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Abstract

Most real-world document collections in-
volve various types of metadata, such as
author, source, and date, and yet the most
commonly-used approaches to modeling
text corpora ignore this information. While
specialized models have been developed
for particular applications, few are widely
used in practice, as customization typically
requires derivation of a custom inference
algorithm. In this paper, we build on recent
advances in variational inference methods
and propose a general neural framework,
based on topic models, to enable flexible in-
corporation of metadata and allow for rapid
exploration of alternative models. Our ap-
proach achieves strong performance, with
a manageable tradeoff between perplex-
ity, coherence, and sparsity. Finally, we
demonstrate the potential of our framework
through an exploration of a corpus of arti-
cles about US immigration.

1 Introduction

Topic models comprise a family of methods for
uncovering latent structure in text corpora, and are
widely used tools in the digital humanities, political
science, and other related fields (Boyd-Graber et al.,
2017). Latent Dirichlet allocation (LDA; Blei et al.,
2003) is often used when there is no prior knowl-
edge about a corpus. In the real world, however,
most documents have non-textual attributes such
as author (Rosen-Zvi et al., 2004), timestamp (Blei
and Lafferty, 20006), rating (McAuliffe and Blei,
2008), or ideology (Eisenstein et al., 2011; Nguyen
et al., 2015b), which we refer to as metadata.
Many customizations of LDA have been devel-
oped to incorporate document metadata. Two mod-
els of note are supervised LDA (SLDA; McAuliffe

and Blei, 2008), which jointly models words and
labels (e.g., ratings) as being generated from a la-
tent representation, and sparse additive genera-
tive models (SAGE; Eisenstein et al., 2011), which
assumes that observed covariates (e.g., author ide-
ology) have a sparse effect on the relative proba-
bilities of words given topics. The structural topic
model (STM; Roberts et al., 2014), which adds cor-
relations between topics to SAGE, is also widely
used, but like SAGE it is limited in the types of
metadata it can efficiently make use of, and how
that metadata is used. Note that in this work we
will distinguish labels (metadata that are gener-
ated jointly with words from latent topic represen-
tations) from covariates (observed metadata that
influence the distribution of labels and words).

The ability to create variations of LDA such as
those listed above has been limited by the expertise
needed to develop custom inference algorithms for
each model. As a result, it is rare to see such varia-
tions being widely used in practice. In this work,
we take advantage of recent advances in variational
methods (Kingma and Welling, 2014; Rezende
et al., 2014; Miao et al., 2016; Srivastava and Sut-
ton, 2017) to facilitate approximate Bayesian infer-
ence without requiring model-specific derivations,
and propose a general neural framework for topic
models with metadata, SCHOLAR.!

SCHOLAR combines the abilities of SAGE and
SLDA, and allows for easy exploration of the fol-
lowing options for customization:

1. Covariates: as in SAGE and STM, we incorpo-
rate explicit deviations for observed covariates,
as well as effects for interactions with topics.

2. Supervision: as in SLDA, we can use metadata
as labels to help infer topics that are relevant in
predicting those labels.

'Sparse Contextual Hidden and Observed Language
AutoencodeR.
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3. Rich encoder network: we use the encoding
network of a variational autoencoder (VAE) to
incorporate additional prior knowledge in the
form of word embeddings, and/or to provide
interpretable embeddings of covariates.

4. Sparsity: as in SAGE, a sparsity-inducing prior
can be used to encourage more interpretable
topics, represented as sparse deviations from a
background log-frequency.

We begin with the necessary background and
motivation (§2), and then describe our basic frame-
work and its extensions (§3), followed by a series
of experiments (§4). In an unsupervised setting,
we can customize the model to trade off between
perplexity, coherence, and sparsity, with improved
coherence through the introduction of word vec-
tors. Alternatively, by incorporating metadata we
can either learn topics that are more predictive of
labels than SLDA, or learn explicit deviations for
particular parts of the metadata. Finally, by com-
bining all parts of our model we can meaningfully
incorporate metadata in multiple ways, which we
demonstrate through an exploration of a corpus of
news articles about US immigration.

In presenting this particular model, we empha-
size not only its ability to adapt to the characteris-
tics of the data, but the extent to which the VAE
approach to inference provides a powerful frame-
work for latent variable modeling that suggests the
possibility of many further extensions. Our im-

plementation is available at https://github.

com/dallascard/scholar.

2 Background and Motivation

LDA can be understood as a non-negative
Bayesian matrix factorization model: the observed
document-word frequency matrix, X € ZP*V
(D is the number of documents, V' is the vocab-
ulary size) is factored into two low-rank matri-
ces, OP*K and BEXV | where each row of ©,
0; € AX is a latent variable representing a distri-
bution over topics in document Z, and each row of
B, B, € AV, represents a single topic, i.e., a dis-
tribution over words in the vocabulary.> While it is
possible to factor the count data into unconstrained

27 denotes nonnegative integers, and A denotes the set
of K-length nonnegative vectors that sum to one. For a proper
probabilistic interpretation, the matrix to be factored is actually
the matrix of latent mean parameters of the assumed data
generating process, X;; ~ Poisson(A;;). See Cemgil (2009)
or Paisley et al. (2014) for details.

matrices, the particular priors assumed by LDA
are important for interpretability (Wallach et al.,
2009). For example, the neural variational docu-
ment model (NVDM; Miao et al., 2016) allows
0; € RX and achieves normalization by taking
the softmax of HZT B. However, the experiments
in Srivastava and Sutton (2017) found the perfor-
mance of the NVDM to be slightly worse than LDA
in terms of perplexity, and dramatically worse in
terms of topic coherence.

The topics discovered by LDA tend to be parsi-
monious and coherent groupings of words which
are readily identifiable to humans as being related
to each other (Chang et al., 2009), and the resulting
mode of the matrix ® provides a representation of
each document which can be treated as a measure-
ment for downstream tasks, such as classification
or answering social scientific questions (Wallach,
2016). LDA does not require — and cannot make
use of — additional prior knowledge. As such, the
topics that are discovered may bear little connec-
tion to metadata of a corpus that is of interest to a
researcher, such as sentiment, ideology, or time.

In this paper, we take inspiration from two mod-
els which have sought to alleviate this problem.
The first, supervised LDA (SLDA; McAuliffe and
Blei, 2008), assumes that documents have labels y
which are generated conditional on the correspond-
ing latent representation, i.e., y; ~ p(y | 6;).> By
incorporating labels into the model, it is forced to
learn topics which allow documents to be repre-
sented in a way that is useful for the classification
task. Such models can be used inductively as text
classifiers (Balasubramanyan et al., 2012).

SAGE (Eisenstein et al., 2011), by contrast, is
an exponential-family model, where the key inno-
vation was to replace topics with sparse deviations
from the background log-frequency of words (d),
i.e., p(word | softmax(d+ 6, B)). SAGE can also
incorporate deviations for observed covariates, as
well as interactions between topics and covariates,
by including additional terms inside the softmax.
In principle, this allows for inferring, for example,
the effect on an author’s ideology on their choice
of words, as well as ideological variations on each
underlying topic. Unlike the NVDM, SAGE still
constrains 6; to lie on the simplex, as in LDA.

SLDA and SAGE provide two different ways
that users might wish to incorporate prior knowl-

3Technically, the model conditions on the mean of the per-

word latent variables, but we elide this detail in the interest of
concision.
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edge as a way of guiding the discovery of topics
in a corpus: SLDA incorporates labels through a
distribution conditional on topics; SAGE includes
explicit sparse deviations for each unique value of
a covariate, in addition to topics.*

Because of the Dirichlet-multinomial conjugacy
in the original model, efficient inference algorithms
exist for LDA. Each variation of LDA, however,
has required the derivation of a custom inference
algorithm, which is a time-consuming and error-
prone process. In SLDA, for example, each type of
distribution we might assume for p(y | 8) would
require a modification of the inference algorithm.
SAGE breaks conjugacy, and as such, the authors
adopted L-BFGS for optimizing the variational
bound. Moreover, in order to maintain compu-
tational efficiency, it assumed that covariates were
limited to a single categorical label.

More recently, the variational autoencoder
(VAE) was introduced as a way to perform approxi-
mate posterior inference on models with otherwise
intractable posteriors (Kingma and Welling, 2014;
Rezende et al., 2014). This approach has previously
been applied to models of text by Miao et al. (2016)
and Srivastava and Sutton (2017). We build on their
work and show how this framework can be adapted
to seamlessly incorporate the ideas of both SAGE
and SLDA, while allowing for greater flexibility in
the use of metadata. Moreover, by exploiting au-
tomatic differentiation, we allow for modification
of the model without requiring any change to the
inference procedure. The result is not only a highly
adaptable family of models with scalable inference
and efficient prediction; it also points the way to
incorporation of many ideas found in the literature,
such as a gradual evolution of topics (Blei and Laf-
ferty, 2006), and hierarchical models (Blei et al.,
2010; Nguyen et al., 2013, 2015b).

3 SCHOLAR: A Neural Topic Model with
Covariates, Supervision, and Sparsity

We begin by presenting the generative story for our
model, and explain how it generalizes both SLDA
and SAGE (§3.1). We then provide a general expla-
nation of inference using VAEs and how it applies
to our model (§3.2), as well as how to infer docu-

A third way of incorporating metadata is the approach
used by various “upstream” models, such as Dirichlet-
multinomial regression (Mimno and McCallum, 2008), which
uses observed metadata to inform the document prior. We hy-
pothesize that this approach could be productively combined
with our framework, but we leave this as future work.

ment representations and predict labels at test time
(§3.3). Finally, we discuss how we can incorporate
additional prior knowledge (§3.4).

3.1 Generative Story

Consider a corpus of D documents, where docu-
ment ¢ is a list of NV; words, w;, with V' words in
the vocabulary. For each document, we may have
observed covariates c; (e.g., year of publication),
and/or one or more labels, y; (e.g., sentiment).

Our model builds on the generative story of LDA,
but optionally incorporates labels and covariates,
and replaces the matrix product of ® and B with a
more flexible generative network, f,, followed by
a softmax transform. Instead of using a Dirichlet
prior as in LDA, we employ a logistic normal prior
on @ as in Srivastava and Sutton (2017) to facilitate
inference (§3.2): we draw a latent variable, r,
from a multivariate normal, and transform it to lie
on the simplex using a softmax transform.®

The generative story is shown in Figure 1a and
described in equations below:

For each document ¢ of length N;:
# Draw a latent representation on the sim-
plex from a logistic normal prior:
ri ~ N(r | po(a), diag(o(a)))
0; = softmax(r;)
# Generate words, incorporating covariates:
ni = fg(0i,¢;)
For each word j in document i:
wyj ~ p(w | softmax(n;))
# Similarly generate labels:
yi ~p(y | fy(65,c)),

where p(w | softmax(n;)) is a multinomial distri-
bution and p(y | fy(6;, c;)) is a distribution appro-
priate to the data (e.g., multinomial for categorical
labels). f, is a model-specific combination of latent
variables and covariates, f, is a multi-layer neural
network, and () and o3(«) are the mean and
diagonal covariance terms of a multivariate nor-

mal prior. To approximate a symmetric Dirichlet

5r is equivalent to z in the original VAE. To avoid con-
fusion with topic assignment of words in the topic modeling
literature, we use 7 instead of z.

Unlike the correlated topic model (CTM; Lafferty and
Blei, 2006), which also uses a logistic-normal prior, we fix the
parameters of the prior and use a diagonal covariance matrix,
rather than trying to infer correlations among topics. However,
it would be a straightforward extension of our framework to
place a richer prior on the latent document representations,
and learn correlations by updating the parameters of this prior
after each epoch, analogously to the variational EM approach
used for the CTM.
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prior with hyperparameter «, these are given by the
Laplace approximation (Hennig et al., 2012) to be
po k() = 0and 0§, = (K —1)/(aK).

If we were to ignore covariates, place a Dirichlet
prior on B, and let = 6,' B, this model is equiv-
alent to SLDA with a logistic normal prior. Sim-
ilarly, we can recover a model that is like SAGE,
but lacks sparsity, if we ignore labels, and let

ni=d+6]B+c/ B+ (8; ®¢;) B™, (1)

where d is the V-dimensional background term
(representing the log of the overall word frequency),
0; ® c; is a vector of interactions between topics
and covariates, and B and B™ are additional
weight (deviation) matrices. The background is
included to account for common words with ap-
proximately the same frequency across documents,
meaning that the B* weights now represent both
positive and negative deviations from this back-
ground. This is the form of f;, which we will use
in our experiments.

To recover the full SAGE model, we can place
a sparsity-inducing prior on each B*. As in Eisen-
stein et al. (2011), we make use of the compound
normal-exponential prior for each element of the
weight matrices, BY, ., with hyperparameter ,’

m,n>

Tm,n ~ Exponential(7y), 2)
By, ~ N0, T ) (3)

We can choose to ignore various parts of this
model, if, for example, we don’t have any labels
or observed covariates, or we don’t wish to use
interactions or sparsity.® Other generator networks
could also be considered, with additional layers to
represent more complex interactions, although this
might involve some loss of interpretability.

In the absence of metadata, and without sparsity,
our model is equivalent to the ProdLDA model
of Srivastava and Sutton (2017) with an explicit
background term, and ProdLDA is, in turn, a

"To avoid having to tune ~, we employ an improper Jef-
fery’s priot, p(7m,n) X 1/Tm n, as in SAGE. Although this
causes difficulties in posterior inference for the variance terms,
T, in practice, we resort to a variational EM approach, with
MAP-estimation for the weights, B, and thus alternate be-
tween computing expectations of the T parameters, and up-
dating all other parameters using some variant of stochastic
gradient descent. For this, we only require the expectation of
each T, for each E-step, which is given by 1/ Bfn,n. We re-
fer the reader to Eisenstein et al. (2011) for additional details.

8We could also ignore latent topics, in which case we
would get a naive Bayes-like model of text with deviations for
each covariate p(wi; | ¢;) o exp(d + ¢] B).

(b) Inference model

(a) Generative model

Figure 1: Figure 1a presents the generative story of
our model. Figure 1b illustrates the inference net-
work using the reparametrization trick to perform
variational inference on our model. Shaded nodes
are observed; double circles indicate deterministic
transformations of parent nodes.

special case of SAGE, without background log-
frequencies, sparsity, covariates, or labels. In the
next section we generalize the inference method
used for ProdLDA; in our experiments we validate
its performance and explore the effects of regular-
ization and word-vector initialization (§3.4). The
NVDM (Miao et al., 2016) uses the same approach
to inference, but does not not restrict document
representations to the simplex.

3.2 Learning and Inference

As in past work, each document ¢ is assumed to
have a latent representation 7;, which can be in-
terpreted as its relative membership in each topic
(after exponentiating and normalizing). In order
to infer an approximate posterior distribution over
r;, we adopt the sampling-based VAE framework
developed in previous work (Kingma and Welling,
2014; Rezende et al., 2014).

As in conventional variational inference, we
assume a variational approximation to the poste-
rior, gg (r; | w;, ¢;, y;), and seek to minimize the
KL divergence between it and the true posterior,
p(ri | wi,ci, yi), where ® is the set of variational
parameters to be defined below. After some ma-
nipulations (given in supplementary materials), we
obtain the evidence lower bound (ELBO) for a sin-
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gle document,

N;
L(w;) = Eyp (i w;,c0,91) Zlogp(wij | 74, ¢3)
=1
+ Eq¢(ri|wi,ci,yi) [logp(yi ‘ T4 c’)]
— Dxi [ga(7i | wi, ¢, 95) || p(rs | )]
“4)

As in the original VAE, we will encode the pa-
rameters of our variational distributions using a
shared multi-layer neural network. Because we
have assumed a diagonal normal prior on 7, this
will take the form of a network which outputs a
mean vector, pt; = f,(w;, ¢;,y;) and diagonal of a
covariance matrix, o-i2 = fo(w;, ¢;, y;), such that
qa(r; | wi,ci,y;)) = N(pi,0?). Incorporating
labels and covariates to the inference network used
by Miao et al. (2016) and Srivastava and Sutton
(2017), we use:

™ = fe([W:cwi§ Wec;; Wyyi])7 &)
pi = W,m; + by, (6)
log o} = W,m; + by, (7

where x; is a V-dimensional vector representing
the counts of words in w;, and f. is a multilayer
perceptron. The full set of encoder parameters, P,
thus includes the parameters of f. and all weight
matrices and bias vectors in Equations 5-7 (see
Figure 1b).

This approach means that the expectations in
Equation 4 are intractable, but we can approximate
them using sampling. In order to maintain differen-
tiability with respect to ®, even after sampling, we
make use of the reparameterization trick (Kingma
and Welling, 2014),° which allows us to reparame-
terize samples from ¢g (7 | w;, ¢;, y;) in terms of
samples from an independent source of noise, i.e.,

€ ~ N(0,1),
m(s) = ga(w;, ¢;, Yi, E(S)) = pi + 0o e,

We thus replace the bound in Equation 4 with
a Monte Carlo approximation using a single sam-

° The Dirichlet distribution cannot be directly reparame-
terized in this way, which is why we use the logistic normal
prior on @ to approximate the Dirichlet prior used in LDA.

ple!® of € (and thereby of r):

N;
~ Y logp(w; | Y, e) +logp(y: | i, ;)
j=1
— Dk [qa (7i | wi, ¢ yi) || p(r; | )]
3)

We can now optimize this sampling-based approxi-
mation of the variational bound with respect to ®,
B*, and all parameters of f, and f, using stochas-
tic gradient descent. Moreover, because of this
stochastic approach to inference, we are not re-
stricted to covariates with a small number of unique
values, which was a limitation of SAGE. Finally,
the KL divergence term in Equation 8 can be com-
puted in closed form (see supplementary materials).

3.3 Prediction on Held-out Data

In addition to inferring latent topics, our model
can both infer latent representations for new docu-
ments and predict their labels, the latter of which
was the motivation for SLDA. In traditional vari-
ational inference, inference at test time requires
fixing global parameters (topics), and optimizing
the per-document variational parameters for the
test set. With the VAE framework, by contrast,
the encoder network (Equations 5-7) can be used
to directly estimate the posterior distribution for
each test document, using only a forward pass (no
iterative optimization or sampling).

If not using labels, we can use this approach di-
rectly, passing the word counts of new documents
through the encoder to get a posterior qg(7; |
wj, ¢;). When we also include labels to be pre-
dicted, we can first train a fully-observed model, as
above, then fix the decoder, and retrain the encoder
without labels. In practice, however, if we train
the encoder network using one-hot encodings of
document labels, it is sufficient to provide a vector
of all zeros for the labels of test documents; this is
what we adopt for our experiments (§4.2), and we
still obtain good predictive performance.

The label network, f,, is a flexible component
which can be used to predict a wide range of out-
comes, from categorical labels (such as star ratings;
McAuliffe and Blei, 2008) to real-valued outputs
(such as number of citations or box-office returns;

10 Alternatively, one can average over multiple samples.
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Yogatama et al., 2011). For categorical labels, pre-
dictions are given by

§i = argmax p(y | 74, ¢;). €))
yey

Alternatively, when dealing with a small set of
categorical labels, it is also possible to treat them as
observed categorical covariates during training. At
test time, we can then consider all possible one-hot
vectors, e, in place of ¢;, and predict the label that

maximizes the probability of the words, i.e.,

N;

Ui = argmax Zlogp(wij | i ey).
yey

(10)
j=1

This approach works well in practice (as we show
in §4.2), but does not scale to large numbers of
labels, or other types of prediction problems, such
as multi-class classification or regression.

The choice to include metadata as covariates, la-
bels, or both, depends on the data. The key point
is that we can incorporate metadata in two very
different ways, depending on what we want from
the model. Labels guide the model to infer topics
that are relevant to those labels, whereas covari-
ates induce explicit deviations, leaving the latent
variables to account for the rest of the content.

3.4 Additional Prior Information

A final advantage of the VAE framework is that
the encoder network provides a way to incorporate
additional prior information in the form of word
vectors. Although we can learn all parameters start-
ing from a random initialization, it is also possible
to initialize and fix the initial embeddings of words
in the model, W, in Equation 5. This leverages
word similarities derived from large amounts of un-
labeled data, and may promote greater coherence
in inferred topics. The same could also be done
for some covariates; for example, we could embed
the source of a news article based on its place on
the ideological spectrum. Conversely, if we choose
to learn these parameters, the learned values (W,
and W) may provide meaningful embeddings of
these metadata (see section §4.3).

Other variants on topic models have also pro-
posed incorporating word vectors, both as a par-
allel part of the generative process (Nguyen et al.,
2015a), and as an alternative parameterization of
topic distributions (Das et al., 2015), but inference
is not scalable in either of these models. Because
of the generality of the VAE framework, we could

also modify the generative story so that word em-
beddings are emitted (rather than tokens); we leave
this for future work.

4 Experiments and Results

To evaluate and demonstrate the potential of this
model, we present a series of experiments below.
We first test SCHOLAR without observed meta-
data, and explore the effects of using regulariza-
tion and/or word vector initialization, compared to
LDA, SAGE, and NVDM (§4.1). We then evaluate
our model in terms of predictive performance, in
comparison to SLDA and an l2-regularized logistic
regression baseline (§4.2). Finally, we demonstrate
the ability to incorporate covariates and/or labels
in an exploratory data analysis (§4.3).

The scores we report are generalization to held-
out data, measured in terms of perplexity; coher-
ence, measured in terms of non-negative point-wise
mutual information (NPMI; Chang et al., 2009;
Newman et al., 2010), and classification accuracy
on test data. For coherence we evaluate NPMI us-
ing the top 10 words of each topic, both internally
(using test data), and externally, using a decade of
articles from the English Gigaword dataset (Graff
and Cieri, 2003). Since our model employs varia-
tional methods, the reported perplexity is an upper
bound based on the ELBO.

As datasets we use the familiar 20 newsgroups,
the IMDB corpus of 50,000 movie reviews (Maas
et al., 2011), and the UIUC Yahoo answers dataset
with 150,000 documents in 15 categories (Chang
et al., 2008). For further exploration, we also
make use of a corpus of approximately 4,000 time-
stamped news articles about US immigration, each
annotated with pro- or anti-immigration tone (Card
et al., 2015). We use the original author-provided
implementations of SAGE!! and SLDA,'? while
for LDA we use Mallet.'>. Our implementation
of SCHOLAR is in TensorFlow, but we have also
provided a preliminary PyTorch implementation
of the core of our model.'* For additional details
about datasets and implementation, please refer to
the supplementary material.

It is challenging to fairly evaluate the relative
computational efficiency of our approach compared
to past work (due to the stochastic nature of our ap-

Ugithub.com/jacobeisenstein/SAGE
2github.com/blei-lab/class-slda
Bpallet.cs.umass.edu
“github.com/dallascard/scholar
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proach to inference, choices about hyperparameters
such as tolerance, and because of differences in im-
plementation). Nevertheless, in practice, the perfor-
mance of our approach is highly appealing. For all
experiments in this paper, our implementation was
much faster than SLDA or SAGE (implemented in
C and Matlab, respectively), and competitive with
Mallet.

4.1 Unsupervised Evaluation

Although the emphasis of this work is on incorpo-
rating observed labels and/or covariates, we briefly
report on experiments in the unsupervised setting.
Recall that, without metadata, SCHOLAR equates to
ProdLDA, but with an explicit background term. !>
We therefore use the same experimental setup as
Srivastava and Sutton (2017) (learning rate, mo-
mentum, batch size, and number of epochs) and
find the same general patterns as they reported (see
Table 1 and supplementary material): our model
returns more coherent topics than LDA, but at the
cost of worse perplexity. SAGE, by contrast, attains
very high levels of sparsity, but at the cost of worse
perplexity and coherence than LDA. As expected,
the NVDM produces relatively low perplexity, but
very poor coherence, due to its lack of constraints
on 0.

Further experimentation revealed that the VAE
framework involves a tradeoff among the scores;
running for more epochs tends to result in bet-
ter perplexity on held-out data, but at the cost of
worse coherence. Adding regularization to encour-
age sparse topics has a similar effect as in SAGE,
leading to worse perplexity and coherence, but it
does create sparse topics. Interestingly, initializing
the encoder with pretrained word2vec embeddings,
and not updating them returned a model with the
best internal coherence of any model we considered
for IMDB and Yahoo answers, and the second-best
for 20 newsgroups.

The background term in our model does not have
much effect on perplexity, but plays an important
role in producing coherent topics; as in SAGE, the
background can account for common words, so
they are mostly absent among the most heavily
weighted words in the topics. For instance, words
like film and movie in the IMDB corpus are rel-
atively unimportant in the topics learned by our

'5Note, however, that a batchnorm layer in ProdLDA may
play a similar role to a background term, and there are small
differences in implementation; please see supplementary ma-
terial for more discussion of this.

Ppl. NPMI NPMI  Sparsity
Model 1 @int.) T (ext) 1 0
LDA 1508 0.13 0.14 0
SAGE 1767 0.12 0.12 0.79
NVDM 1748 0.06 0.04 0
SCHOLAR — B.G. 1889 0.09 0.13 0
SCHOLAR 1905 0.14 0.13 0
SCHOLAR + W.V. 1991 0.18 0.17 0
SCHOLAR + REG. 2185 0.10 0.12 0.58

Table 1: Performance of our various models in
an unsupervised setting (i.e., without labels or co-
variates) on the IMDB dataset using a 5,000-word
vocabulary and 50 topics. The supplementary ma-
terials contain additional results for 20 newsgroups
and Yahoo answers.

model, but would be much more heavily weighted
without the background term, as they are in topics
learned by LDA.

4.2 Text Classification

We next consider the utility of our model in the
context of categorical labels, and consider them
alternately as observed covariates and as labels
generated conditional on the latent representation.
We use the same setup as above, but tune number of
training epochs for our model using a random 20%
of training data as a development set, and similarly
tune regularization for logistic regression.

Table 2 summarizes the accuracy of various mod-
els on three datasets, revealing that our model offers
competitive performance, both as a joint model of
words and labels (Eq. 9), and a model which condi-
tions on covariates (Eq. 10). Although SCHOLAR
is comparable to the logistic regression baseline,
our purpose here is not to attain state-of-the-art per-
formance on text classification. Rather, the high
accuracies we obtain demonstrate that we are learn-
ing low-dimensional representations of documents
that are relevant to the label of interest, outperform-
ing SLDA, and have the same attractive properties
as topic models. Further, any neural network that
is successful for text classification could be incor-
porated into f;, and trained end-to-end along with
topic discovery.

4.3 Exploratory Study

We demonstrate how our model might be used to
explore an annotated corpus of articles about immi-
gration, and adapt to different assumptions about
the data. We only use a small number of topics in
this part (X = 8) for compact presentation.
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20news IMDB  Yahoo
Vocabulary size 2000 5000 5000
Number of topics 50 50 250
SLDA 0.60 0.64 0.65
SCHOLAR (labels) 0.67 0.86 0.73
SCHOLAR (covariates) 0.71 0.87 0.72
Logistic regression 0.70 0.87 0.76

Table 2: Accuracy of various models on three
datasets with categorical labels.

Tone as a label. We first consider using the an-
notations as a label, and train a joint model to infer
topics relevant to the tone of the article (pro- or
anti-immigration). Figure 2 shows a set of top-
ics learned in this way, along with the predicted
probability of an article being pro-immigration con-
ditioned on the given topic. All topics are coherent,
and the predicted probabilities have strong face
validity, e.g., “arrested charged charges agents op-
eration” is least associated with pro-immigration.

Tone as a covariate. Next we consider using
tone as a covariate, and build a model using both
tone and tone-topic interactions. Table 3 shows
a set of topics learned from the immigration data,
along with the most highly-weighted words in the
corresponding tone-topic interaction terms. As can
be seen, these interaction terms tend to capture dif-
ferent frames (e.g., “criminal” vs. “detainees”, and
“illegals” vs. “newcomers”, etc).

Combined model with temporal metadata. Fi-
nally, we incorporate both the tone annotations and
the year of publication of each article, treating the
former as a label and the latter as a covariate. In
this model, we also include an embedding matrix,
‘W, to project the one-hot year vectors down to a
two-dimensional continuous space, with a learned
deviation for each dimension. We omit the topics
in the interest of space, but Figure 3 shows the
learned embedding for each year, along with the
top terms of the corresponding deviations. As can
be seen, the model learns that adjacent years tend
to produce similar deviations, even though we have
not explicitly encoded this information. The left-
right dimension roughly tracks a temporal trend
with positive deviations shifting from the years of
Clinton and INS on the left, to Obama and ICE on
the right.'® Meanwhile, the events of 9/11 dom-
inate the vertical direction, with the words sept,

15The Immigration and Naturalization Service (INS) was
transformed into Immigration and Customs Enforcement
(ICE) and other agencies in 2003.

I english language city spanish community
® | boat desert died men miles coast haitian
® rvisas visa applications students citizenship
® rasylum judge appeals deportation court

[ I labor jobs workers percent study wages
(] r bush border president bill republicans
[ I state gov benefits arizona law bill bills
L arrested charged charges agents operation
0 1

p(pro-immigration | topic)

Figure 2: Topics inferred by a joint model of words
and tone, and the corresponding probability of pro-
immigration tone for each topic. A topic is repre-
sented by the top words sorted by word probability
throughout the paper.

T sept hijackers elian attacks

2002001
| 2000 2006
1999
« | 199 209604 2 -
NS Bdos 2008 | obama
refugees 1990 2005 2010 arizona
asylum \ ICE
clinton 2009 path
199891
19996
1993 2011
2012
! obama clinton deportations
Figure 3: Learned embeddings of year-of-

publication (treated as a covariate) from combined
model of news articles about immigration.

hijackers, and attacks increasing in probability as
we move up in the space. If we wanted to look at
each year individually, we could drop the embed-
ding of years, and learn a sparse set of topic-year
interactions, similar to tone in Table 3.

5 Additional Related Work

The literature on topic models is vast; in addition
to papers cited throughout, other efforts to incorpo-
rate metadata into topic models include Dirichlet-
multinomial regression (DMR; Mimno and McCal-
lum, 2008), Labeled LDA (Ramage et al., 2009),
and MedLDA (Zhu et al., 2009). A recent paper
also extended DMR by using deep neural networks
to embed metadata into a richer document prior
(Benton and Dredze, 2018).

A separate line of work has pursued parame-
terizing unsupervised models of documents us-
ing neural networks (Hinton and Salakhutdinov,
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Base topics (each row is a topic)

Anti-immigration interactions

Pro-immigration interactions

ice customs agency enforcement homeland
population born percent americans english
judge case court guilty appeals attorney
patrol border miles coast desert boat guard
licenses drivers card visa cards applicants
island story chinese ellis international
guest worker workers bush labor bill
benefits bill welfare republican state senate

criminal customs arrested
jobs million illegals taxpayers
guilty charges man charged
patrol border agents boat
foreign sept visas system
smuggling federal charges
bill border house senate
republican california gov state

detainees detention center agency
english newcomers hispanic city
asylum court judge case appeals
died authorities desert border bodies
green citizenship card citizen apply
island school ellis english story
workers tech skilled farm labor

law welfare students tuition

Table 3: Top words for topics (left) and the corresponding anti-immigration (middle) and pro-immigration
(right) variations when treating tone as a covariate, with interactions.

2009; Larochelle and Lauly, 2012), including non-
Bayesian approaches (Cao et al., 2015). More re-
cently, Lau et al. (2017) proposed a neural language
model that incorporated topics, and He et al. (2017)
developed a scalable alternative to the correlated
topic model by simultaneously learning topic em-
beddings.

Others have attempted to extend the reparameter-
ization trick to the Dirichlet and Gamma distribu-
tions, either through transformations (Kucukelbir
et al., 2016) or a generalization of reparameteriza-
tion (Ruiz et al., 2016). Black-box and VAE-style
inference have been implemented in at least two
general purpose tools designed to allow rapid explo-
ration and evaluation of models (Kucukelbir et al.,
2015; Tran et al., 2016).

6 Conclusion

We have presented a neural framework for general-
ized topic models to enable flexible incorporation
of metadata with a variety of options. We take
advantage of stochastic variational inference to de-
velop a general algorithm for our framework such
that variations do not require any model-specific
algorithm derivations. Our model demonstrates
the tradeoff between perplexity, coherence, and
sparsity, and outperforms SLDA in predicting doc-
ument labels. Furthermore, the flexibility of our
model enables intriguing exploration of a text cor-
pus on US immigration. We believe that our model
and code will facilitate rapid exploration of docu-
ment collections with metadata.
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