Large-Scale QA-SRL Parsing

Nicholas FitzGerald*

Julian Michael*

Luheng He Luke Zettlemoyer*

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle, WA
{nfitz, julianjm, luheng, lsz}@cs.washington.edu

Abstract

We present a new large-scale corpus of
Question-Answer driven Semantic Role
Labeling (QA-SRL) annotations, and the
first high-quality QA-SRL parser. Our cor-
pus, QA-SRL Bank 2.0, consists of over
250,000 question-answer pairs for over
64,000 sentences across 3 domains and
was gathered with a new crowd-sourcing
scheme that we show has high precision
and good recall at modest cost. We also
present neural models for two QA-SRL
subtasks: detecting argument spans for a
predicate and generating questions to label
the semantic relationship. The best models
achieve question accuracy of 82.6% and
span-level accuracy of 77.6% (under hu-
man evaluation) on the full pipelined QA-
SRL prediction task. They can also, as we
show, be used to gather additional annota-
tions at low cost.

1 Introduction

Learning semantic parsers to predict the predicate-
argument structures of a sentence is a long
standing, open challenge (Palmer et al., 2005;
Baker et al., 1998). Such systems are typically
trained from datasets that are difficult to gather,'
but recent research has explored training non-
experts to provide this style of semantic supervi-
sion (Abend and Rappoport, 2013; Basile et al.,
2012; Reisinger et al., 2015; He et al., 2015). In
this paper, we show for the first time that it is pos-
sible to go even further by crowdsourcing a large

*Much of this work was done while these authors were
at the Allen Institute for Artificial Intelligence.
The PropBank (Bonial et al., 2010) and FrameNet (Rup-
penhofer et al., 2016) annotation guides are 89 and 119 pages,
respectively.

In 1950 Alan M. Turing published "Computing machinery and
intelligence" in Mind, in which he proposed that machines could be
tested for intelligence using questions and answers.

Predicate Question Answer
Who published something? Alan M. Turing
published What was published? “Comm:;ilrg“gﬁea::ewqery and
When was something published? In 1950
Who proposed something? Alan M. Turing

that machines could be tested for

What did ? N
at cid someone propose intelligent using questions and answers

When did someone propose something? In 1950
What can be tested?
What can something be tested for?

machines
intelligence
using questions and answers

tested

1
2
3
a4
proposed | 5
6
7
8
9

How can something be tested?

questions and answers

. 0 What was being used?
using ﬂ

Why was something being used? tested for intelligence

Figure 1: An annotated sentence from our dataset.
Question 6 was not produced by crowd workers
in the initial collection, but was produced by our
parser as part of Data Expansion (see Section 5.)

scale dataset that can be used to train high quality
parsers at modest cost.

We adopt the Question-Answer-driven Seman-
tic Role Labeling (QA-SRL) (He et al., 2015)
annotation scheme. QA-SRL is appealing be-
cause it is intuitive to non-experts, has been
shown to closely match the structure of tra-
ditional predicate-argument structure annotation
schemes (He et al., 2015), and has been used for
end tasks such as Open IE (Stanovsky and Dagan,
2016). In QA-SRL, each predicate-argument re-
lationship is labeled with a question-answer pair
(see Figure 1). He et al. (2015) showed that high
precision QA-SRL annotations can be gathered
with limited training but that high recall is chal-
lenging to achieve; it is relatively easy to gather
answerable questions, but difficult to ensure that
every possible question is labeled for every verb.
For this reason, they hired and trained hourly an-
notators and only labeled a relatively small dataset
(3000 sentences).

Our first contribution is a new, scalable ap-
proach for crowdsourcing QA-SRL. We introduce
a streamlined web interface (including an auto-
suggest mechanism and automatic quality control
to boost recall) and use a validation stage to en-

2051

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2051-2060
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics

sure high precision (i.e. all the questions must
be answerable). With this approach, we produce
QA-SRL Bank 2.0, a dataset with 133,479 verbs
from 64,018 sentences across 3 domains, total-
ing 265,140 question-answer pairs, in just 9 days.
Our analysis shows that the data has high preci-
sion with good recall, although it does not cover
every possible question. Figure 1 shows example
annotations.

Using this data, our second contribution is a
comparison of several new models for learning a
QA-SRL parser. We follow a pipeline approach
where the parser does (1) unlabeled span detection
to determine the arguments of a given verb, and (2)
question generation to label the relationship be-
tween the predicate and each detected span. Our
best model uses a span-based representation sim-
ilar to that introduced by Lee et al. (2016) and a
custom LSTM to decode questions from a learned
span encoding. Our model does not require syn-
tactic information and can be trained directly from
the crowdsourced span labels.

Experiments demonstrate that the model does
well on our new data, achieving up to 82.2% span-
detection F1 and 47.2% exact-match question ac-
curacy relative to the human annotations. We also
demonstrate the utility of learning to predict easily
interpretable QA-SRL structures, using a simple
data bootstrapping approach to expand our dataset
further. By tuning our model to favor recall, we
over-generate questions which can be validated us-
ing our annotation pipeline, allowing for greater
recall without requiring costly redundant annota-
tions in the question writing step. Performing this
procedure on the training and development sets
grows them by 20% and leads to improvements
when retraining our models. Our final parser is
highly accurate, achieving 82.6% question accu-
racy and 77.6% span-level precision in an human
evaluation. Our data, code, and trained models
will be made publicly available.?

2 Data Annotation

A QA-SRL annotation consists of a set of
question-answer pairs for each verbal predicate in
a sentence, where each answer is a set of contigu-
ous spans from the sentence. QA-SRL questions
are defined by a 7-slot template shown in Table 1.
We introduce a crowdsourcing pipeline to collect
annotations rapidly, cheaply, and at large scale.

*http://qasrl.org

In the video, the perpetrators never
appeared to look at the camera.

Who didn't appear to do something?
What did|

What didn't someone appear to do?
What did appear

What did it

What did not

What did someone

What did something

What didn't

Figure 2: Interface for the generation step. Auto-
complete shows completions of the current QA-
SRL slot, and auto-suggest shows fully-formed
questions (highlighted green) based on the previ-
ous questions.

Pipeline Our crowdsourcing pipeline consists of
a generation and validation step. In the genera-
tion step, a sentence with one of its verbs marked
is shown to a single worker, who must write QA-
SRL questions for the verb and highlight their an-
swers in the sentence. The questions are passed
to the validation step, where n workers answer
each question or mark it as invalid. In each step,
no two answers to distinct questions may overlap
with each other, to prevent redundancy.

Instructions Workers are instructed that a valid
question-answer pair must satisfy three criteria:
1) the question is grammatical, 2) the question-
answer pair is asking about the time, place, par-
ticipants, etc., of the target verb, and 3) all correct
answers to each question are given.

Autocomplete We provide an autocomplete
drop-down to streamline question writing. Auto-
complete is implemented as a Non-deterministic
Finite Automaton (NFA) whose states correspond
to the 7 QA-SRL slots paired with a partial rep-
resentation of the question’s syntax. We use the
NFA to make the menu more compact by dis-
allowing obviously ungrammatical combinations
(e.g., What did been appeared?), and the syntactic
representation to auto-suggest complete questions
about arguments that have not yet been covered
(see Figure 2). The auto-suggest feature signifi-
cantly reduces the number of keystrokes required
to enter new questions after the first one, speeding
up the annotation process and making it easier for
annotators to provide higher recall.

2052

Wh Aux Subj Verb

Who blamed
What did someone blame
Who refused
When did someone refuse
Who might put

Where might someone put

Obj Prep Misc
someone
something on
to do something
to do something
something somewhere
something

Table 1: Example QA-SRL questions, decomposed into their slot-based representation. See He et al.
(2015) for the full details. All slots draw from a small, deterministic set of options, including verb tense
(present, pastparticiple, etc.) Here we have replaced the verb-tense slot with its conjugated form.

| Wikipedia | Wikinews | Science

Sentences 15,000 14,682 46,715
Verbs 32,758 34,026 66,653
Questions 75,867 80,081 | 143,388
Valid Qs 67,146 70,555 | 127,455

Table 2: Statistics for the dataset with questions
written by workers across three domains.

Payment and quality control Generation pays
Sc for the first QA pair (required), plus 5c, 6c, etc.
for each successive QA pair (optional), to boost
recall. The validation step pays 8c per verb, plus
a 2c bonus per question beyond four. Generation
workers must write at least 2 questions per verb
and have 85% of their questions counted valid, and
validators must maintain 85% answer span agree-
ment with others, or they are disqualified from
further work. A validator’s answer is considered
to agree with others if their answer span overlaps
with answer spans provided by a majority of work-
ers.

Preprocessing We use the Stanford CoreNLP
tools (Manning et al., 2014) for sentence segmen-
tation, tokenizing, and POS-tagging. We identify
verbs by POS tag, with heuristics to filter out aux-
iliary verbs while retaining non-auxiliary uses of
“have” and “do.” We identify conjugated forms
of each verb for the QA-SRL templates by finding
them in Wiktionary.?

Dataset We gathered annotations for 133,479
verb mentions in 64,018 sentences (1.27M tokens)
across 3 domains: Wikipedia, Wikinews, and sci-
ence textbook text from the Textbook Question
Answering (TQA) dataset (Kembhavi et al., 2017).
We partitioned the source documents into train,
dev, and test, sampled paragraph-wise from each
document with an 80/10/10 split by sentence.
Annotation in our pipeline with n = 2 valida-

3www.wiktionary.org

tors took 9 days on Amazon Mechanical Turk.*
1,165 unique workers participated, annotating a
total of 299,308 questions. Of these, 265,140 (or
89%) were considered valid by both validators, for
an average of 1.99 valid questions per verb and
4.14 valid questions per sentence. See Table 2 for
a breakdown of dataset statistics by domain. The
total cost was $43,647.33, for an average of 32.7¢c
per verb mention, 14.6¢ per question, or 16.5c per
valid question. For comparison, He et al. (2015)
interviewed and hired contractors to annotate data
at much smaller scale for a cost of about 50c per
verb. Our annotation scheme is cheaper, far more
scalable, and provides more (though noisier) su-
pervision for answer spans.

To allow for more careful evaluation, we vali-
dated 5,205 sentences at a higher density (up to
1,000 for each domain in dev and test), re-running
the generated questions through validation with
n = 3 for a total of 6 answer annotations for each
question.

Quality Judgments of question validity had
moderate agreement. About 89.5% of validator
judgments rated a question as valid, and the agree-
ment rate between judgments of the same ques-
tion on whether the question is invalid is 90.9%.
This gives a Fleiss’s Kappa of 0.51. In the higher-
density re-run, validators were primed to be more
critical: 76.5% of judgments considered a ques-
tion valid, and agreement was at 83.7%, giving a
Fleiss’s Kappa of 0.55.

Despite being more critical in the denser anno-
tation round, questions marked valid in the origi-
nal dataset were marked valid by the new annota-
tors in 86% of cases, showing our data’s relatively
high precision. The high precision of our annota-
tion pipeline is also backed up by our small-scale
manual evaluation (see Coverage below).

Answer spans for each question also exhibit

4www.mturk.com

2053

P R F
He et al. (2015) 97.5 | 86.6 | 91.7
This work 95.7 | 724 | 824
This work (unfiltered) | 94.9 | 85.4 | 89.9

Table 3: Precision and recall of our annotation
pipeline on a merged and validated subset of 100
verbs. The unfiltered number represents relaxing
the restriction that none of 2 validators marked the
question as invalid.

good agreement. On the original dataset, each an-
swer span has a 74.8% chance to exactly match
one provided by another annotator (up to two), and
on the densely annotated subset, each answer span
has an 83.1% chance to exactly match one pro-
vided by another annotator (up to five).

Coverage Accurately measuring recall for QA-
SRL annotations is an open challenge. For exam-
ple, question 6 in Figure 1 reveals an inferred tem-
poral relation that would not be annotated as part
of traditional SRL. Exhaustively enumerating the
full set of such questions is difficult, even for ex-
perts.

However, we can compare to the original QA-
SRL dataset (He et al., 2015), where Wikipedia
sentences were annotated with 2.43 questions
per verb. Our data has lower—but loosely
comparable—recall, with 2.05 questions per verb
in Wikipedia.

In order to further analyze the quality of our
annotations relative to (He et al., 2015), we rean-
notate a 100-verb subset of their data both manu-
ally (aiming for exhaustivity) and with our crowd-
sourcing pipeline. We merge the three sets of
annotations, manually remove bad questions (and
their answers), and calculate the precision and re-
call of the crowdsourced annotations and those of
He et al. (2015) against this pooled, filtered dataset
(using the span detection metrics described in Sec-
tion 4). Results, shown in Table 3, show that
our pipeline produces comparable precision with
only a modest decrease in recall. Interestingly, re-
adding the questions rejected in the validation step
greatly increases recall with only a small decrease
in precision, showing that validators sometimes
rejected questions considered valid by the authors.
However, we use the filtered dataset for our ex-
periments, and in Section 5, we show how another
crowdsourcing step can further improve recall.

3 Models

Given a sentence X = xg,...,%,, the goal of
a QA-SRL parser is to produce a set of tuples
(vi, Qi, Si), where v € {0,...,n} is the index
of a verbal predicate, QQ; is a question, and S; €
{(4,7) | i, € [0,n],j > i} is a set of spans which
are valid answers. Our proposed parsers construct
these tuples in a three-step pipeline:

1. Verbal predicates are identified using the
same POS-tags and heuristics as in data col-
lection (see Section 2).

2. Unlabeled span detection selects a set S, of
spans as arguments for a given verb v.

3. Question generation predicts a question for
each span in S,. Spans are then grouped by
question, giving each question a set of an-
SWers.

We describe two models for unlabeled span de-
tection in section 3.1, followed by question gen-
eration in section 3.2. All models are built on an
LSTM encoding of the sentence. Like He et al.
(2017), we start with an input X, = {xo...x,},
where the representation x; at each time step is
a concatenation of the token w;’s embedding and
an embedded binary feature (; = v) which indi-
cates whether w; is the predicate under consid-
eration. We then compute the output representa-
tion H, = BILSTM(X,) using a stacked alter-
nating LSTM (Zhou and Xu, 2015) with highway
connections (Srivastava et al., 2015) and recur-
rent dropout (Gal and Ghahramani, 2016). Since
the span detection and question generation mod-
els both use an LSTM encoding, this component
could in principle be shared between them. How-
ever, in preliminary experiments we found that
sharing hurt performance, so for the remainder of
this work each model is trained independently.

3.1 Span Detection

Given an encoded sentence H,, the goal of span
detection is to select the spans S, that correspond
to arguments of the given predicate. We explore
two models: a sequence-tagging model with BIO
encoding, and a span-based model which assigns
a probability to every possible span.

3.1.1 BIO Sequence Model

Our BIO model predicts a set of spans via a se-
quence y where each y; € {B,I,0}, represent-
ing a token at the beginning, interior, or outside
of any span, respectively. Similar to He et al.

2054

(2017), we make independent predictions for each
token at training time, and use Viterbi decoding
to enforce hard BIO-constraints’ at test time. The
resulting sequences are in one-to-one correspon-
dence with sets S, of spans which are pairwise
non-overlapping. The locally-normalized BIO-tag
distributions are computed from the BiILSTM out-
puts H, = {hyo, ..., hy,}:

Py | @) < exp(wigMLP(hyr) + bug) (1)

3.1.2 Span-based Model

Our span-based model makes independent binary
decisions for all O(n?) spans in the sentence. Fol-
lowing Lee et al. (2016), the representation of a
span (i,j) is the concatenation of the BiLSTM
output at each endpoint:

Svij = [Pvi, Pyj). ()

The probability that the span is an argument of
predicate v is computed by the sigmoid function:

p(yij ‘ Xv) = o-('wgpanMLP(Svij) + bspan) (3)

At training time, we minimize the binary cross en-
tropy summed over all n? possible spans, counting
a span as a positive example if it appears as an an-
swer to any question.

At test time, we choose a threshold 7 and se-
lect every span that the model assigns probability
greater than 7, allowing us to trade off precision
and recall.

3.2 Question Generation

We introduce two question generation models.
Given a span representation s,;; defined in sub-
subsection 3.1.2, our models generate questions
by picking a word for each question slot (see Sec-
tion 2). Each model calculates a joint distribution
p(y | Xy, 8yij) over values y = (y1,...,yr) for
the question slots given a span s, and is trained
to minimize the negative log-likelihood of gold
slot values.

3.2.1 Local Model

The local model predicts the words for each slot
independently:

p(yk | Xva Svij) X exp(wLMLP(Svij) + bk)'
4)

’E.g., an I-tag should only follow a B-tag.

3.2.2 Sequence Model

The sequence model uses the machinery of an
RNN to share information between slots. At each
slot k, we apply a multiple layers of LSTM cells:

hik,cir, = LSTMCELL; 1, (hi—1 %, hi k-1, Clk—1)

4)
where the initial input at each slot is a concate-
nation of the span representation and the embed-
ding of the previous word of the question: hg j =
[8vij; Yp_1]. Since each question slot predicts
from a different set of words, we found it bene-
ficial to use separate weights for the LSTM cells
at each slot k. During training, we feed in the gold
token at the previous slot, while at test time, we
use the predicted token. The output distribution
at slot k£ is computed via the final layers’ output
vector hy:

P(yk | X o, Svij) x exp(w]MLP(hpy) + by)
(6)

4 Initial Results

Automatic evaluation for QA-SRL parsing
presents multiple challenges. In this section,
we introduce automatic metrics that can help us
compare models. In Section 6, we will report
human evaluation results for our final system.

4.1 Span Detection

Metrics We evaluate span detection using a
modified notion of precision and recall. We count
predicted spans as correct if they match any of
the labeled spans in the dataset. Since each pre-
dicted span could potentially be a match to multi-
ple questions (due to overlapping annotations) we
map each predicted span to one matching question
in the way that maximizes measured recall using
maximum bipartite matching. We use both exact
match and intersection-over-union (IOU) greater
than 0.5 as matching criteria.

Results Table 4 shows span detection results on
the development set. We report results for the
span-based models at two threshold values 7: 7 =
0.5, and 7 = 7* maximizing F1. The span-based
model significantly improves over the BIO model
in both precision and recall, although the differ-
ence is less pronounced under IOU matching.

4.2 Question Generation

Metrics Like all generation tasks, evaluation
metrics for question generation must contend with

2055

Exact Match

P R F
BIO 69.0 | 759 | 72.2
Span (7 = 0.5) | 81.7 | 80.9 | 81.3
Span (1 = 7%) | 80.0 | 84.7 | 82.2

10U > 0.5

P R F
BIO 80.4 | 86.0 | 83.1
Span (7 =0.5) | 87.5 | 84.2 | 85.8
Span (7 = 7%) | 83.8 | 93.0 | 88.1

Table 4: Results for Span Detection on the dense
development dataset. Span detection results are
given with the cutoff threshold 7 at 0.5, and at
the value which maximizes F-score. The top chart
lists precision, recall and F-score with exact span
match, while the bottom reports matches where
the intersection over union (IOU) is > 0.5.

EM | PM | SA
Local | 44.2 | 62.0 | 83.2
Seq. | 47.2 | 62.3 | 82.9

Table 5: Question Generation results on the dense
development set. EM - Exact Match accuracy, PM
- Partial Match Accuracy, SA - Slot-level accuracy

the fact that there are in general multiple possi-
ble valid questions for a given predicate-argument
pair. For instance, the question “Who did some-
one blame something on?” may be rephrased as
“Who was blamed for something?” However, due
to the constrained space of possible questions de-
fined by QA-SRL’s slot format, accuracy-based
metrics can still be informative. In particular, we
report the rate at which the predicted question ex-
actly matches the gold question, as well as a re-
laxed match where we only count the question
word (WH), subject (SBJ), object (OBJ) and Mis-
cellaneous (Misc) slots (see Table 1). Finally, we
report average slot-level accuracy.

Results Table 5 shows the results for question
generation on the development set. The sequen-
tial model’s exact match accuracy is significantly
higher, while word-level accuracy is roughly com-
parable, reflecting the fact that the local model
learns the slot-level posteriors.

4.3 Joint results

Table 6 shows precision and recall for joint span
detection and question generation, using exact

P R F
Span + Local 37.8 | 43.7 | 40.6
Span + Seq. (1 = 0.5) | 39.6 | 45.8 | 42.4

Table 6: Joint span detection and question gener-
ation results on the dense development set, using
exact-match for both spans and questions.

match for both. This metric is exceedingly hard,
but it shows that almost 40% of predictions are
exactly correct in both span and question. In Sec-
tion 6, we use human evaluation to get a more ac-
curate assessment of our model’s accuracy.

S Data Expansion

Since our trained parser can produce full QA-
SRL annotations, its predictions can be validated
by the same process as in our original annotation
pipeline, allowing us to focus annotation efforts
towards filling potential data gaps.

By detecting spans at a low probability cutoff,
we over-generate QA pairs for already-annotated
sentences. Then, we filter out QA pairs whose
answers overlap with answer spans in the exist-
ing annotations, or whose questions match exist-
ing questions. What remains are candidate QA
pairs which fill gaps in the original annotation. We
pass these questions to the validation step of our
crowdsourcing pipeline with n = 3 validators, re-
sulting in new labels.

We run this process on the training and devel-
opment partitions of our dataset. For the develop-
ment set, we use the trained model described in
the previous section. For the training set, we use
arelaxed version of jackknifing, training 5 models
over 5 different folds. We generate 92,080 ques-
tions at a threshold of 7 = 0.2. Since in this case
many sentences have only one question, we re-
structure the pay to a 2c base rate with a 2¢ bonus
per question after the first (still paying no less than
2c per question).

Data statistics 46,017 (50%) of questions run
through the expansion step were considered valid
by all three annotators. In total, after filtering,
the expansion step increased the number of valid
questions in the train and dev partitions by 20%.
However, for evaluation, since our recall metric
identifies a single question for each answer span
(via bipartite matching), we filter out likely ques-
tion paraphrases by removing questions in the ex-

2056

Exact Match
P R F AUC
80.8 | 86.8 | 83.7 | .906
829 | 864 | 84.6 | .910
I0U > 0.5
P R F AUC
87.1 | 93.2 | 90.1 | .946
879 | 93.1 | 90.5 | .949

Original
Expanded

Original
Expanded

(a) Span Detection results with 7.

EM | PM | WA
50.5 | 64.4 | 84.1
50.8 | 64.9 | 84.1

Original
Expanded

(b) Question Generation results

P R F
475 | 469 | 47.2
443 | 55.0 | 49.1

Original
Expanded

(c) Joint span detection and question generation results with
7=0.5

Table 7: Results on the expanded development set
comparing the full model trained on the original
data, and with the expanded data.

panded development set whose answer spans have
two overlaps with the answer spans of one ques-
tion in the original annotations. After this filtering,
the expanded development set we use for evalua-
tion has 11.5% more questions than the original
development set.

The total cost including MTurk fees was
$8,210.66, for a cost of 8.9¢ per question, or 17.8¢c
per valid question. While the cost per valid ques-
tion was comparable to the initial annotation, we
gathered many more negative examples (which
may serve useful in future work), and this method
allowed us to focus on questions that were missed
in the first round and improve the exhaustiveness
of the annotation (whereas it is not obvious how
to make fully crowdsourced annotation more ex-
haustive at a comparable cost per question).

Retrained model We retrained our final model
on the training set extended with the new valid
questions, yielding modest improvements on both
span detection and question generation in the de-
velopment set (see Table 7). The span detection
numbers are higher than on the original dataset,
because the expanded development data captures
true positives produced by the original model (and
the resulting increase in precision can be traded off
for recall as well).

6 Final Evaluation

We use the crowdsourced validation step to do
a final human evaluation of our models. We
test 3 parsers: the span-based span detection
model paired with each of the local and sequential
question generation models trained on the initial
dataset, and our final model (span-based span de-
tection and sequential question generation) trained
with the expanded data.

Methodology On the 5,205 sentence densely
annotated subset of dev and test, we generate QA-
SRL labels with all of the models using a span
detection threshold of 7 = (.2 and combine the
questions with the existing data. We filter out
questions that fail the autocomplete grammatical-
ity check (counting them invalid) and pass the data
into the validation step, annotating each question
to a total of 6 validator judgments. We then com-
pute question and span accuracy as follows: A
question is considered correct if 5 out of 6 anno-
tators consider it valid, and a span is considered
correct if its generated question is correct and the
span is among those selected for the question by
validators. We rank all questions and spans by the
threshold at which they are generated, which al-
lows us to compute accuracy at different levels of
recall.

Results Figure 3 shows the results. As expected,
the sequence-based question generation models
are much more accurate than the local model; this
is largely because the local model generated many
questions that failed the grammaticality check.
Furthermore, training with our expanded data re-
sults in more questions and spans generated at the
same threshold. If we choose a threshold value
which gives a similar number of questions per sen-
tence as were labeled in the original data annota-
tion (2 questions / verb), question and span accu-
racy are 82.64% and 77.61%, respectively.

Table 8 shows the output of our best system on
3 randomly selected sentences from our develop-
ment set (one from each domain). The model was
overall highly accurate—only one question and 3
spans are considered incorrect, and each mistake is
nearly correct,® even when the sentence contains a
negation.

The incorrect question “When did someone appear?”
would be correct if the Prep and Misc slots were corrected
to read “When did someone appear to do something?”’

2057

1.00

— base_local
0.95 — base
— extended

S

4000 6000 8000 10000 12000 14000 16000 18000
of Questions

0.90

o
~
v

o
=
&
Question Accuracy
) o o
~ @ =
a <] v

Question Accuracy
o
@
S

0 2000

(a) Question accuracy on Dev

10

— base_local
— base
— extended

0.9

J

Span Accuracy

e
3

0.6

0.5

0 5000 10000 15000 20000 25000 30000 35000
of Spans

(c) Span accuracy on Dev

1.00

— base_local
— base
— extended

N

2000 4000 6000 8000 10000 12000 14000 16000 18000
of Questions

0.95

0.90

0.70

0.65F

0.60
0

(b) Question accuracy on Test

— base_local
— base
— extended ||

0.9

Span Accuracy
o o
~)

0.6}

0.5
0 5000 10000 15000 20000 25000 30000 35000

of Spans

(d) Span accuracy on Test

Figure 3: Human evaluation accuracy for questions and spans, as each model’s span detection threshold is
varied. Questions are considered correct if 5 out of 6 annotators consider it valid. Spans are considered
correct if their question was valid, and the span was among those labeled by human annotators for
that question. The vertical line indicates a threshold value where the number of questions per sentence
matches that of the original labeled data (2 questions / verb).

7 Related Work

Resources and formalisms for semantics often
require expert annotation and underlying syntax
(Palmer et al., 2005; Baker et al., 1998; Banarescu
et al., 2013). Some more recent semantic re-
sources require less annotator training, or can
be crowdsourced (Abend and Rappoport, 2013;
Reisinger et al., 2015; Basile et al., 2012; Michael
et al., 2018). In particular, the original QA-SRL
(He et al., 2015) dataset is annotated by free-
lancers, while we developed streamlined crowd-
sourcing approaches for more scalable annotation.

Crowdsourcing has also been used for indirectly
annotating syntax (He et al., 2016; Duan et al,,
2016), and to complement expert annotation of
SRL (Wang et al., 2018). Our crowdsourcing ap-
proach draws heavily on that of Michael et al.

(2018), with automatic two-stage validation for
the collected question-answer pairs.

More recently, models have been developed for
these newer semantic resources, such as UCCA
(Teichert et al., 2017) and Semantic Proto-Roles
(White et al., 2017). Our work is the first high-
quality parser for QA-SRL, which has several
unique modeling challenges, such as its highly
structured nature and the noise in crowdsourcing.

Several recent works have explored neural mod-
els for SRL tasks (Collobert and Weston, 2007;
FitzGerald et al., 2015; Swayamdipta et al., 2017;
Yang and Mitchell, 2017), many of which em-
ploy a BIO encoding (Zhou and Xu, 2015; He
et al., 2017). Recently, span-based models have
proven to be useful for question answering (Lee
et al., 2016) and coreference resolution (Lee et al.,
2017), and PropBank SRL (He et al., 2018).

2058

A much larger super
eruption in Colorado
produced over 5,000
cubic kilometers of
material.

Produced

Where didn’t someone appear to do something?

Who didn’t appear to do something?

In the video, the
perpetrators never
appeared to look

at the camera.

Where didn't someone look at something?
look Who didn’t look?

What didn’t someone look at?

What produced something?
Where did something produce something?

What did something produce?

A much larger super eruption
in Colorado

over 5,000 cubic kilometers of material

In the video

the perpetrators

look at the camera

What didn’t someone appear to do?

to look at the camera
In the video
the perpetrators

the camera

Some of the vegetarians

Who met someone?

vegetarians
met
Some of the vegetarians Who met? he
he met were members What did someone meet? members of the Theosophical Society
of the Theosophical
founded in 1875 to What had been founded?
. the Theosophical Society
further universal
brotherhood, and which founded in 1875
was devoted to the When was something founded?
study of Buddhist and 1875
Hindu literature. Why has something been founded? to further universal brotherhood
devoted

What was something devoted to?

the study of Buddhist and Hindu literature

Table 8: System output on 3 randomly sampled sentences from the development set (1 from each of the
3 domains). Spans were selected with 7 = 0.5. Questions and spans with a red background were marked

incorrect during human evaluation.

8 Conclusion

In this paper, we demonstrated that QA-SRL
can be scaled to large datasets, enabling a
new methodology for labeling and producing
predicate-argument structures at a large scale. We
presented a new, scalable approach for crowd-
sourcing QA-SRL, which allowed us to collect
QA-SRL Bank 2.0, a new dataset covering over
250,000 question-answer pairs from over 64,000
sentences, in just 9 days. We demonstrated the
utility of this data by training the first parser which
is able to produce high-quality QA-SRL struc-
tures. Finally, we demonstrated that the validation
stage of our crowdsourcing pipeline, in combina-
tion with our parser tuned for recall, can be used
to add new annotations to the dataset, increasing
recall.

Acknowledgements

The crowdsourcing funds for QA-SRL Bank 2.0
was provided by the Allen Institute for Artificial
Intelligence. This research was supported in part
by the ARO (W911NF-16-1-0121) the NSF (IIS-
1252835, 1IS-1562364), a gift from Amazon, and

an Allen Distinguished Investigator Award. We
would like to thank Gabriel Stanovsky and Mark
Yatskar for their helpful feedback.

References

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (UCCA). In ACL 2013.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The Berkeley Framenet project. In /ICCL
1998.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In 7th Linguistic Annotation Work-
shop and Interoperability with Discourse.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje
Venhuizen. 2012. Developing a large semantically
annotated corpus. In LREC 2012.

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena
Hwang, and Martha Palmer. 2010. Propbank anno-
tation guidelines.

Ronan Collobert and Jason Weston. 2007. Fast seman-
tic extraction using a novel neural network architec-
ture. In ACL 2007.

2059

Manjuan Duan, Ethan Hill, and Michael White. 2016.
Generating disambiguating paraphrases for struc-
turally ambiguous sentences. In /0th Linguistic An-
notation Workshop.

Nicholas FitzGerald, Oscar Tackstrom, Kuzman
Gancheyv, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In EMNLP
2015.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In NIPS 2016.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and ar-
guments in neural semantic role labeling. In ACL
2018.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In ACL 2017.

Luheng He, Mike Lewis, and Luke S. Zettlemoyer.
2015. Question-answer driven semantic role label-
ing: Using natural language to annotate natural lan-
guage. In EMNLP 2015.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
EMNLP 2016.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal ma-
chine comprehension. In CVPR 2017.

Kenton Lee, Luheng He, Mike Lewis, and Luke S.
Zettlemoyer. 2017. End-to-end neural coreference
resolution. In EMNLP 2017.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur
Parikh, Dipanjan Das, and Jonathan Berant. 2016.
Learning recurrent span representations for ex-
tractive question answering. arXiv preprint
arXiv:1611.01436.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In ACL 2014, pages 55-60.

Julian Michael, Gabriel Stanovsky, Luheng He, Ido
Dagan, and Luke Zettlemoyer. 2018. Crowdsourc-
ing question-answer meaning representations. In
NAACL 2018.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin
Van Durme. 2015. Semantic proto-roles. TACL.

Josef Ruppenhofer, Michael Ellsworth, Miriam RL
Petruck, Christopher R Johnson, and Jan Schef-
fczyk. 2016. FrameNet II: Extended theory and
practice. Institut fiir Deutsche Sprache, Bibliothek.

Rupesh K Srivastava, Klaus Greff, and Jiirgen Schmid-
huber. 2015. Training very deep networks. In NIPS
2015.

Gabriel Stanovsky and Ido Dagan. 2016. Creating a
large benchmark for open information extraction. In
EMNLP 2016.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A Smith. 2017. Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaf-
fold. arXiv preprint arXiv:1706.09528.

Adam R Teichert, Adam Poliak, Benjamin Van Durme,
and Matthew R Gormley. 2017. Semantic proto-role
labeling. In AAAI 2017, pages 4459-4466.

Chenguang Wang, Alan Akbik, Laura Chiticariu, Yun-
yao Li, Fei Xia, and Anbang Xu. 2018. Crowd-in-
the-loop: A hybrid approach for annotating semantic
roles. In EMNLP 2017.

Aaron Steven White, Kyle Rawlins, and Benjamin
Van Durme. 2017. The semantic proto-role linking
model. In ACL 2017.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic parsing.
In EMNLP 2017, pages 1247-1256.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In ACL 2015.

2060

