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Abstract

Semantic role labeling (SRL) is dedicated
to recognizing the predicate-argument
structure of a sentence. Previous stud-
ies have shown syntactic information has
a remarkable contribution to SRL per-
formance. However, such perception
was challenged by a few recent neural
SRL models which give impressive perfor-
mance without a syntactic backbone. This
paper intends to quantify the importance
of syntactic information to dependency
SRL in deep learning framework. We
propose an enhanced argument labeling
model companying with an extended k-
order argument pruning algorithm for ef-
fectively exploiting syntactic information.
Our model achieves state-of-the-art results
on the CoNLL-2008, 2009 benchmarks for
both English and Chinese, showing the
quantitative significance of syntax to neu-
ral SRL together with a thorough empiri-
cal survey over existing models.

1 Introduction

Semantic role labeling (SRL), namely semantic
parsing, is a shallow semantic parsing task, which
aims to recognize the predicate-argument structure
of each predicate in a sentence, such as who did
what to whom, where and when, etc. Specifically,
we seek to identify arguments and label their se-
mantic roles given a predicate. SRL is an impor-
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tant method to obtain semantic information ben-
eficial to a wide range of natural language pro-
cessing (NLP) tasks, including machine transla-
tion (Shi et al., 2016), question answering (Berant
et al., 2013; Yih et al., 2016) and discourse relation
sense classification (Mihaylov and Frank, 2016).

There are two formulizations for semantic
predicate-argument structures, one is based on
constituents (i.e., phrase or span), the other is
based on dependencies. The latter proposed by
the CoNLL-2008 shared task (Surdeanu et al.,
2008) is also called semantic dependency pars-
ing, which annotates the heads of arguments rather
than phrasal arguments. Generally, SRL is de-
composed into multi-step classification subtasks
in pipeline systems, consisting of predicate identi-
fication and disambiguation, argument identifica-
tion and classification.

In prior work of SRL, considerable attention
has been paid to feature engineering that struggles
to capture sufficient discriminative information,
while neural network models are capable of ex-
tracting features automatically. In particular, syn-
tactic information, including syntactic tree feature,
has been show extremely beneficial to SRL since
a larger scale of empirical verification of Pun-
yakanok et al. (2008). However, all the work had
to take the risk of erroneous syntactic input, lead-
ing to an unsatisfactory performance.

To alleviate the above issues, Marcheggiani
et al. (2017) propose a simple but effective model
for dependency SRL without syntactic input. It
seems that neural SRL does not have to rely on
syntactic features, contradicting with the belief
that syntax is a necessary prerequisite for SRL as
early as Gildea and Palmer (2002). This dramatic
contradiction motivates us to make a thorough ex-
ploration on syntactic contribution to SRL.

This paper will focus on semantic dependency
parsing and formulate SRL as one or two se-
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quence tagging tasks with predicate-specific en-
coding. With the help of the proposed k-order
argument pruning algorithm over syntactic tree,
our model obtains state-of-the-art scores on the
CoNLL benchmarks for both English and Chinese.

In order to quantitatively evaluate the contri-
bution of syntax to SRL, we adopt the ratio be-
tween labeled F1 score for semantic dependencies
(Sem-F1) and the labeled attachment score (LAS)
for syntactic dependencies introduced by CoNLL-
2008 Shared Task1 as evaluation metric. Consid-
ering that various syntactic parsers contribute dif-
ferent syntactic inputs with various range of qual-
ity levels, the ratio provides a fairer comparison
between syntactically-driven SRL systems, which
will be surveyed by our empirical study.

2 Model

To fully disclose the predicate-argument structure,
typical SRL systems have to step by step perform
four subtasks. Since the predicates in CoNLL-
2009 (Hajič et al., 2009) corpus have been pre-
identified, we need to tackle three other subtasks,
which are formulized into two-step pipeline in this
work, predicate disambiguation and argument la-
beling. Namely, we do the work of argument iden-
tification and classification in one model.

Argument structure for each known predicate
will be disclosed by our argument labeler over
a sequence including possible arguments (candi-
dates). There are two ways to determine the se-
quence, one is to simply input the entire sentence
as a syntax-agnostic SRL system does, the other
is to select words according to syntactic parse
tree around the predicate as most previous SRL
systems did. The latter strategy usually works
through a syntactic tree based argument pruning
algorithm. We will use the proposed k-order ar-
gument pruning algorithm (Section 2.1) to get a
sequence w = (w1, . . . , wn) for each predicate.
Then, we represent each word wi ∈ w as xi (Sec-
tion 2.2). Eventually, we obtain contextual fea-
tures with sequence encoder (Section 2.3). The
overall role labeling model is depicted in Figure 1.

2.1 Argument Pruning

As pointed out by Punyakanok et al. (2008), syn-
tactic information is most relevant in identifying

1CoNLL-2008 is an English-only task, while CoNLL-
2009 extends to a multilingual one. Their main difference is
that predicates have been beforehand indicated for the latter.
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Figure 1: The Argument Labeling Model

the arguments, and the most crucial contribution
of full parsing is in the pruning stage. In this pa-
per, we propose a k-order argument pruning al-
gorithm inspired by Zhao et al. (2009b). First of
all, for node n and its descendant nd in a syn-
tactic dependency tree, we define the order to be
the distance between the two nodes, denoted as
D(n, nd). Then we define k-order descendants of
given node satisfying D(n, nd) = k, and k-order
traversal that visits each node from the given node
to its descendant nodes within k-th order. Note
that the definition of k-order traversal is somewhat
different from tree traversal in terminology.

A brief description of the proposed k-order
pruning algorithm is given as follow. Initially, we
set a given predicate as the current node in a syn-
tactic dependency tree. Then, collect all its argu-
ment candidates by the strategy of k-order traver-
sal. Afterwards, reset the current node to its syn-
tactic head and repeat the previous step till the root
of the tree. Finally, collect the root and stop. The
k-order argument algorithm is presented in Algo-
rithm 1 in detail. An example of a syntactic de-
pendency tree for sentence She began to trade the
art for money is shown in Figure 2.

The main reasons for applying the extended k-
order argument pruning algorithm are two-fold.
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Algorithm 1 k-order argument pruning algorithm
Input: A predicate p, the root node r given a syn-

tactic dependency tree T , the order k
Output: The set of argument candidates S

1: initialization set p as current node c, c = p
2: for each descendant ni of c in T do
3: if D(c, ni) ≤ k and ni /∈ S then
4: S = S + ni

5: end if
6: end for
7: find the syntactic head ch of c, and let c = ch
8: if c = r then
9: S = S + r

10: else
11: goto step 2
12: end if
13: return argument candidates set S

First, previous standard pruning algorithm may
hurt the argument coverage too much, even though
indeed arguments usually tend to surround their
predicate in a close distance. As a sequence tag-
ging model has been applied, it can effectively
handle the imbalanced distribution between argu-
ments and non-arguments, which is hardly tack-
led by early argument classification models that
commonly adopt the standard pruning algorithm.
Second, the extended pruning algorithm provides
a better trade-off between computational cost and
performance by carefully tuning k.

2.2 Word Representation

We produce a predicate-specific word represen-
tation xi for each word wi, where i stands for
the word position in an input sequence, follow-
ing Marcheggiani et al. (2017). However, we dif-
fer by (1) leveraging a predicate-specific indicator
embedding, (2) using deeper refined representa-
tion, including character and dependency relation
embeddings, and (3) applying recent advances in
RNNs, such as highway connections (Srivastava
et al., 2015).

In this work, word representation xi is the con-
catenation of four types of features: predicate-
specific feature, character-level, word-level and
linguistic features. Unlike previous work, we
leverage a predicate-specific indicator embedding
xiei rather than directly using a binary flag either
0 or 1. At character level, we exploit convolu-
tional neural network (CNN) with bidirectional
LSTM (BiLSTM) to learn character embedding
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Figure 2: An example of first-order, second-order
and third-order argument pruning. Shadow part
indicates the given predicate.

xcei . As shown in Figure 1, the representation
calculated by the CNN is fed as input to BiL-
STM. At word level, we use a randomly initial-
ized word embedding xrei and a pre-trained word
embedding xpei . For linguistic features, we em-
ploy a randomly initialized lemma embedding xlei
and a randomly initialized POS tag embedding
xposi . In order to incorporate more syntactic in-
formation, we adopt an additional feature, the de-
pendency relation to syntactic head. Likewise,
it is a randomly initialized embedding xdei . The
resulting word representation is concatenated as
xi = [xiei , x

ce
i , xrei , xpei , xlei , x

pos
i , xdei ].

2.3 Sequence Encoder

As Long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) have
shown significant representational effectiveness to
NLP tasks, we thus use BiLSTM as the sen-
tence encorder. Given an input sequence x =
(x1, . . . , xn), BiLSTM processes the sequence in
both forward and backward direction to obtain two
separated hidden states,

−→
h i which handles data

from x1 to xi and
←−
h i which tackles data from xn

to xi for each word representation. Finally, we get
a contextual representation hi = [

−→
h i,
←−
h i] by con-

catenating the states of BiLSTM networks.
To get the final predicted semantic roles, we ex-

ploit a multi-layer perceptron (MLP) with high-
way connections on the top of BiLSTM networks,
which takes as input the hidden representation hi
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Hyperparameter values
die (indicator embedding) 16
dpe (pre-trained embedding) 100
dce (character embedding) 300
dre (word embedding) 100
dle (lemma embedding) 100
dpos (POS tag embedding) 32
dde (dependency label embedding) 64
LSTM hidden sizes 512
BiLSTM layers 4
Hidden layers 10
Learning rate 0.001
Word dropout 0.1

Table 1: Hyperparameter values.

of all time steps. The MLP network consists of 10
layers with highway connections and we employ
ReLU activations for the hidden layers. Finally,
we use a softmax layer over the outputs to maxi-
mize the likelihood of labels.

2.4 Predicate Disambiguation

Although predicates have been identified given
a sentence, predicate disambiguation is an in-
dispensable task, which aims to determine the
predicate-argument structure for an identified
predicate in a particular context. Here, we also
use the identical model (BiLSTM composed with
MLP) for predicate disambiguation, in which the
only difference is that we remove the syntactic de-
pendency relation feature in corresponding word
representation (Section 2.2). Exactly, given a
predicate p, the resulting word representation is
pi = [piei , p

ce
i , prei , ppei , plei , p

pos
i ].

3 Experiments

Our model2 is evaluated on the CoNLL-2009
shared task both for English and Chinese datasets,
following the standard training, development and
test splits. The hyperparameters in our model were
selected based on the development set, and are
summarized in Table 1. Note that the parame-
ters of predicate model are the same as these in
argument model. All real vectors are randomly
initialized, and the pre-trained word embeddings
for English are GloVe vectors (Pennington et al.,
2014). For Chinese, we exploit Wikipedia doc-
uments to train Word2Vec embeddings (Mikolov

2The code is available at https://github.com/
bcmi220/srl_syn_pruning.
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Figure 3: Changing curves of coverage and reduc-
tion with different k value on English training set.
The coverage rate is the proportion of true argu-
ments in pruning output, while the reduction is the
one of pruned argument candidates in total tokens.

et al., 2013). During training procedures, we use
the categorical cross-entropy as objective, with
Adam optimizer (Kingma and Ba, 2015). We train
models for a maximum of 20 epochs and obtain
the nearly best model based on development re-
sults. For argument labeling, we preprocess cor-
pus with k-order argument pruning algorithm. In
addition, we use four CNN layers with single-
layer BiLSTM to induce character representations
derived from sentences. For English3, to fur-
ther enhance the representation, we adopt CNN-
BiLSTM character embedding structure from Al-
lenNLP toolkit (Peters et al., 2018).

3.1 Preprocessing

During the pruning of argument candidates, we
use the officially predicted syntactic parses pro-
vided by CoNLL-2009 shared-task organizers on
both English and Chinese. Figure 3 shows chang-
ing curves of coverage and reduction following k
on the English train set. According to our statis-
tics, the number of non-arguments is ten times
more than that of arguments, where the data dis-
tribution is fairly unbalanced. However, a proper
pruning strategy could alleviate this problem. Ac-
cordingly, the first-order pruning reduces more
than 50% candidates at the cost of missing 5.5%
true ones on average, and the second-order prunes
about 40% candidates with nearly 2.0% loss. The
coverage of third-order has achieved 99% and it
reduces approximately 1/3 corpus size.

It is worth noting that as k is larger than 19,

3For Chinese, we do not use character embedding.

https://github.com/bcmi220/srl_syn_pruning
https://github.com/bcmi220/srl_syn_pruning
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System (syntax-aware) P R F1

Single model
Zhao et al. (2009a) − − 86.2
Zhao et al. (2009c) − − 85.4
Björkelund et al. (2010) 87.1 84.5 85.8
Lei et al. (2015) − − 86.6
FitzGerald et al. (2015) − − 86.7
Roth and Lapata (2016) 88.1 85.3 86.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
Ours 89.7 89.3 89.5
Ensemble model
FitzGerald et al. (2015) − − 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 88.7 86.8 87.7
Ours 89.5 87.9 88.7

Table 2: Results on the English test set (WSJ).

there will come full coverage on all argument can-
didates for English training set, which let our high
order pruning algorithm degrade into a syntax-
agnostic setting. In this work, we use the tenth-
order pruning for pursuing the best performance.

3.2 Results

Our system performance is measured with the of-
ficial script from CoNLL-2009 benchmarks, com-
bining the output of our predicate disambigua-
tion with our semantic role labeling. Our predi-
cate disambiguation model achieves the accuracy
of 95.01% and 95.58%4 on development and test
sets, respectively. We compare our model per-
formance with the state-of-the-art models for de-
pendency SRL.5 Noteworthily, our model is lo-
cal and single without reranking, which neither
includes global inference nor combines multiple
models. The experimental results on the English
in-domain (WSJ) and out-of-domain (Brown) test
sets are shown in Tables 2 and 3, respectively.

For English, our syntax-aware model outper-
forms previously published best single model,
scoring 89.5% F1 with 1.5% absolute improve-
ment on the in-domain (WSJ) test data. Compared

4Note that we give a slightly better predicate model than
Roth and Lapata (2016), with 94.77% and 95.47% accuracy
on development and test sets, respectively.

5Here, we do not compare against span-based SRL mod-
els, which annotate roles for entire argument spans instead of
semantic dependencies.

System (syntax-aware) P R F1

Single model
Zhao et al. (2009a) − − 74.6
Zhao et al. (2009c) − − 73.3
Björkelund et al. (2010) 75.7 72.2 73.9
Lei et al. (2015) − − 75.6
FitzGerald et al. (2015) − − 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani and Titov (2017) 78.5 75.9 77.2
Ours 81.9 76.9 79.3
Ensemble model
FitzGerald et al. (2015) − − 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 79.4 76.2 77.7
Ours 81.7 76.1 78.8

Table 3: Results on English out-of-domain test set
(Brown).

System (syntax-aware) P R F1

Zhao et al. (2009a) 80.4 75.2 77.7
Björkelund et al. (2009) 82.4 75.1 78.6
Roth and Lapata (2016) 83.2 75.9 79.4
Marcheggiani and Titov (2017) 84.6 80.4 82.5
Ours 84.2 81.5 82.8

System (syntax-agnostic) P R F1

Marcheggiani et al. (2017) 83.4 79.1 81.2
Ours 84.5 79.3 81.8

Table 4: Results on the Chinese test set.

with ensemble models, our single model even pro-
vides better performance (+0.4% F1) than the sys-
tem (Marcheggiani and Titov, 2017), and signifi-
cantly surpasses all the rest models. In the syntax-
agnostic setting (without pruning and dependency
relation embedding), we also reach the new state-
of-the-art, achieving a performance gain of 1% F1.

On the out-of-domain (Brown) test set, we
achieve the new best results of 79.3% (syntax-
aware) and 78.8% (syntax-agnostic) in F1 scores.
Moreover, our syntax-aware model performs bet-
ter than the syntax-agnostic one.

Table 4 presents the results on Chinese test set.
Even though we use the same parameters as for
English, our model also outperforms the best re-
ported results by 0.3% (syntax-aware) and 0.6%
(syntax-agnostic) in F1 scores.
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System(without predicate sense) P R F1

1st-order 84.4 82.6 83.5
2nd-order 84.8 83.0 83.9
3rd-order 85.1 83.3 84.2
Marcheggiani and Titov (2017) 85.2 81.6 83.3

Table 5: SRL results without predicate sense.

Our system P R F1

BiLSTM 86.5 85.1 85.8
basic model 86.3 85.7 86.0
+ indicator embedding 86.8 85.8 86.3
+ character embedding 87.2 86.6 86.9
+ both 87.7 87.0 87.3
BiLSTM + both 87.3 86.7 87.0

Table 6: Ablation on development set. The “+”
denotes a specific version over the basic model.

3.3 Analysis

To evaluate the contributions of key factors in our
method, a series of ablation studies are performed
on the English development set.

In order to demonstrate the effectiveness of our
k-order pruning algorithm, we report the SRL per-
formance excluding predicate senses in evalua-
tion, eliminating the performance gain from pred-
icate disambiguation. Table 5 shows the results
from our syntax-aware model with lower order ar-
gument pruning. Compared to the best previous
model, our system still yields an increment in re-
call by more than 1%, leading to improvements in
F1 score. It demonstrates that refining syntactic
parser tree based candidate pruning does help in
argument recognition.

Table 6 presents the performance of our syntax-
agnostic SRL system with a basic configuration,
which removes components, including indicator
and character embeddings. Note that the first
row is the results of BiLSTM (removing MLP
from basic model), whose encoding is the same
as Marcheggiani et al. (2017). Experiments show
that both enhanced representations improve over
our basic model, and our adopted labeling model
is superior to the simple BiLSTM.

Figure 4 shows F1 scores in different k-order
pruning together with our syntax-agnostic model.
It also indicates that the least first-order pruning
fails to give satisfactory performance, the best per-
forming setting coming from a moderate setting of
k = 10, and the largest k shows that our argu-

0 5 15 2010 
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F 1
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syntax-aware
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Figure 4: F1 scores by k-order pruning and the
syntax-agnostic result on English development set.

ment pruning falls back to syntax-agnostic type.
Meanwhile, from the best k setting to the lower
order pruning, we receive a much faster perfor-
mance drop, compared to the higher order prun-
ing until the complete syntax-agnostic case. The
proposed k-order pruning algorithm always works
even it reaches the syntax-agnostic setting, which
empirically explains why the current syntax-aware
and syntax-agnostic SRL models hold little per-
formance difference, as maximum k-order prun-
ing actually removes few words just like syntax-
agnostic model.

3.4 End-to-end SRL
In this work, we consider additional model that
integrates predicate disambiguation and argument
labeling into one sequence labeling model. In or-
der to implement an end-to-end model, we intro-
duce a virtual root (VR) for predicate disambigua-
tion similar to Zhao et al. (2013) who handled the
entire SRL task as word pair classification. Con-
cretely, we add a predicate sense feature to the in-
put sequence by concatenating a VR. The word
representation of VR is randomly initialized dur-
ing training. In Figure 5, we give an example se-
quence with the labels for the given sentence.

We also report results of our end-to-end model
on CoNLL-2009 test set with syntax-aware and
syntax-agnostic settings. As shown in Table 7,
our end-to-end model yields slightly weaker per-
formance compared with our pipeline. A reason-
able account for performance degradation is that
the training data has completely different genre
distributions over predicate senses and argument
roles, which may be somewhat confusing for inte-
grative model to make classification decisions.
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A2
A0

02

<VR>      Someone    makes      you      happy
NONE

A1

Figure 5: An example sequence with labels of end-
to-end model (makes is the given predicate).

Our system P R F1

syntax-aware (end-to-end) 89.3 88.7 89.0
syntax-aware (pipeline) 89.7 89.3 89.5
syntax-agnostic (end-to-end) 88.9 87.9 88.4
syntax-agnostic (pipeline) 89.5 87.9 88.7

Table 7: Comparison of results on CoNLL-2009
data between our end-to-end and pipeline models.

3.5 CoNLL-2008 SRL Setting

For a full SRL task, the predicate identification
subtask is also indispensable, which has been in-
cluded in CoNLL-2008 shared task. We thus eval-
uate our model in terms of data and setting of the
CoNLL-2008 benchmark (WSJ).

To identify predicates, we train the BiLSTM-
MLP sequence labeling model with same param-
eters in Section 2.4 to tackle the predicate identi-
fication and disambiguation subtasks in one shot,
and the only difference is that we remove the
predicate-specific indicator feature. The F1 score
of our predicate labeling model is 90.53% on in-
domain (WSJ) data. Compared with the best re-
ported results, we observe absolute improvements
in semantic F1 of 0.8% (in Table 8). Note that
as predicate identification is introduced, our same
model shows about 6% performance loss for either
syntax-agnostic or syntax-aware case, which indi-
cates that predicate identification should be care-
fully handled, as it is very needed in a complete
practical SRL system.

4 Syntactic Contribution

Syntactic information plays an informative role
in semantic role labeling. However, few studies
were done to quantitatively evaluate the syntac-
tic contribution to SRL. Furthermore, we observe
that most of the above compared neural SRL sys-
tems took the syntactic parser of (Björkelund et al.,
2010) as syntactic inputs instead of the one from
CoNLL-2009 shared task, which adopted a much
weaker syntactic parser. Especially (Marcheggiani
and Titov, 2017), adopted an external syntactic

System LAS Sem-F1

Johansson and Nugues (2008) 90.13 81.75
Zhao and Kit (2008) 87.52 77.67
Zhao et al. (2009b) 88.39 82.1 (80.53)

89.28 82.5 (80.94)
Zhao et al. (2013) 88.39 82.5 (80.91)

89.28 82.4 (80.88)
Ours (syntax-agnostic) − 82.9
Ours (syntax-aware) 86.0 83.3

Table 8: Results on the CoNLL-2008 in-domain
(WSJ) test set. The results in parenthesis are on
WSJ + Brown test set.

parser with even higher parsing accuracy. Con-
trarily, our SRL model is based on the automati-
cally predicted parse with moderate performance
provided by CoNLL-2009 shared task, but outper-
forms their models.

This section thus attempts to explore how much
syntax contributes to dependency-based SRL in
deep learning framework and how to effectively
evaluate relative performance of syntax-based
SRL. To this end, we conduct experiments for em-
pirical analysis with different syntactic inputs.

Syntactic Input In order to obtain different syn-
tactic inputs, we design a faulty syntactic tree gen-
erator (refer to STG hereafter), which is able to
produce random errors in the output parse tree like
a true parser does. To simplify implementation,
we construct a new syntactic tree based on the gold
standard parse tree. Given an input error probabil-
ity distribution estimated from a true parser output,
our algorithm presented in Algorithm 2 stochasti-
cally modifies the syntactic heads of nodes on the
premise of a valid tree.

Evaluation Measure For SRL task, the primary
evaluation measure is the semantic labeled F1

score. However, the score is influenced by the
quality of syntactic input to some extent, lead-
ing to unfaithfully reflecting the competence of
syntax-based SRL system. Namely, this is not the
outcome of a true and fair quantitative comparison
for these types of SRL models. To normalize the
semantic score relative to syntactic parse, we take
into account additional evaluation measure to esti-
mate the actual overall performance of SRL. Here,
we use the ratio between labeled F1 score for se-
mantic dependencies (Sem-F1) and the labeled at-
tachment score (LAS) for syntactic dependencies
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System LAS (%) P (%) R (%) Sem-F1 (%) Sem-F1/LAS (%)
Zhao et al. (2009c) [SRL-only] 86.0 − − 85.4 99.3
Zhao et al. (2009a) [Joint] 89.2 − − 86.2 96.6
Björkelund et al. (2010) 89.8 87.1 84.5 85.8 95.6
Lei et al. (2015) 90.4 − − 86.6 95.8
Roth and Lapata (2016) 89.8 88.1 85.3 86.7 96.5
Marcheggiani and Titov (2017) 90.3∗ 89.1 86.8 88.0 97.5
Ours + CoNLL-2009 predicted 86.0 89.7 89.3 89.5 104.0
Ours + Auto syntax 90.0 90.5 89.3 89.9 99.9
Ours + Gold syntax 100 91.0 89.7 90.3 90.3

Table 9: Results on English test set, in terms of labeled attachment score for syntactic dependencies
(LAS), semantic precision (P), semantic recall (R), semantic labeled F1 score (Sem-F1), the ratio Sem-
F1/LAS. A superscript * indicates LAS results from our personal communication with the authors.

Algorithm 2 Faulty Syntactic Tree Generator
Input: A gold standard syntactic tree GT , the

specific error probability p
Output: The new generative syntactic tree NT

1: N denotes the number of nodes in GT
2: for each node n ∈ GT do
3: r = random(0, 1), a random number
4: if r < p then
5: h = random(0, N ), a random integer
6: find the syntactic head nh of n in GT
7: modify nh = h, and get a new tree NT
8: if NT is a valid tree then
9: break

10: else
11: goto step 5
12: end if
13: end if
14: end for
15: return the new generative tree NT

proposed by Surdeanu et al. (2008) as evaluation
metric.6 The benefits of this measure are twofold:
quantitatively evaluating syntactic contribution to
SRL and impartially estimating the true perfor-
mance of SRL, independent of the performance of
the input syntactic parser.

Table 9 reports the performance of existing
models7 in term of Sem-F1/LAS ratio on CoNLL-
2009 English test set. Interestingly, even though
our system has significantly lower scores than oth-
ers by 3.8% LAS in syntactic components, we

6The idea of ratio score in Surdeanu et al. (2008) actually
was from author of this paper, Hai Zhao, which has been indi-
cated in the acknowledgement part of Surdeanu et al. (2008).

7Note that several SRL systems without providing syntac-
tic information are not listed in the table.
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Figure 6: The Sem-F1 scores of our mod-
els with different quality of syntactic inputs vs.
GCNs (Marcheggiani and Titov, 2017) on test set.

obtain the highest results both on Sem-F1 and
the Sem-F1/LAS ratio, respectively. These results
show that our SRL component is relatively much
stronger. Moreover, the ratio comparison in Table
9 also shows that since the CoNLL-2009 shared
task, most SRL works actually benefit from the
enhanced syntactic component rather than the im-
proved SRL component itself. All post-CoNLL
SRL systems, either traditional or neural types, did
not exceed the top systems of CoNLL-2009 shared
task, (Zhao et al., 2009c) (SRL-only track using
the provided predicated syntax) and (Zhao et al.,
2009a) (Joint track using self-developed parser).
We believe that this work for the first time reports
both higher Sem-F1 and higher Sem-F1/LAS ratio
since CoNLL-2009 shared task.

We also perform our first and tenth order prun-
ing models with different erroneous syntactic in-
puts generated from STG and evaluate their per-
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formance using the Sem-F1/LAS ratio. Figure 6
shows Sem-F1 scores at different quality of syn-
tactic parse inputs on the English test set whose
LAS varies from 85% to 100%. Compared to pre-
vious state-of-the-arts (Marcheggiani and Titov,
2017). Our tenth-order pruning model gives quite
stable SRL performance no matter the syntactic in-
put quality varies in a broad range, while our first-
order pruning model yields overall lower results
(1-5% F1 drop), owing to missing too many true
arguments. These results show that high-quality
syntactic parses may indeed enhance dependency
SRL. Furthermore, it indicates that our model with
an accurate enough syntactic input as Marcheg-
giani and Titov (2017), namely, 90% LAS, will
give a Sem-F1 exceeding 90% for the first time in
the research timeline of semantic role labeling.

5 Related Work

Semantic role labeling was pioneered by Gildea
and Jurafsky (2002). Most traditional SRL models
rely heavily on feature templates (Pradhan et al.,
2005; Zhao et al., 2009b; Björkelund et al., 2009).
Among them, Pradhan et al. (2005) combined fea-
tures derived from different syntactic parses based
on SVM classifier, while Zhao et al. (2009b) pre-
sented an integrative approach for dependency
SRL by greedy feature selection algorithm. Later,
Collobert et al. (2011) proposed a convolutional
neural network model of inducing word embed-
dings substituting for hand-crafted features, which
was a breakthrough for SRL task.

With the impressive success of deep neural net-
works in various NLP tasks (Zhang et al., 2016;
Qin et al., 2017; Cai et al., 2017), a series of neu-
ral SRL systems have been proposed. Foland and
Martin (2015) presented a dependency semantic
role labeler using convolutional and time-domain
neural networks, while FitzGerald et al. (2015) ex-
ploited neural network to jointly embed arguments
and semantic roles, akin to the work (Lei et al.,
2015), which induced a compact feature represen-
tation applying tensor-based approach. Recently,
researchers consider multiple ways to effectively
integrate syntax into SRL learning. Roth and La-
pata (2016) introduced dependency path embed-
ding to model syntactic information and exhib-
ited a notable success. Marcheggiani and Titov
(2017) leveraged the graph convolutional network
to incorporate syntax into neural models. Dif-
ferently, Marcheggiani et al. (2017) proposed a

syntax-agnostic model using effective word repre-
sentation for dependency SRL, which for the first
time achieves comparable performance as state-
of-the-art syntax-aware SRL models.

However, most neural SRL works seldom pay
much attention to the impact of input syntactic
parse over the resulting SRL performance. This
work is thus more than proposing a high perfor-
mance SRL model through reviewing the high-
lights of previous models, and presenting an ef-
fective syntactic tree based argument pruning. Our
work is also closely related to (Punyakanok et al.,
2008; He et al., 2017). Under the traditional meth-
ods, Punyakanok et al. (2008) investigated the
significance of syntax to SRL system and shown
syntactic information most crucial in the pruning
stage. He et al. (2017) presented extensive error
analysis with deep learning model for span SRL,
including discussion of how constituent syntactic
parser could be used to improve SRL performance.

6 Conclusion and Future Work

This paper presents a simple and effective neural
model for dependency-based SRL, incorporating
syntactic information with the proposed extended
k-order pruning algorithm. With a large enough
setting of k, our pruning algorithm will result in a
syntax-agnostic setting for the argument labeling
model, which smoothly unifies syntax-aware and
syntax-agnostic SRL in a consistent way. Experi-
mental results show that with the help of deep en-
hanced representation, our model outperforms the
previous state-of-the-art models in both syntax-
aware and syntax-agnostic situations.

In addition, we consider the Sem-F1/LAS ra-
tio as a mean of evaluating syntactic contribution
to SRL, and true performance of SRL independent
of the quality of syntactic parser. Though we again
confirm the importance of syntax to SRL with em-
pirical experiments, we are aware that since (Prad-
han et al., 2005), the gap between syntax-aware
and syntax-agnostic SRL has been greatly re-
duced, from as high as 10% to only 1-2% perfor-
mance loss in this work. However, maybe we will
never reach a satisfying conclusion, as whenever
one proposes a syntax-agnostic SRL system which
can outperform all syntax-aware ones at then, al-
ways there comes argument that you have never
fully explored creative new method to effectively
exploit the syntax input.
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