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Abstract

Semantic hashing has become a power-
ful paradigm for fast similarity search
in many information retrieval systems.
While fairly successful, previous tech-
niques generally require two-stage train-
ing, and the binary constraints are han-
dled ad-hoc. In this paper, we present
an end-to-end Neural Architecture for Se-
mantic Hashing (NASH), where the binary
hashing codes are treated as Bernoulli la-
tent variables. A neural variational in-
ference framework is proposed for train-
ing, where gradients are directly back-
propagated through the discrete latent
variable to optimize the hash function.
We also draw connections between pro-
posed method and rate-distortion the-
ory, which provides a theoretical foun-
dation for the effectiveness of the pro-
posed framework. Experimental results on
three public datasets demonstrate that our
method significantly outperforms several
state-of-the-art models on both unsuper-
vised and supervised scenarios.

1 Introduction

The problem of similarity search, also called
nearest-neighbor search, consists of finding doc-
uments from a large collection of documents, or
corpus, which are most similar to a query doc-
ument of interest. Fast and accurate similarity
search is at the core of many information retrieval
applications, such as plagiarism analysis (Stein
et al., 2007), collaborative filtering (Koren, 2008),
content-based multimedia retrieval (Lew et al.,
2006) and caching (Pandey et al., 2009). Semantic
hashing is an effective approach for fast similarity
search (Salakhutdinov and Hinton, 2009; Zhang

* Equal contribution.

et al., 2010; Wang et al., 2014). By represent-
ing every document in the corpus as a similarity-
preserving discrete (binary) hashing code, the
similarity between two documents can be evalu-
ated by simply calculating pairwise Hamming dis-
tances between hashing codes, i.e., the number of
bits that are different between two codes. Given
that today, an ordinary PC is able to execute mil-
lions of Hamming distance computations in just a
few milliseconds (Zhang et al., 2010), this seman-
tic hashing strategy is very computationally attrac-
tive.

While considerable research has been devoted
to text (semantic) hashing, existing approaches
typically require two-stage training procedures.
These methods can be generally divided into two
categories: (2) binary codes for documents are first
learned in an unsupervised manner, then [ binary
classifiers are trained via supervised learning to
predict the /-bit hashing code (Zhang et al., 2010;
Xu et al., 2015); (i7) continuous text representa-
tions are first inferred, which are binarized as a
second (separate) step during testing (Wang et al.,
2013; Chaidaroon and Fang, 2017). Because the
model parameters are not learned in an end-to-end
manner, these two-stage training strategies may re-
sult in suboptimal local optima. This happens be-
cause different modules within the model are opti-
mized separately, preventing the sharing of infor-
mation between them. Further, in existing meth-
ods, binary constraints are typically handled ad-
hoc by truncation, i.e., the hashing codes are ob-
tained via direct binarization from continuous rep-
resentations after training. As a result, the in-
formation contained in the continuous representa-
tions is lost during the (separate) binarization pro-
cess. Moreover, training different modules (map-
ping and classifier/binarization) separately often
requires additional hyperparameter tuning for each
training stage, which can be laborious and time-
consuming.
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In this paper, we propose a simple and generic
neural architecture for text hashing that learns bi-
nary latent codes for documents in an end-to-
end manner. Inspired by recent advances in neu-
ral variational inference (NVI) for text processing
(Miao et al., 2016; Yang et al., 2017; Shen et al.,
2017b), we approach semantic hashing from a
generative model perspective, where binary (hash-
ing) codes are represented as either deterministic
or stochastic Bernoulli latent variables. The infer-
ence (encoder) and generative (decoder) networks
are optimized jointly by maximizing a variational
lower bound to the marginal distribution of input
documents (corpus). By leveraging a simple and
effective method to estimate the gradients with re-
spect to discrete (binary) variables, the loss term
from the generative (decoder) network can be di-
rectly backpropagated into the inference (encoder)
network to optimize the hash function.

Motivated by the rate-distortion theory (Berger,
1971; Theis et al., 2017), we propose to inject
data-dependent noise into the latent codes during
the decoding stage, which adaptively accounts for
the tradeoff between minimizing rate (number of
bits used, or effective code length) and distortion
(reconstruction error) during training. The con-
nection between the proposed method and rate-
distortion theory is further elucidated, providing a
theoretical foundation for the effectiveness of our
framework.

Summarizing, the contributions of this paper
are: (i) to the best of our knowledge, we present
the first semantic hashing architecture that can
be trained in an end-to-end manner; (ii) we pro-
pose a neural variational inference framework to
learn compact (regularized) binary codes for doc-
uments, achieving promising results on both unsu-
pervised and supervised text hashing; (iii) the con-
nection between our method and rate-distortion
theory is established, from which we demonstrate
the advantage of injecting data-dependent noise
into the latent variable during training.

2 Related Work

Models with discrete random variables have at-
tracted much attention in the deep learning com-
munity (Jang et al., 2016; Maddison et al., 2016;
van den Oord et al., 2017; Li et al., 2017; Shu and
Nakayama, 2017). Some of these structures are
more natural choices for language or speech data,
which are inherently discrete. More specifically,
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Figure 1: NASH for end-to-end semantic hashing.
The inference network maps * — z using an MLP
and the generative network recovers = as z — 2.

van den Oord et al. (2017) combined VAEs with
vector quantization to learn discrete latent repre-
sentation, and demonstrated the utility of these
learned representations on images, videos, and
speech data. Li et al. (2017) leveraged both pair-
wise label and classification information to learn
discrete hash codes, which exhibit state-of-the-art
performance on image retrieval tasks.

For natural language processing (NLP), al-
though significant research has been made to learn
continuous deep representations for words or doc-
uments (Mikolov et al., 2013; Kiros et al., 2015;
Shen et al., 2018), discrete neural representations
have been mainly explored in learning word em-
beddings (Shu and Nakayama, 2017; Chen et al.,
2017). In these recent works, words are repre-
sented as a vector of discrete numbers, which are
very efficient storage-wise, while showing compa-
rable performance on several NLP tasks, relative
to continuous word embeddings. However, dis-
crete representations that are learned in an end-
to-end manner at the sentence or document level
have been rarely explored. Also there is a lack of
strict evaluation regarding their effectiveness. Our
work focuses on learning discrete (binary) repre-
sentations for text documents. Further, we em-
ploy semantic hashing (fast similarity search) as
a mechanism to evaluate the quality of learned bi-
nary latent codes.

3 The Proposed Method

3.1 Hashing under the NVI Framework

Inspired by the recent success of variational au-
toencoders for various NLP problems (Miao et al.,
2016; Bowman et al., 2015; Yang et al., 2017;
Miao et al., 2017; Shen et al., 2017b; Wang et al.,
2018), we approach the training of discrete (bi-
nary) latent variables from a generative perspec-
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tive. Let = and z denote the input document and
its corresponding binary hash code, respectively.
Most of the previous text hashing methods focus
on modeling the encoding distribution p(z|z), or
hash function, so the local/global pairwise simi-
larity structure of documents in the original space
is preserved in latent space (Zhang et al., 2010;
Wang et al., 2013; Xu et al., 2015; Wang et al.,
2014). However, the generative (decoding) pro-
cess of reconstructing x from binary latent code z,
i.e., modeling distribution p(x|z), has been rarely
considered. Intuitively, latent codes learned from a
model that accounts for the generative term should
naturally encapsulate key semantic information
from z because the generation/reconstruction ob-
jective is a function of p(x|z). In this regard, the
generative term provides a natural training objec-
tive for semantic hashing.

We define a generative model that simultane-
ously accounts for both the encoding distribu-
tion, p(z|z), and decoding distribution, p(z|z),
by defining approximations g, (z|x) and gp(z|2),
via inference and generative networks, g, () and
go(z), parameterized by ¢ and 0, respectively.
Specifically, z € ZLV‘ is the bag-of-words (count)
representation for the input document, where |V|
is the vocabulary size. Notably, we can also em-
ploy other count weighting schemes as input fea-
tures z, e.g., the term frequency-inverse document
frequency (TFIDF) (Manning et al., 2008). For
the encoding distribution, a latent variable z is
first inferred from the input text =, by construct-
ing an inference network g4 (z) to approximate
the true posterior distribution p(z|z) as gy (z|x).
Subsequently, the decoder network gy(z) maps z
back into input space to reconstruct the original
sequence x as &, approximating p(x|z) as gp(x|z)
(as shown in Figure 1). This cyclic strategy, z —
z — & = x, provides the latent variable z with a
better ability to generalize (Miao et al., 2016).

To tailor the NVI framework for semantic hash-
ing, we cast z as a binary latent variable and as-
sume a multivariate Bernoulli prior on z: p(z) ~
Bernoulli(y) = [['_,77(1 — ~)'~%, where
vi € [0,1] is component i of vector y. Thus,
the encoding (approximate posterior) distribution
¢4 (2|z) is restricted to take the form g¢g(z|z) =
Bernoulli(h), where h = o (g4(x)), o(-) is the sig-
moid function, and g4(-) is the (nonlinear) infer-
ence network specified as a multilayer perceptron
(MLP). As illustrated in Figure 1, we can obtain

samples from the Bernoulli posterior either deter-
ministically or stochastically. Suppose z is a [-bit
hash code, for the deterministic binarization, we
have, fori =1,2,...... Nk

sign(o(gj(r) — 0.5) + 1
2 )
()

% = Lo(gi)>05 =

where z is the binarized variable, and z; and gfb(x)
denote the i-th dimension of z and gg4(x), respec-
tively. The standard Bernoulli sampling in (1) can
be understood as setting a hard threshold at 0.5
for each representation dimension, therefore, the
binary latent code is generated deterministically.
Another strategy to obtain the discrete variable is
to binarize & in a stochastic manner:

_ sign(o(gl(z) — ) + 1
gé)(m))>#i - 9 ’

2

Zi; = 10’(

where p; ~ Uniform(0, 1). Because of this sam-
pling process, we do not have to assume a pre-
defined threshold value like in (1).

3.2 Training with Binary Latent Variables

To estimate the parameters of the encoder and
decoder networks, we would ideally maximize
the marginal distribution p(z) = [ p(2)p(z|z)d=.
However, computing this marginal is intractable
in most cases of interest. Instead, we maximize
a variational lower bound. This approach is typ-
ically employed in the VAE framework (Kingma
and Welling, 2013):

3)
= Ey, (210 [log go([2)] — Drcr.(q9(2[x)|p(2)),

where the Kullback-Leibler (KL) divergence
D r.(gg(z|x)||p(2)) encourages the approximate
posterior distribution g4(2|z) to be close to the
multivariate Bernoulli prior p(z). In this case,
Drr(qg(z|x)|p(2)) can be written in closed-form
as a function of g4 (x):

9go(2)

Dir, = go(z) log
€]

Note that the gradient for the KL divergence term
above can be evaluated easily.

2043



For the first term in (3), we should in principle
estimate the influence of u; in (2) on gg(z|z) by
averaging over the entire (uniform) noise distribu-
tion. However, a closed-form distribution does not
exist since it is not possible to enumerate all possi-
ble configurations of z, especially when the latent
dimension is large. Moreover, discrete latent vari-
ables are inherently incompatible with backpropa-
gation, since the derivative of the sign function is
zero for almost all input values. As a result, the
exact gradients of L, wrt the inputs before bina-
rization would be essentially all zero.

To estimate the gradients for binary latent vari-
ables, we utilize the straight-through (ST) estima-
tor, which was first introduced by Hinton (2012).
So motivated, the strategy here is to simply back-
propagate through the hard threshold by approxi-
mating the gradient 9z /0¢ as 1. Thus, we have:

dE%(z\:p) [log QQ(I|Z)]

o
B, ¢mllogge(xl2)]  dz do(gy(x))
N dz do(gi(x))  do
- dEq, (=[x [10g go(]2)] do(g(x)) )

dz dé

Although this is clearly a biased estimator, it has
been shown to be a fast and efficient method rela-
tive to other gradient estimators for discrete vari-
ables, especially for the Bernoulli case (Bengio
et al.,, 2013; Hubara et al., 2016; Theis et al.,
2017). With the ST gradient estimator, the first
loss term in (3) can be backpropagated into the
encoder network to fine-tune the hash function
9s(@).

For the approximate generator gy (z|z) in (3), let
z; denote the one-hot representation of :th word
within a document. Note that x = ), x; is thus
the bag-of-words representation for document zx.
To reconstruct the input x from z, we utilize a soft-
max decoding function written as:

T
ol = wlz) = Pl ETutbe)
> j—1exp(zT Exj + b;)

where q(x; = w|z) is the probability that x; is
word w € V, gp(z|z) = [[; ¢(z; = w|z) and
0 = {E,b1,...,by}. Note that E' € RV can
be interpreted as a word embedding matrix to be
learned, and {b; } l‘;ll denote bias terms. Intuitively,
the objective in (6) encourages the discrete vector
z to be close to the embeddings for every word

that appear in the input document x. As shown in
Section 5.3.1, meaningful semantic structures can
be learned and manifested in the word embedding
matrix E.

3.3 Injecting Data-dependent Noise to =

To reconstruct text data x from sampled binary
representation z, a deterministic decoder is typi-
cally utilized (Miao et al., 2016; Chaidaroon and
Fang, 2017). Inspired by the success of employing
stochastic decoders in image hashing applications
(Dai et al., 2017; Theis et al., 2017), in our exper-
iments, we found that injecting random Gaussian
noise into z makes the decoder a more favorable
regularizer for the binary codes, which in practice
leads to stronger retrieval performance. Below, we
invoke the rate-distortion theory to perform some
further analysis, which leads to interesting find-
ings.

Learning binary latent codes z to represent a
continuous distribution p(x) is a classical informa-
tion theory concept known as lossy source coding.
From this perspective, semantic hashing, which
compresses an input document into compact bi-
nary codes, can be casted as a conventional rate-
distortion tradeoff problem (Theis et al., 2017;
Ballé et al., 2016):

min —logy R(z) +6-D(x, ), (7N
—_— ——
Rate Distortion

where rate and distortion denote the effective code
length, i.e., the number of bits used, and the dis-
tortion introduced by the encoding/decoding se-
quence, respectively. Further, & is the recon-
structed input and 3 is a hyperparameter that con-
trols the tradeoff between the two terms.

Considering the case where we have a Bernoulli
prior on z as p(z) ~ Bernoulli(y), and z
conditionally drawn from a Gaussian distribution
p(z|z) ~ N(Ez,0%I). Here, E = {ei}Lzll,
where ¢; € R% can be interpreted as a codebook
with |V| codewords. In our case, E corresponds
to the word embedding matrix as in (6).

For the case of stochastic latent variable z, the
objective function in (3) can be written in a form
similar to the rate-distortion tradeoff:

. 1
min By, o2y | —logge(zlz) + 5 |lo - E2ll3 +C|
N~~~ . .
Rate 3 Distortion
(8)
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where C is a constant that encapsulates the prior
distribution p(z) and the Gaussian distribution
normalization term. Notably, the trade-off hyper-
parameter 3 = o 2/2 is closely related to the
variance of the distribution p(z|z). In other words,
by controlling the variance o, the model can adap-
tively explore different trade-offs between the rate
and distortion objectives. However, the optimal
trade-offs for distinct samples may be different.

Inspired by the observations above, we propose
to inject data-dependent noise into latent variable
z, rather than to setting the variance term o2 to a
fixed value (Dai et al., 2017; Theis et al., 2017).
Specifically, log o? is obtained via a one-layer
MLP transformation from g4(x). Afterwards, we
sample 2’ from N (z, 02I), which then replace z in
(6) to infer the probability of generating individual
words (as shown in Figure 1). As a result, the vari-
ances are different for every input document x, and
thus the model is provided with additional flexibil-
ity to explore various trade-offs between rate and
distortion for different training observations. Al-
though our decoder is not a strictly Gaussian dis-
tribution, as in (6), we found empirically that in-
jecting data-dependent noise into z yields strong
retrieval results, see Section 5.1.

3.4 Supervised Hashing

The proposed Neural Architecture for Semantic
Hashing (NASH) can be extended to supervised
hashing, where a mapping from latent variable z
to labels y is learned, here parametrized by a two-
layer MLP followed by a fully-connected softmax
layer. To allow the model to explore and balance
between maximizing the variational lower bound
in (3) and minimizing the discriminative loss, the
following joint training objective is employed:

E - _ﬁvae(0a¢; .Z') + Oéﬁdis(ﬁ;zvy)- (9)

where n refers to parameters of the MLP classi-
fier and o controls the relative weight between
the variational lower bound (L) and discrimina-
tive loss (Lqis), defined as the cross-entropy loss.
The parameters {6, ¢,n} are learned end-to-end
via Monte Carlo estimation.

4 Experimental Setup

4.1 Datasets

We use the following three standard publicly
available datasets for training and evaluation:

(¢) Reuters21578, containing 10,788 news docu-
ments, which have been classified into 90 differ-
ent categories. (17) 20Newsgroups, a collection of
18,828 newsgroup documents, which are catego-
rized into 20 different topics. (¢iz) TMC (stands
for SIAM text mining competition), containing air
traffic reports provided by NASA. TMC consists
21,519 training documents divided into 22 differ-
ent categories. To make direct comparison with
prior works, we employed the TFIDF features on
these datasets supplied by (Chaidaroon and Fang,
2017), where the vocabulary sizes for the three
datasets are set to 10,000, 7,164 and 20,000, re-
spectively.

4.2 Training Details

For the inference networks, we employ a feed-
forward neural network with 2 hidden layers (both
with 500 units) using the ReLLU non-linearity ac-
tivation function, which transform the input doc-
uments, i.e., TFIDF features in our experiments,
into a continuous representation. Empirically, we
found that stochastic binarization as in (2) shows
stronger performance than deterministic binariza-
tion, and thus use the former in our experiments.
However, we further conduct a systematic ablation
study in Section 5.2 to compare the two binariza-
tion strategies.

Our model is trained using Adam (Kingma and
Ba, 2014), with a learning rate of 1 X 10~3 for all
parameters. We decay the learning rate by a fac-
tor of 0.96 for every 10,000 iterations. Dropout
(Srivastava et al., 2014) is employed on the output
of encoder networks, with the rate selected from
{0.7,0.8,0.9} on the validation set. To facilitate
comparisons with previous methods, we set the di-
mension of z, i.e., the number of bits within the
hashing code) as 8, 16, 32, 64, or 128.

4.3 Baselines

We evaluate the effectiveness of our framework on
both unsupervised and supervised semantic hash-
ing tasks. We consider the following unsuper-
vised baselines for comparisons: Locality Sensi-
tive Hashing (LSH) (Datar et al., 2004), Stack Re-
stricted Boltzmann Machines (S-RBM) (Salakhut-
dinov and Hinton, 2009), Spectral Hashing (SpH)
(Weiss et al., 2009), Self-taught Hashing (STH)
(Zhang et al., 2010) and Variational Deep Se-
mantic Hashing (VDSH) (Chaidaroon and Fang,
2017).
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Method 8 bits | 16 bits | 32 bits | 64 bits | 128 bits
LSH 0.2802 | 0.3215 | 0.3862 | 0.4667 | 0.5194
S-RBM 0.5113 | 0.5740 | 0.6154 | 0.6177 | 0.6452
SpH 0.6080 | 0.6340 | 0.6513 | 0.6290 | 0.6045
STH 0.6616 | 0.7351 | 0.7554 | 0.7350 | 0.6986
VDSH 0.6859 | 0.7165 | 0.7753 | 0.7456 | 0.7318
NASH 0.7113 | 0.7624 | 0.7993 | 0.7812 | 0.7559
NASH-N || 0.7352 | 0.7904 | 0.8297 | 0.8086 | 0.7867
NASH-DN || 0.7470 | 0.8013 | 0.8418 | 0.8297 | 0.7924

Table 1: Precision of the top 100 retrieved docu-
ments on Reuters dataset (Unsupervised hashing).

For supervised semantic hashing, we also com-
pare NASH against a number of baselines: Su-
pervised Hashing with Kernels (KSH) (Liu et al.,
2012), Semantic Hashing using Tags and Topic
Modeling (SHTTM) (Wang et al., 2013) and Su-
pervised VDSH (Chaidaroon and Fang, 2017). It
is worth noting that unlike all these baselines, our
NASH model is trained end-to-end in one-step.

4.4 Evaluation Metrics

To evaluate the hashing codes for similarity
search, we consider each document in the testing
set as a query document. Similar documents to
the query in the corresponding training set need
to be retrieved based on the Hamming distance of
their hashing codes, i.e. number of different bits.
To facilitate comparison with prior work (Wang
et al., 2013; Chaidaroon and Fang, 2017), the per-
formance is measured with precision. Specifically,
during testing, for a query document, we first re-
trieve the 100 nearest/closest documents accord-
ing to the Hamming distances of the correspond-
ing hash codes (i.e., the number of different bits).
We then examine the percentage of documents
among these 100 retrieved ones that belong to the
same label (topic) with the query document (we
consider documents having the same label as rel-
evant pairs). The ratio of the number of relevant
documents to the number of retrieved documents
(fixed value of 100) is calculated as the precision
score. The precision scores are further averaged
over all test (query) documents.

5 Experimental Results

We experimented with four variants for our NASH
model: (i) NASH: with deterministic decoder; (if)
NASH-N: with fixed random noise injected to de-
coder; (iii) NASH-DN: with data-dependent noise
injected to decoder; (iv) NASH-DN-S: NASH-DN
with supervised information during training.

1.0

qu/
* —&= KSH
== SHTTM s

=e= VDSH-S
+- VDSH-SP
=
0.8 : =8= NASH-DN-S|...:4

816 32 64 128
Number of Bits
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Figure 2: Precision of the top 100 retrieved doc-
uments on Reuters dataset (Supervised hashing),
compared with other supervised baselines.

5.1 Semantic Hashing Evaluation

Table 1 presents the results of all models on
Reuters dataset. Regarding unsupervised seman-
tic hashing, all the NASH variants consistently
outperform the baseline methods by a substan-
tial margin, indicating that our model makes the
most effective use of unlabeled data and manage
to assign similar hashing codes, i.e., with small
Hamming distance to each other, to documents
that belong to the same label. It can be also
observed that the injection of noise into the de-
coder networks has improved the robustness of
learned binary representations, resulting in better
retrieval performance. More importantly, by mak-
ing the variances of noise adaptive to the specific
input, our NASH-DN achieves even better results,
compared with NASH-N, highlighting the impor-
tance of exploring/learning the trade-off between
rate and distortion objectives by the data itself.
We observe the same trend and superiority of our
NASH-DN models on the other two benchmarks,
as shown in Tables 3 and 4.

Another observation is that the retrieval results
tend to drop a bit when we set the length of hash-
ing codes to be 64 or larger, which also happens
for some baseline models. This phenomenon has
been reported previously in Wang et al. (2012);
Liu et al. (2012); Wang et al. (2013); Chaida-
roon and Fang (2017), and the reasons could be
twofold: (z) for longer codes, the number of data
points that are assigned to a certain binary code
decreases exponentially. As a result, many queries
may fail to return any neighbor documents (Wang
et al., 2012); (i¢) considering the size of train-
ing data, it is likely that the model may over-
fit with long hash codes (Chaidaroon and Fang,
2017). However, even with longer hashing codes,
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Word weapons | medical | companies define israel book
gun treatment | company definition israeli books
guns disease market defined arabs english
NASH weapon drugs afford explained arab references
armed health products discussion jewish learning
assault medicine money knowledge jews reference
guns medicine | expensive defined israeli books
weapon health industry definition arab reference
NVDM gun treatment | company printf arabs guide
militia disease market int lebanon writing
armed patients buy sufficient | lebanese pages

Table 2: The five nearest words in the semantic space learned by NASH, compared with the results from

NVDM (Miao et al., 2016).

Method || 8 bits | 16 bits | 32 bits | 64 bits | 128 bits
Unsupervised Hashing
LSH 0.0578 | 0.0597 | 0.0666 | 0.0770 | 0.0949
S-RBM 0.0594 | 0.0604 | 0.0533 | 0.0623 | 0.0642
SpH 0.2545 | 0.3200 | 0.3709 | 0.3196 | 0.2716
STH 0.3664 | 0.5237 | 0.5860 | 0.5806 | 0.5443
VDSH 0.3643 | 0.3904 | 0.4327 | 0.1731 | 0.0522
NASH 0.3786 | 0.5108 | 0.5671 | 0.5071 | 0.4664
NASH-N 0.3903 | 0.5213 | 0.5987 | 0.5143 | 0.4776
NASH-DN || 0.4040 | 0.5310 | 0.6225 | 0.5377 | 0.4945
Supervised Hashing

KSH 0.4257 | 0.5559 | 0.6103 | 0.6488 | 0.6638
SHTTM 0.2690 | 0.3235 | 0.2357 | 0.1411 | 0.1299
VDSH-S 0.6586 | 0.6791 | 0.7564 | 0.6850 | 0.6916
VDSH-SP 0.6609 | 0.6551 | 0.7125 | 0.7045 | 0.7117
NASH-DN-S || 0.6247 | 0.6973 | 0.8069 | 0.8213 | 0.7840

Table 3: Precision of the top 100 retrieved docu-
ments on 20Newsgroups dataset.

Method || 8bits | 16 bits | 32 bits | 64 bits | 128 bits
Unsupervised Hashing
LSH 0.4388 | 0.4393 | 0.4514 | 0.4553 | 0.4773
S-RBM 0.4846 | 0.5108 | 0.5166 | 0.5190 | 0.5137
SpH 0.5807 | 0.6055 | 0.6281 | 0.6143 | 0.5891
STH 0.3723 | 0.3947 | 0.4105 | 0.4181 | 0.4123
VDSH 0.4330 | 0.6853 | 0.7108 | 0.4410 | 0.5847
NASH 0.5849 | 0.6573 | 0.6921 | 0.6548 | 0.5998
NASH-N 0.6233 | 0.6759 | 0.7201 | 0.6877 | 0.6314
NASH-DN || 0.6358 | 0.6956 | 0.7327 | 0.7010 | 0.6325
Supervised Hashing
KSH 0.6608 | 0.6842 | 0.7047 | 0.7175 | 0.7243
SHTTM 0.6299 | 0.6571 | 0.6485 | 0.6893 | 0.6474
VDSH-S 0.7387 | 0.7887 | 0.7883 | 0.7967 | 0.8018
VDSH-SP 0.7498 | 0.7798 | 0.7891 | 0.7888 | 0.7970
NASH-DN-S || 0.7438 | 0.7946 | 0.7987 | 0.8014 | 0.8139

Table 4: Precision of the top 100 retrieved docu-
ments on TMC dataset.

our NASH models perform stronger than the base-
lines in most cases (except for the 20Newsgroups
dataset), suggesting that NASH can effectively al-
locate documents to informative/meaningful hash-
ing codes even with limited training data.

We also evaluate the effectiveness of NASH
in a supervised scenario on the Reuters dataset,

where the label or topic information is utilized dur-
ing training. As shown in Figure 2, our NASH-
DN-S model consistently outperforms several su-
pervised semantic hashing baselines, with vari-
ous choices of hashing bits. Notably, our model
exhibits higher Top-100 retrieval precision than
VDSH-S and VDSH-SP, proposed by Chaidaroon
and Fang (2017). This may be attributed to the fact
that in VDSH models, the continuous embeddings
are not optimized with their future binarization in
mind, and thus could hurt the relevance of learned
binary codes. On the contrary, our model is opti-
mized in an end-to-end manner, where the gradi-
ents are directly backpropagated to the inference
network (through the binary/discrete latent vari-
able), and thus gives rise to a more robust hash
function.

5.2 Ablation study
5.2.1 The effect of stochastic sampling

As described in Section 3, the binary latent vari-
ables z in NASH can be either deterministically
(via (1)) or stochastically (via (2)) sampled. We
compare these two types of binarization functions
in the case of unsupervised hashing. As illustrated
in Figure 3, stochastic sampling shows stronger re-
trieval results on all three datasets, indicating that
endowing the sampling process of latent variables
with more stochasticity improves the learned rep-
resentations.

5.2.2 The effect of encoder/decoder networks

Under the variational framework introduced here,
the encoder network, i.e., hash function, and de-
coder network are jointly optimized to abstract se-
mantic features from documents. An interesting
question concerns what types of network should
be leveraged for each part of our NASH model.
In this regard, we further investigate the effect of
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Category Title/Subject 8-bit code 16-bit code
Dave Kingman for the hall of fame 11101001 | 0010110100000110
Baseball Time of game 11111001 | 0010100100000111
Game score report 11101001 | 0010110100000110
Why is Barry Bonds not batting 4th? | 11101101 | 0011110100000110
Building a UV flashlight 10110100 [ 0010001000101011
Electronics How to drive an array of LEDs 10110101 | 0010001000101001
2% silver solder 11010101 | 0010001000101011
Subliminal message flashingonTV | 10110100 | 0010011000101001

Table 5: Examples of learned compact hashing codes on 20Newsgroups dataset.

0.85 ] I Stochastic
0.80 [T Deterministic
0.75

Precison

0.70
0.65
0.60 ’_h
0.55

Reuters  20Newsgroups T™C
Dataset

Figure 3: The precisions of the top 100 retrieved
documents for NASH-DN with stochastic or de-
terministic binary latent variables.

using an encoder or decoder with different non-
linearity, ranging from a linear transformation to
two-layer MLPs. We employ a base model with
an encoder of two-layer MLPs and a linear de-
coder (the setup described in Section 3), and the
ablation study results are shown in Table 6.

Network H Encoder ‘ Decoder
linear 0.5844 0.6225
one-layer MLP 0.6187 0.3559
two-layer MLP 0.6225 0.1047

Table 6: Ablation study with different en-
coder/decoder networks.

It is observed that for the encoder networks, in-
creasing the non-linearity by stacking MLP layers
leads to better empirical results. In other words,
endowing the hash function with more modeling
capacity is advantageous to retrieval tasks. How-
ever, when we employ a non-linear network for
the decoder, the retrieval precision drops dramat-
ically. It is worth noting that the only difference
between linear transformation and one-layer MLP
is whether a non-linear activation function is em-
ployed or not.

This observation may be attributed the fact that
the decoder networks can be considered as a sim-

ilarity measure between latent variable z and the
word embeddings FE; for every word, and the
probabilities for words that present in the docu-
ment is maximized to ensure that z is informative.
As a result, if we allow the decoder to be too ex-
pressive (e.g., a one-layer MLP), it is likely that
we will end up with a very flexible similarity mea-
sure but relatively less meaningful binary repre-
sentations. This finding is consistent with several
image hashing methods, such as SGH (Dai et al.,
2017) or binary autoencoder (Carreira-Perpinan
and Raziperchikolaei, 2015), where a linear de-
coder is typically adopted to obtain promising re-
trieval results. However, our experiments may not
speak for other choices of encoder-decoder archi-
tectures, e.g., LSTM-based sequence-to-sequence
models (Sutskever et al., 2014) or DCNN-based
autoencoder (Zhang et al., 2017).

5.3 Qualitative Analysis
5.3.1 Analysis of Semantic Information

To understand what information has been learned
in our NASH model, we examine the matrix
E € R¥! in (6). Similar to (Miao et al., 2016;
Larochelle and Lauly, 2012), we select the 5 near-
est words according to the word vectors learned
from NASH and compare with the corresponding
results from NVDM.

As shown in Table 2, although our NASH model
contains a binary latent variable, rather than a con-
tinuous one as in NVDM, it also effectively group
semantically-similar words together in the learned
vector space. This further demonstrates that the
proposed generative framework manages to by-
pass the binary/discrete constraint and is able to
abstract useful semantic information from docu-
ments.

5.3.2 Case Study

In Table 5, we show some examples of the
learned binary hashing codes on 20Newsgroups
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dataset. We observe that for both 8-bit and 16-
bit cases, NASH typically compresses documents
with shared topics into very similar binary codes.
On the contrary, the hashing codes for documents
with different topics exhibit much larger Ham-
ming distance. As a result, relevant documents can
be efficiently retrieved by simply computing their
Hamming distances.

6 Conclusions

This paper presents a first step towards end-to-end
semantic hashing, where the binary/discrete con-
straints are carefully handled with an effective gra-
dient estimator. A neural variational framework
is introduced to train our model. Motivated by
the connections between the proposed method and
rate-distortion theory, we inject data-dependent
noise into the Bernoulli latent variable at the train-
ing stage. The effectiveness of our framework is
demonstrated with extensive experiments.
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