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Abstract

Automatic rumor detection is technically
very challenging. In this work, we try to
learn discriminative features from tweets
content by following their non-sequential
propagation structure and generate more
powerful representations for identifying
different type of rumors. We propose
two recursive neural models based on a
bottom-up and a top-down tree-structured
neural networks for rumor representation
learning and classification, which natu-
rally conform to the propagation layout
of tweets. Results on two public Twit-
ter datasets demonstrate that our recursive
neural models 1) achieve much better per-
formance than state-of-the-art approaches;
2) demonstrate superior capacity on de-
tecting rumors at very early stage.

1 Introduction

Rumors have always been a social disease. In re-
cent years, it has become unprecedentedly conve-
nient for the “evil-doers” to create and disseminate
rumors in massive scale with low cost thanks to
the popularity of social media outlets on Twitter,
Facebook, etc. The worst effect of false rumors
could be devastating to individual and/or society.

Research pertaining rumors spans multiple dis-
ciplines, such as philosophy and humanities (Di-
Fonzo and Bordia, 2007; Donovan, 2007), social
psychology (Allport and Postman, 1965; Jaeger
et al., 1980; Rosnow and Foster, 2005), politi-
cal studies (Allport and Postman, 1946; Berin-
sky, 2017), management science (DiFonzo et al.,
1994; Kimmel, 2004) and recently computer sci-
ence and artificial intelligence (Qazvinian et al.,
2011; Ratkiewicz et al., 2011; Castillo et al., 2011;
Hannak et al., 2014; Zhao et al., 2015; Ma et al.,

2015). Rumor is commonly defined as informa-
tion that emerge and spread among people whose
truth value is unverified or intentionally false (Di-
Fonzo and Bordia, 2007; Qazvinian et al., 2011).
Analysis shows that people tend to stop spread-
ing a rumor if it is known as false (Zubiaga et al.,
2016b). However, identifying such misinforma-
tion is non-trivial and needs investigative jour-
nalism to fact check the suspected claim, which
is labor-intensive and time-consuming. The pro-
liferation of social media makes it worse due to
the ever-increasing information load and dynam-
ics. Therefore, it is necessary to develop automatic
and assistant approaches to facilitate real-time ru-
mor tracking and debunking.

For automating rumor detection, most of the
previous studies focused on text mining from se-
quential microblog streams using supervised mod-
els based on feature engineering (Castillo et al.,
2011; Kwon et al., 2013; Liu et al., 2015; Ma
et al., 2015), and more recently deep neural mod-
els (Ma et al., 2016; Chen et al., 2017; Ruchan-
sky et al., 2017). These methods largely ignore
or oversimplify the structural information asso-
ciated with message propagation which however
has been shown conducive to provide useful clues
for identifying rumors. Kernel-based method (Wu
et al., 2015; Ma et al., 2017) was thus proposed
to model the structure as propagation trees in or-
der to differentiate rumorous and non-rumorous
claims by comparing their tree-based similarities.
But such kind of approach cannot directly classify
a tree without pairwise comparison with all other
trees imposing unnecessary overhead, and it also
cannot automatically learn any high-level feature
representations out of the noisy surface features.

In this paper, we present a neural rumor de-
tection approach based on recursive neural net-
works (RvNN) to bridge the content semantics
and propagation clues. RvNN and its variants
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were originally used to compose phrase or sen-
tence representation for syntactic and semantic
parsing (Socher et al., 2011, 2012). Unlike pars-
ing, the input into our model is a propagation tree
rooted from a source post rather than the parse tree
of an individual sentence, and each tree node is
a responsive post instead of an individual words.
The content semantics of posts and the responsive
relationship among them can be jointly captured
via the recursive feature learning process along the
tree structure.

So, why can such neural model do better for
the task? Analysis has generally found that Twit-
ter could “self-correct” some inaccurate informa-
tion as users share opinions, conjectures and evi-
dences (Zubiaga et al., 2017). To illustrate our in-
tuition, Figure 1 exemplifies the propagation trees
of two rumors in our dataset, one being false and
the other being true1. Structure-insensitive meth-
ods basically relying on the relative ratio of differ-
ent stances in the text cannot do well when such
clue is unclear like this example. However, it can
be seen that when a post denies the false rumor,
it tends to spark supportive or affirmative replies
confirming the denial; in contrast, denial to a true
rumor tends to trigger question or denial in its
replies. This observation may suggest a more gen-
eral hypothesis that the repliers tend to disagree
with (or question) who support a false rumor or
deny a true rumor, and also they tend to agree with
who deny a false rumor or support a true rumor.
Meanwhile, a reply, rather than directly respond-
ing to the source tweet (i.e., the root), is usually re-
sponsive to its immediate ancestor (Lukasik et al.,
2016; Zubiaga et al., 2016a), suggesting obvious
local characteristic of the interaction. The recur-
sive network naturally models such structures for
learning to capture the rumor indicative signals
and enhance the representation by recursively ag-
gregating the signals from different branches.

To this end, we extend the standard RvNN into
two variants, i.e., a bottom-up (BU) model and a
top-down (TD) model, which represent the propa-
gation tree structure from different angles, in order
to visit the nodes and combine their representa-
tions following distinct directions. The important
merit of such architecture is that the node features
can be selectively refined by the recursion given
the connection and direction of all paths of the

1False (true) rumor means the veracity of the rumorous
claim is false (true).

(a) False rumor (b) True rumor

Figure 1: Propagation trees of two rumorous
source tweets. Nodes may express stances on their
parent as commenting, supporting, questioning or
denying. The edge arrow indicates the direction
from a response to its responded node, and the po-
larity is marked as ‘+’ (‘-’) for support (denial).
The same node color indicates the same stance on
the veracity of root node (i.e., source tweet).

tree. As a result, it can be expected that the dis-
criminative signals are better embedded into the
learned representations.

We evaluate our proposed approach based on
two public Twitter datasets. The results show that
our method outperforms strong rumor detection
baselines with large margin and also demonstrate
much higher effectiveness for detection at early
stage of propagation, which is promising for real-
time intervention and debunking. Our contribu-
tions are summarized as follows in three folds:

• This is the first study that deeply integrates
both structure and content semantics based
on tree-structured recursive neural networks
for detecting rumors from microblog posts.

• We propose two variants of RvNN models
based on bottom-up and top-down tree struc-
tures to generate better integrated representa-
tions for a claim by capturing both structural
and textural properties signaling rumors.

• Our experiments based on real-world Twitter
datasets achieve superior improvements over
state-of-the-art baselines on both rumor clas-
sification and early detection tasks. We make
the source codes in our experiments publicly
accessible 2.

2 Related Work

Most previous automatic approaches for rumor de-
tection (Castillo et al., 2011; Yang et al., 2012; Liu

2https://github.com/majingCUHK/Rumor_
RvNN

https://github.com/majingCUHK/Rumor_RvNN
https://github.com/majingCUHK/Rumor_RvNN
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et al., 2015) intended to learn a supervised classi-
fier by utilizing a wide range of features crafted
from post contents, user profiles and propagation
patterns. Subsequent studies were then conducted
to engineer new features such as those represent-
ing rumor diffusion and cascades (Friggeri et al.,
2014; Hannak et al., 2014) characterized by com-
ments with links to debunking websites. Kwon
et al. (2013) introduced a time-series-fitting model
based on the volume of tweets over time. Ma et al.
(2015) extended their model with more chronolog-
ical social context features. These approaches typ-
ically require heavy preprocessing and feature en-
gineering.

Zhao et al. (2015) alleviated the engineering ef-
fort by using a set of regular expressions (such
as “really?”, “not true”, etc) to find questing and
denying tweets, but the approach was oversimpli-
fied and suffered from very low recall. Ma et al.
(2016) used recurrent neural networks (RNN)
to learn automatically the representations from
tweets content based on time series. Recently, they
studied to mutually reinforce stance detection and
rumor classification in a neural multi-task learn-
ing framework (Ma et al., 2018). However, the
approaches cannot embed features reflecting how
the posts are propagated and requires careful data
segmentation to prepare for time sequence.

Some kernel-based methods were exploited to
model the propagation structure. Wu et al. (2015)
proposed a hybrid SVM classifier which combines
a RBF kernel and a random-walk-based graph ker-
nel to capture both flat and propagation patterns
for detecting rumors on Sina Weibo. Ma et al.
(2017) used tree kernel to capture the similarity
of propagation trees by counting their similar sub-
structures in order to identify different types of ru-
mors on Twitter. Compared to their studies, our
model can learn the useful features via a more nat-
ural and general approach, i.e., the tree-structured
neural network, to jointly generate representations
from both structure and content.

RvNN has demonstrated state-of-the-art perfor-
mances in a variety of tasks, e.g., images seg-
mentation (Socher et al., 2011), phrase represen-
tation from word vectors (Socher et al., 2012),
and sentiment classification in sentences (Socher
et al., 2013). More recently, a deep RvNN was
proposed to model the compositionality in natu-
ral language for fine-grained sentiment classifica-
tion by stacking multiple recursive layers (Irsoy

and Cardie, 2014). In order to avoid gradient van-
ishing, some studies integrated Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) to RvNN (Zhu et al., 2015; Tai et al., 2015).
Mou et al. (2015) used a convolutional network
over tree structures for syntactic tree parsing of
natural language sentences.

3 Problem Statement

We define a Twitter rumor detection dataset as
a set of claims C = {C1, C2, · · · , C|C|}, where
each claim Ci corresponds to a source tweet ri
which consists of ideally all its relevant respon-
sive tweets in chronological order, i.e., Ci =
{ri, xi1, xi2, · · · , xim}where each xi∗ is a respon-
sive tweet of the root ri. Note that although the
tweets are notated sequentially, there are connec-
tions among them based on their reply or repost
relationships, which can form a propagation tree
structure (Wu et al., 2015; Ma et al., 2017) with ri
being the root node.

We formulate this task as a supervised classifi-
cation problem, which learns a classifier f from
labeled claims, that is f : Ci → Yi, where Yi takes
one of the four finer-grained classes: non-rumor,
false rumor, true rumor, and unverified rumor that
are introduced in the literature (Ma et al., 2017;
Zubiaga et al., 2016b).

An important issue of the tree structure is con-
cerned about the direction of edges, which can re-
sult in two different architectures of the model: 1)
a bottom-up tree; 2) a top-down tree, which are
defined as follows:

• Bottom-up tree takes the similar shape as
shown in Figure 1, where responsive nodes
always point to their responded nodes and
leaf nodes not having any response are laid
out at the furthest level. We represent a tree
as Ti = 〈Vi, Ei〉, where Vi = Ci which con-
sists of all relevant posts as nodes, and Ei de-
notes a set of all directed links, where for any
u, v ∈ Vi, u ← v exists if v responses to u.
This structure is similar to a citation network
where a response mimics a reference.

• Top-down tree naturally conforms to the di-
rection of information propagation, in which
a link u → v means the information flows
from u to v and v sees it and provides a re-
sponse to u. This structure reverses bottom-
up tree and simulates how information cas-
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Figure 2: A binarized sentence parse tree (left) and
its corresponding RvNN architecture (right).

cades from a source tweet, i.e., the root, to
all its receivers, i.e., the decedents, which is
similar as (Wu et al., 2015; Ma et al., 2017).

4 RvNN-based Rumor Detection

The core idea of our method is to strengthen the
high-level representation of tree nodes by the re-
cursion following the propagation structure over
different branches in the tree. For instance, the re-
sponsive nodes confirming or supporting a node
(e.g., “I agree”, “be right”, etc) can further rein-
force the stance of that node while denial or ques-
tioning responses (e.g., “disagree, “really?!) oth-
erwise weaken its stance. Compared to the kernel-
based method using propagation tree (Wu et al.,
2015; Ma et al., 2017), our method does not need
pairwise comparison among large number of sub-
trees, and can learn much stronger representation
of content following the response structure.

In this section, we will describe our extension
to the standard RvNN for modeling rumor detec-
tion based on the bottom-up and top-down archi-
tectures presented in Section 3.

4.1 Standard Recursive Neural Networks

RvNN is a type of tree-structured neural networks.
The original version of RvNN utilized binarized
sentence parse trees (Socher et al., 2012), in which
the representation associated with each node of
a parse tree is computed from its direct children.
The overall structure of the standard RvNN is il-
lustrated as the right side of Figure 2, correspond-
ing to the input parse tree at the left side.

Leaf nodes are the words in an input sen-
tence, each represented by a low-dimensional
word embedding. Non-leaf nodes are sentence
constituents, computed by recursion based on the
presentations of child nodes. Let p be the feature
vector of a parent node whose children are c1 and
c2, the representation of the parent is computed by
p = f(W ·[c1; c2]+b), where f(·) is the activation

function withW and b as parameters. This compu-
tation is done recursively over all tree nodes; the
learned hidden vectors of the nodes can then be
used for various classification tasks.

4.2 Bottom-up RvNN
The core idea of bottom-up model is to generate a
feature vector for each subtree by recursively visit-
ing every node from the leaves at the bottom to the
root at the top. In this way, the subtrees with sim-
ilar contexts, such as those subtrees having a de-
nial parent and a set of supportive children, will be
projected into the proximity in the representation
space. And thus such local rumor indicative fea-
tures are aggregated along different branches into
some global representation of the whole tree.

For this purpose, we make a natural extension
to the original RvNN. The overall structure of our
proposed bottom-up model is illustrated in Fig-
ure 3(b), taking a bottom-up tree (see Figure 3(a))
as input. Different from the standard RvNN, the
input of each node in the bottom-up model is a
post represented as a vector of words in the vocab-
ulary in terms of tfidf values. Here, every node
has an input vector, and the number of children of
nodes varies significantly3.

In rumor detection, long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent units (GRU) (Cho et al., 2014)
were used to learn textual representation, which
adopts memory units to store information over
long time steps (Ma et al., 2016). In this paper,
we choose to extend GRU as hidden unit to model
long-distance interactions over the tree nodes be-
cause it is more efficient due to fewer parameters.
Let S(j) denote the set of direct children of the
node j. The transition equations of node j in the
bottom-up model are formulated as follows:

x̃j = xjE

hS =
∑

s∈S(j)

hs

rj = σ (Wrx̃j + UrhS)

zj = σ (Wzx̃j + UzhS)

h̃j = tanh (Whx̃j + Uh(hS � rj))
hj = (1− zj)� hS + zj � h̃j

(1)

3In standard RvNN, since an input instance is the parse
tree of a sentence, only leaf nodes have input vector, each
node representing a word of the input sentence, and the non-
leaf nodes are constituents of the sentence, and thus the num-
ber of children of a node is limited.
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(a) Bottom-up/Top-down tree (b) Bottom-up RvNN model (c) Top-down RvNN model

Figure 3: A bottom-up/top-down propagation tree and the corresponding RvNN-based models. The
black-color and red-color edges differentiate the bottom-up and top-down tree in Figure 3(a).

where xj is the original input vector of node j,
E denotes the parameter matrix for transforming
this input post, x̃j is the transformed representa-
tion of j, [W∗, U∗] are the weight connections in-
side GRU, and hj and hs refer to the hidden state
of j and its s-th child. Thus hS denotes the sum
of the hidden state of all the children of j assum-
ing that all children are equally important to j. As
with the standard GRU, � denotes element-wise
multiplication; a reset gate rj determines how to
combine the current input x̃j with the memory of
children, and an update gate zj defines how much
memory from the children is cascaded into the cur-
rent node; and h̃j denotes the candidate activation
of the hidden state of the current node. Different
from the standard GRU unit, the gating vectors in
our variant of GRU are dependent on the states of
many child units, allowing our model to incorpo-
rate representations from different children.

After recursive aggregation from bottom to up,
the state of root node (i.e., source tweet) can be re-
gard as the representation of the whole tree which
is used for supervised classification. So, an output
layer is connected to the root node for predicting
the class of the tree using a softmax function:

ŷ = Softmax(Vh0 + b) (2)

where h0 is the learned hidden vector of root node;
V and b are the weights and bias in output layer.

4.3 Top-down RvNN
This model is designed to leverage the structure
of top-down tree to capture complex propagation
patterns for classifying rumorous claims, which is
shown in Figure 3(c). It models how the informa-

tion flows from source post to the current node.
The idea of this top-down approach is to generate
a strengthened feature vector for each post consid-
ering its propagation path, where rumor-indicative
features are aggregated along the propagation his-
tory in the path. For example, if current post agree
with its parent’s stance which denies the source
post, the denial stance from the root node down to
the current node on this path should be reinforced.
Due to different branches of any non-leaf node, the
top-down visit to its subtree nodes is also recur-
sive. However, the nature of top-down tree lends
this model different from the bottom-up one. The
representation of each node is computed by com-
bining its own input and its parent node instead of
its children nodes. This process proceeds recur-
sively from the root node to its children until all
leaf nodes are reached.

Suppose that the hidden state of a non-leaf node
can be passed synchronously to all its child nodes
without loss. Then the hidden state hj of a node
j can be computed by combining the hidden state
hP(j) of its parent node P(j) and its own input
vector xj . Therefore, the transition equations of
node j can be formulated as a standard GRU:

x̃j = xjE

rj = σ
(
Wrx̃j + UrhP(j)

)
zj = σ

(
Wzx̃j + UzhP(j)

)
h̃j = tanh

(
Whx̃j + Uh(hP(j) � rj)

)
hj = (1− zj)� hP(j) + zj � h̃j

(3)

Through the top-down recursion, the learned
representations are eventually embedded into the
hidden vector of all the leaf nodes. Since the num-
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ber of leaf nodes varies, the resulting vectors can-
not be directly fed into a fixed-size neural layer
for output. Therefore, we add a max-pooling layer
to take the maximum value of each dimension of
the vectors over all the leaf nodes. This can also
help capture the most appealing indicative features
from all the propagation paths.

Based on the pooling result, we finally use a
softmax function in the output layer to predict the
label of the tree:

ŷ = Softmax(Vh∞ + b) (4)

where h∞ is the pooling vector over all leaf nodes,
V and b are parameters in the output layer.

Although both of the two RvNN models aim
to capture the structural properties by recursively
visiting all nodes, we can conjecture that the top-
down model would be better. The hypothesis is
that in the bottom-up case the final output relies on
the representation of single root, and its informa-
tion loss can be larger than the top-down one since
in the top-down case the representations embed-
ded into all leaf nodes along different propagation
paths can be incorporated via pooling holistically.

4.4 Model Training

The model is trained to minimize the squared error
between the probability distributions of the predic-
tions and the ground truth:

L(y, ŷ) =

N∑
n=1

C∑
c=1

(yc − ŷc)2 + λ||θ||22 (5)

where yc is the ground truth and ŷc is the pre-
diction probability of a class, N is the number of
training claims, C is the number of classes, ||.||2 is
the L2 regularization term over all model parame-
ters θ, and λ is the trade-off coefficient.

During training, all the model parameters are
updated using efficient back-propagation through
structure (Goller and Kuchler, 1996; Socher et al.,
2013), and the optimization is gradient-based fol-
lowing the Ada-grad update rule (Duchi et al.,
2011) to speed up the convergence. We empiri-
cally initialize the model parameters with uniform
distribution and set the vocabulary size as 5,000,
the size of embedding and hidden units as 100. We
iterate over all the training examples in each epoch
and continue until the loss value converges or the
maximum epoch number is met.

5 Experiments and Results

5.1 Datasets

For experimental evaluation, we use two publicly
available Twitter datasets released by Ma et al.
(2017), namely Twitter15 and Twitter164, which
respectively contains 1,381 and 1,181 propagation
trees (see (Ma et al., 2017) for detailed statistics).
In each dataset, a group of wide spread source
tweets along with their propagation threads, i.e.,
replies and retweets, are provided in the form of
tree structure. Each tree is annotated with one
of the four class labels, i.e., non-rumor, false ru-
mor, true rumor and unverified rumor. We remove
the retweets from the trees since they do not pro-
vide any extra information or evidence content-
wise. We build two versions for each tree, one for
the bottom-up tree and the other for the top-down
tree, by flipping the edges’ direction.

5.2 Experimental Setup

We make comprehensive comparisons between
our models and some state-of-the-art baselines on
rumor classification and early detection tasks.

- DTR: Zhao et al. (2015) proposed a Decision-
Tree-based Ranking model to identify trending ru-
mors by searching for inquiry phrases.

- DTC: The information credibility model using
a Decision-Tree Classifier (Castillo et al., 2011)
based on manually engineering various statistical
features of the tweets.

- RFC: The Random Forest Classier using 3 fit-
ting parameters as temporal properties and a set of
handcrafted features on user, linguistic and struc-
tural properties (Kwon et al., 2013).

- SVM-TS: A linear SVM classifier that uses
time-series to model the variation of handcrafted
social context features (Ma et al., 2015).

- SVM-BOW: A naive baseline we built by rep-
resenting text content using bag-of-words and us-
ing linear SVM for rumor classification.

- SVM-TK and SVM-HK: SVM classifier uses
a Tree Kernel (Ma et al., 2017) and that uses a Hy-
brid Kernel (Wu et al., 2015), respectively, both of
which model propagation structures with kernels.

- GRU-RNN: A detection model based on re-
current neural networks (Ma et al., 2016) with
GRU units for learning rumor representations by
modeling sequential structure of relevant posts.

4https://www.dropbox.com/s/
7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0

https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
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(a) Twitter15 dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473
DTC 0.454 0.733 0.355 0.317 0.415
RFC 0.565 0.810 0.422 0.401 0.543
SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-BOW 0.548 0.564 0.524 0.582 0.512
SVM-HK 0.493 0.650 0.439 0.342 0.336
SVM-TK 0.667 0.619 0.669 0.772 0.645
GRU-RNN 0.641 0.684 0.634 0.688 0.571
BU-RvNN 0.708 0.695 0.728 0.759 0.653
TD-RvNN 0.723 0.682 0.758 0.821 0.654

(b) Twitter16 dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.414 0.394 0.273 0.630 0.344
DTC 0.465 0.643 0.393 0.419 0.403
RFC 0.585 0.752 0.415 0.547 0.563
SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-BOW 0.585 0.553 0.556 0.655 0.578
SVM-HK 0.511 0.648 0.434 0.473 0.451
SVM-TK 0.662 0.643 0.623 0.783 0.655
GRU-RNN 0.633 0.617 0.715 0.577 0.527
BU-RvNN 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.737 0.662 0.743 0.835 0.708

Table 1: Results of rumor detection. (NR: non-
rumor; FR: false rumor; TR: true rumor; UR: un-
verified rumor)

- BU-RvNN and TD-RvNN: Our bottom-up
and top-down RvNN models, respectively.

We implement DTC and RFC using Weka5,
SVM-based models using LibSVM6 and all
neural-network-based models with Theano7. We
conduct 5-fold cross-validation on the datasets and
use accuracy over all the four categories and F1
measure on each class to evaluate the performance
of models.

5.3 Rumor Classification Performance

As shown in Table 1, our proposed models ba-
sically yield much better performance than other
methods on both datasets via the modeling of in-
teraction structures of posts in the propagation.

It is observed that the performance of the 4
baselines in the first group based on handcrafted
features is obviously poor, varying between 0.409
and 0.585 in accuracy, indicating that they fail to
generalize due to the lack of capacity capturing
helpful features. Among these baselines, SVM-
TS and RFC perform relatively better because they

5www.cs.waikato.ac.nz/ml/weka
6www.csie.ntu.edu.tw/˜cjlin/libsvm
7deeplearning.net/software/theano

use additional temporal traits, but they are still
clearly worse than the models not relying on fea-
ture engineering. DTR uses a set of regular ex-
pressions indicative of stances. However, only
19.6% and 22.2% tweets in the two datasets con-
tain strings covered by these regular expressions,
rendering unsatisfactory result.

Among the two kernel methods that are based
on comparing propagation structures, we observe
that SVM-TK is much more effective than SVM-
HK. There are two reasons: 1) SVM-HK was
originally proposed and experimented on Sina
Weibo (Wu et al., 2015), which may not be gener-
alize well on Twitter. 2) SVM-HK loosely couples
two separate kernels: a RBF kernel based on hand-
crafted features, plus a random walk-based ker-
nel which relies on a set of pre-defined keywords
for jumping over the nodes probabilistically. This
under utilizes the propagation information due to
such oversimplified treatment of tree structure. In
contrast, SVM-TK is an integrated kernel and can
fully utilize the structure by comparing the trees
based on both textual and structural similarities.

It appears that using bag-of-words is already a
decent model evidenced as the fairly good perfor-
mance of SVM-BOW which is even better than
SVM-HK. This is because the features of SVM-
HK are handcrafted for binary classification (i.e.,
non-rumor vs rumor), ignoring the importance of
indicative words or units that benefit finer-grained
classification which can be captured more effec-
tively by SVM-BOW.

The sequential neural model GRU-RNN per-
forms slightly worse than SVM-TK, but much
worse than our recursive models. This is because
it is a special case of the recursive model where
each non-leaf node has only one child. It has to
rely on a linear chain as input, which missed out
valuable structural information. However, it does
learn high-level features from the post content via
hidden units of the neural model while SVM-TK
cannot which can only evaluates similarities based
on the overlapping words among subtrees. Our re-
cursive models are inherently tree-structured and
take advantages of representation learning follow-
ing the propagation structure, thus beats SVM-TK.

In the two recursive models, TD-RvNN outper-
forms BU-RvNN, which indicates that the bottom-
up model may suffer from larger information loss
than the top-down one. This verifies the hypothe-
sis we made in Section 4.3 that the pooling layer

www.cs.waikato.ac.nz/ml/weka
www.csie.ntu.edu.tw/~cjlin/libsvm
deeplearning.net/software/theano
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(a) Twitter15 (elapsed time) (b) Twitter16 (elapsed time) (c) Twitter15 (tweets count) (d) Twitter16 (tweets count)

Figure 4: Early rumor detection accuracy at different checkpoints in terms of elapsed time (tweets count).

Figure 5: A correctly detected false rumor at early stage by both of our models, where propagation paths
are marked with relevant stances. Note that edge direction is not shown as it applies to either case.

in the top-down model can effectively select im-
portant features embedded into the leaf nodes.

For only the non-rumor class, it seems that our
method does not perform so well as some feature-
engineering baselines. This can be explained by
the fact that these baselines are trained with ad-
ditional features such as user information (e.g.,
profile, verification status, etc) which may contain
clues for differentiating non-rumors from rumors.
Also, the responses to non-rumors are usually
much more diverse with little informative indi-
cation, making identification of non-rumors more
difficult based on content even with the structure.

5.4 Early Rumor Detection Performance

Detecting rumors at early state of propagation is
important so that interventions can be made in a
timely manner. We compared different methods
in term of different time delays measured by ei-
ther tweet count received or time elapsed since the
source tweet is posted. The performance is evalu-
ated by the accuracy obtained when we incremen-
tally add test data up to the check point given the
targeted time delay or tweets volume.

Figure 4 shows that the performance of our re-
cursive models climbs more rapidly and starts to
supersede the other models at the early stage. Al-
though all the methods are getting to their best per-

formance in the end, TD-RvNN and BU-RvNN
only need around 8 hours or about 90 tweets to
achieve the comparable performance of the best
baseline model, i.e., SVM-TK, which needs about
36 hours or around 300 posts, indicating superior
early detection performance of our method.

Figure 5 shows a sample tree at the early stage
of propagation that has been correctly classified as
a false rumor by both recursive models. We can
see that this false rumor demonstrates typical pat-
terns in subtrees and propagation paths indicative
of the falsehood, where a set of responses sup-
porting the parent posts that deny or question the
source post are captured by our bottom-up model.
Similarly, some patterns of propagation from the
root to leaf nodes like “support→deny→support”
are also seized by our top-down model. In com-
parison, sequential models may be confused be-
cause the supportive key terms such as “be right”,
“yeah”, “exactly!” dominate the responses, and
the SVM-TK may miss similar subtrees by just
comparing the surface words.

6 Conclusions and Future Work

We propose a bottom-up and a top-down tree-
structured model based on recursive neural net-
works for rumor detection on Twitter. The inher-
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ent nature of recursive models allows them using
propagation tree to guide the learning of represen-
tations from tweets content, such as embedding
various indicative signals hidden in the structure,
for better identifying rumors. Results on two pub-
lic Twitter datasets show that our method improves
rumor detection performance in very large mar-
gins as compared to state-of-the-art baselines.

In our future work, we plan to integrate other
types of information such as user properties into
the structured neural models to further enhance
representation learning and detect rumor spread-
ers at the same time. We also plan to use unsuper-
vised models for the task by exploiting structural
information.
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