we also implement the teacher-
student network (Hu et al., 2016a). This method
lets the NN learn from the posterior label distribu-
tion produced by FOL rules in a teacher-student
framework, but requires considerable amounts of
data. Therefore, although both hu16 and logit
operate at the output level, logit still performs
better than hu16 in these few-shot settings, since
logit is easier to train.

It can also be seen that starting from 10-shot,
two+both significantly outperforms pure REO.
This suggests that by using our attention loss to
connect the distributional representation of the NN
and the clue words of REs, we can generalize RE
patterns within a NN architecture by using a small
amount of annotated data.

Slot Filling. Different from intent detection, as
shown in Table 1, our attention loss does not work
for slot filling. The reason is that the slot label of
a target word (the word for which we are trying
to predict a slot label) is decided mainly by the se-
mantic meaning of the word itself, together with 0-
3 phrases in the context to provide supplementary
information. However, our attention mechanism
can only help in recognizing clue words in the con-
text, which is less important than the word itself
and have already been captured by the BLSTM, to
some extent. Therefore, the attention loss and the
attention related parameters are more of a burden
than a benefit. As is shown in Fig. 1, the model
recognizes Boston as fromloc.city mainly because
Boston itself is a city, and its context word from
may have already been captured by the BLSTM
and our attention mechanism does not help much.
By examining the attention values of +two trained
on the full dataset, we find that instead of mark-

ing informative context words, the attention tends
to concentrate on the target word itself. This ob-
servation further reinforces our hypothesis on the
attention loss.

On the other hand, since the REtags provide
extra information, such as type, about words in
the sentence, logit and feat generally work
better. However, different from intent detection,
feat only outperforms logit by a margin. This
is because feat can use the REtags of all words
to generate better context representations through
the NN, while logit can only utilize the REtag
of the target word before the final output layer. As
a result, feat actually gathers more information
from REs and can make better use of them than
logit. Again, hu16 is still outperformed by
logit, possibly due to the insufficient data sup-
port in this few-shot scenario. We also see that
even the BLSTM outperforms REO in 5-shot, in-
dicating while it is hard to write high-quality RE
patterns, using REs to boost NNs is still feasible.

Summary. The amount of extra information that
a NN can utilize from the combined REs signifi-
cantly affects the resulting performance. Thus, the
attention loss methods work best for intent detec-
tion and feat works best for slot filling. We also
see that the improvements from REs decreases as
having more training data. This is not surprising
because the implicit knowledge embedded in the
REs are likely to have already been captured by a
sufficient large annotated dataset and in this sce-
nario using the REs will bring in fewer benefits.

5.2 Partial Few-Shot Learning

To better understand the relationship between our
approach and existing few-shot learning methods,
we also implement the memory network method

2090

Model 5-shot 10-shot 20-shot
Macro-F1 / Accuracy

BLSTM 64.73 / 91.71 78.55 / 96.53 82.05 / 97.20
+hu16 65.22 / 91.94 84.49 / 96.75 84.80 / 97.42
+two 65.59 / 91.04 77.92 / 95.52 81.01 / 96.86
+two+both 66.62 / 92.05 85.75 / 96.98 87.97 / 97.76
+mem 67.54 / 91.83 82.16 / 96.75 84.69 / 97.42
+mem+posi 70.46 / 93.06 86.03 / 97.09 86.69 / 97.65

Table 2: Intent Detection Results on Partial Few-
Shot Learning Setting.

Model Intent Slot
Macro-F1/Accuracy Macro-F1/Micro-F1

BLSTM 92.50 / 98.77 85.01 / 95.47
+feat 91.86 / 97.65 86.7 / 95.55
+logit 92.48 / 98.77 86.94 / 95.42
+hu16 93.09 / 98.77 85.74 / 95.33
+two 93.64 / 98.88 84.45 / 95.05
+two+both 96.20 / 98.99 85.44 / 95.27
+mem 93.42 / 98.77 85.72 / 95.37
+mem+posi/feat 94.36 / 98.99 87.82 / 95.90
L&L16 - / 98.43 - / 95.98

Table 3: Results on Full Dataset. The left side of
‘/’ applies for intent, and the right side for slot.

(Kaiser et al., 2017) which achieves good results
in various few-shot datasets. We adapt their open-
source code, and add their memory module (mem)
to our BLSTM model.

Since the memory module requires to be trained
on either many few-shot classes or several classes
with extra data, we expand our full few-shot
dataset for intent detection, so that the top 3 intent
labels have 300 sentences (partial few-shot).

As shown in Table 2, mem works better than
BLSTM, and our attention loss can be further com-
bined with the memory module (mem+posi),
with even better performance. hu16 also works
here, but worse than two+both. Note that, the
memory module requires the input sentence to
have only one embedding, thus we only use one
set of positive attention for combination.

As for slot filling, since we already have ex-
tra data for frequent tags in the original few-shot
data (see Sec. 4.1), we use them directly to run the
memory module. As shown in the bottom of Table
1, mem also improves the base BLSTM, and gains
further boost when it is combined with feat6.

5.3 Full Dataset
To answer Q2, we also evaluate our methods on
the full dataset. As seen in Table 3, for intent de-
tection, while two+both still works, feat and
logit no longer give improvements. This shows

6For compactness, we only combine the best method in
each task with mem, but others can also be combined.

Model
Intent Slot

Macro-F1 / Accuracy Macro-F1 / Micro-F1
Complex Simple Complex Simple

BLSTM 63.60 / 80.52 80.57 / 93.08
+feat 65.16/83.20 66.51/80.40 84.95/95.00 83.88/94.71
+logit 69.22/89.25 65.09/83.09 83.71/94.43 83.22/93.94
+both 75.58/88.80 74.51/87.46 - -

Table 4: Results on 20-Shot Data with Simple
REs. +both refers to +two +both for short.

that since both REtag and annotated data provide
intent labels for the input sentence, the value of
the extra noisy tag from RE become limited as we
have more annotated data. However, as there is no
guidance on attention in the annotations, the clue
words from REs are still useful. Further, since
feat concatenates REtags at the input level,
the powerful NN makes it more likely to overfit
than logit, therefore feat performs even worse
when compared to the BLSTM.

As for slot filling, introducing feat and
logit can still bring further improvements. This
shows that the word type information contained in
the REtags is still hard to be fully learned even
when we have more annotated data. Moreover,
different from few-shot settings, two+both has
a better macro-F1 score than the BLSTM for this
task, suggesting that better attention is still useful
when the base model is properly trained.

Again, hu16 outperforms the BLSTM in both
tasks, showing that although the REtags are
noisy, their teacher-student network can still dis-
till useful information. However, hu16 is a gen-
eral framework to combine FOL rules, which is
more indirect in transferring knowledge from rules
to NN than our methods. Therefore, it is still infe-
rior to attention loss in intent detection and feat
in slot filling, which are designed to combine REs.

Further, mem generally works in this setting,
and can receive further improvement by combin-
ing our fusion methods. We can also see that
two+both works clearly better than the state-
of-art method (L&L16) in intent detection, which
jointly models the two tasks. And mem+feat is
comparative to L&L16 in slot filling.

5.4 Impact of the RE Complexity
We now discuss how the RE complexity affects the
performance of the combination. We choose to
control the RE complexity by modifying the num-
ber of groups. Specifically, we reduce the number
of groups for existing REs to decrease RE com-
plexity. To mimic the process of writing simple

2091

REs from scratch, we try our best to keep the key
RE groups. For intent detection, all the REs are
reduced to at most 2 groups. As for slot filling, we
also reduce the REs to at most 2 groups, and for
some simples case, we further reduce them into
word-list patterns, e.g., (CITY).

As shown in Table 4, the simple REs already
deliver clear improvements to the base NN mod-
els, which shows the effectiveness of our meth-
ods, and indicates that simple REs are quite cost-
efficient since these simple REs only contain 1-2
RE groups and thus very easy to produce. We can
also see that using complex REs generally leads to
better results compared to using simple REs. This
indicates that when considering using REs to im-
prove a NN model, we can start with simple REs,
and gradually increase the RE complexity to im-
prove the performance over time7.

6 Related Work

Our work builds upon the following techniques,
while qualitatively differing from each

NN with Rules. On the initialization side, Li et
al. (2017) uses important n-grams to initialize the
convolution filters. On the input side, Wang et
al. (2017a) uses knowledge base rules to find rele-
vant concepts for short texts to augment input. On
the output side, Hu et al. (2016a; 2016b) and Guo
et al. (2017) use FOL rules to rectify the output
probability of NN, and then let NN learn from the
rectified distribution in a teacher-student frame-
work. Xiao et al. (2017), on the other hand, mod-
ifies the decoding score of NN by multiplying a
weight derived from rules. On the loss function
side, people modify the loss function to model the
relationship between premise and conclusion (De-
meester et al., 2016), and fit both human-annotated
and rule-annotated labels (Alashkar et al., 2017).
Since fusing in initialization or in loss function of-
ten require special properties of the task, these ap-
proaches are not applicable to our problem. Our
work thus offers new ways to exploit RE rules at
different levels of a NN.

NNs and REs. As for NNs and REs, previous
work has tried to use RE to speed up the decoding
phase of a NN (Strauß et al., 2016) and generating
REs from natural language specifications of the

7We do not include results of both for slot filling since
its REs are different from feat and logit, and we have
already shown that the attention loss method does not work
for slot filling.

RE (Locascio et al., 2016). By contrast, our work
aims to use REs to improve the prediction ability
of a NN.

Few-Shot Learning. Prior work either consid-
ers few-shot learning in a metric learning frame-
work (Koch et al., 2015; Vinyals et al., 2016), or
stores instances in a memory (Santoro et al., 2016;
Kaiser et al., 2017) to match similar instances in
the future. Wang et al. (2017b) further uses the se-
mantic meaning of the class name itself to provide
extra information for few-shot learning. Unlike
these previous studies, we seek to use the human-
generated REs to provide additional information.

Natural Language Understanding. Recurrent
neural networks are proven to be effective in both
intent detection (Ravuri and Stoicke, 2015) and
slot filling (Mesnil et al., 2015). Researchers also
find ways to jointly model the two tasks (Liu and
Lane, 2016; Zhang and Wang, 2016). However,
no work so far has combined REs and NNs to im-
prove intent detection and slot filling.

7 Conclusions
In this paper, we investigate different ways to com-
bine NNs and REs for solving typical SLU tasks.
Our experiments demonstrate that the combina-
tion clearly improves the NN performance in both
the few-shot learning and the full dataset settings.
We show that by exploiting the implicit knowl-
edge encoded within REs, one can significantly
improve the learning performance. Specifically,
we observe that using REs to guide the attention
module works best for intent detection, and us-
ing REtags as features is an effective approach
for slot filling. We provide interesting insights on
how REs of various forms can be employed to im-
prove NNs, showing that while simple REs are
very cost-effective, complex REs generally yield
better results.

Acknowledgement
This work is supported by the National High
Technology R&D Program of China (Grant No.
2015AA015403), the National Natural Science
Foundation of China (Grant Nos. 61672057 and
61672058); the UK Engineering and Physical Sci-
ences Research Council (EPSRC) under grants
EP/M01567X/1 (SANDeRs) and EP/M015793/1
(DIVIDEND); and the Royal Society International
Collaboration Grant (IE161012). For any corre-
spondence, please contact Yansong Feng.

2092

References
Taleb Alashkar, Songyao Jiang, Shuyang Wang, and

Yun Fu. 2017. Examples-rules guided deep neu-
ral network for makeup recommendation. In AAAI,
pages 941–947.

Angel X Chang and Christopher D Manning. 2014. To-
kensregex: Defining cascaded regular expressions
over tokens. Tech. Rep. CSTR 2014-02.

Thomas Demeester, Tim Rocktäschel, and Sebastian
Riedel. 2016. Lifted rule injection for relation em-
beddings. arXiv preprint arXiv:1606.08359.

Paul Suganthan GC, Chong Sun, Haojun Zhang, Frank
Yang, Narasimhan Rampalli, Shishir Prasad, Este-
ban Arcaute, Ganesh Krishnan, Rohit Deep, Vijay
Raghavendra, et al. 2015. Why big data industrial
systems need rules and what we can do about it.
In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
265–276. ACM.

Yoav Goldberg. 2017. Neural network methods for nat-
ural language processing. Synthesis Lectures on Hu-
man Language Technologies, 10(1):1–309.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and
Li Guo. 2017. Knowledge graph embedding with
iterative guidance from soft rules. arXiv preprint
arXiv:1711.11231.

Charles T Hemphill, John J Godfrey, George R Dod-
dington, et al. 1990. The atis spoken language sys-
tems pilot corpus. In Proceedings of the DARPA
speech and natural language workshop, pages 96–
101.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016a. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318.

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and
Eric P Xing. 2016b. Deep neural networks with
massive learned knowledge. In EMNLP, pages
1670–1679.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and
Chih-Jen Lin. 2016. Field-aware factorization ma-
chines for ctr prediction. In Proceedings of the 10th
ACM Conference on Recommender Systems, pages
43–50. ACM.

Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy
Bengio. 2017. Learning to remember rare events.
arXiv preprint arXiv:1703.03129.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Work-
shop, volume 2.

Shen Li, Zhe Zhao, Tao Liu, Renfen Hu, and Xiaoy-
ong Du. 2017. Initializing convolutional filters with
semantic features for text classification. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1885–1890.

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. arXiv preprint arXiv:1609.01454.

Nicholas Locascio, Karthik Narasimhan, Eduardo
DeLeon, Nate Kushman, and Regina Barzilay. 2016.
Neural generation of regular expressions from nat-
ural language with minimal domain knowledge.
arXiv preprint arXiv:1608.03000.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2015. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech and Language Pro-
cessing (TASLP), 23(3):530–539.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edi-
tion, linguistic data consortium. Google Scholar.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Suman Ravuri and Andreas Stoicke. 2015. A compar-
ative study of neural network models for lexical in-
tent classification. In Automatic Speech Recognition
and Understanding (ASRU), 2015 IEEE Workshop
on, pages 368–374. IEEE.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-
learning with memory-augmented neural networks.
In International conference on machine learning,
pages 1842–1850.

Tobias Strauß, Gundram Leifert, Tobias Grüning, and
Roger Labahn. 2016. Regular expressions for de-
coding of neural network outputs. Neural Networks,
79:1–11.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan
Wierstra, et al. 2016. Matching networks for one
shot learning. In Advances in Neural Information
Processing Systems, pages 3630–3638.

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun
Yan. 2017a. Combining knowledge with deep con-
volutional neural networks for short text classifica-
tion. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 2915–
2921. AAAI Press.

Peng Wang, Lingqiao Liu, Chunhua Shen, Zi Huang,
Anton van den Hengel, and Heng Tao Shen. 2017b.
Multi-attention network for one shot learning. In

2093

2017 IEEE conference on computer vision and pat-
tern recognition, CVPR, pages 22–25.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2017. Symbolic priors for rnn-based semantic pars-
ing. In wenty-sixth International Joint Conference
on Artificial Intelligence (IJCAI-17), pages 4186–
4192.

Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang,

and Qi Tian. 2016. Disturblabel: Regularizing cnn
on the loss layer. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 4753–4762.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In IJCAI, pages
2993–2999.

