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Abstract

Modeling derivational morphology to gen-
erate words with particular semantics is
useful in many text generation tasks, such
as machine translation or abstractive ques-
tion answering. In this work, we tackle the
task of derived word generation. That is,
given the word “run,” we attempt to gener-
ate the word “runner” for “someone who
runs.” We identify two key problems in
generating derived words from root words
and transformations: suffix ambiguity and
orthographic irregularity. We contribute a
novel aggregation model of derived word
generation that learns derivational transfor-
mations both as orthographic functions us-
ing sequence-to-sequence models and as
functions in distributional word embedding
space. Our best open-vocabulary model,
which can generate novel words, and our
best closed-vocabulary model, show 22%
and 37% relative error reductions over cur-
rent state-of-the-art systems on the same
dataset.

1 Introduction

The explicit modeling of morphology has been
shown to improve a number of tasks (Seeker and
Çetinoglu, 2015; Luong et al., 2013). In a large
number of the world’s languages, many words are
composed through morphological operations on
subword units. Some languages are rich in inflec-
tional morphology, characterized by syntactic trans-
formations like pluralization. Similarly, languages
like English are rich in derivational morphology,
where the semantics of words are composed from

∗These authors contributed equally; listed alphabetically.

Figure 1: Diagram depicting the flow of our aggregation
model. Two models generate a hypothesis according to or-
thogonal information; then one is chosen as the final model
generation. Here, the hypothesis from the distributional model
is chosen.

smaller parts. The AGENT derivational transforma-
tion, for example, answers the question, what is the
word for ‘someone who runs’? with the answer, a
runner.1 Here, AGENT is spelled out as suffixing
-ner onto the root verb run.

We tackle the task of derived word generation.
In this task, a root word x and a derivational trans-
formation t are given to the learner. The learner’s
job is to produce the result of the transformation
on the root word, called the derived word y. Table
1 gives examples of these transformations.

Previous approaches to derived word genera-
tion model the task as a character-level sequence-
to-sequence (seq2seq) problem (Cotterell et al.,
2017b). The letters from the root word and some
encoding of the transformation are given as input to
a neural encoder, and the decoder is trained to pro-
duce the derived word, one letter at a time. We iden-
tify the following problems with these approaches:

First, because these models are unconstrained,
they can generate sequences of characters that do

1We use the verb run as a demonstrative example; the
transformation can be applied to most verbs.
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x t y

wise ADVERB → wisely
simulate RESULT → simulation
approve RESULT → approval
overstate RESULT → overstatement

yodel AGENT → yodeler
survive AGENT → survivor
intense NOMINAL → intensity

effective NOMINAL → effectiveness
pessimistic NOMINAL → pessimism

Table 1: The goal of derived word generation is to produce
the derived word, y, given both the root word, x, and the
transformation t, as demonstrated here with examples from
the dataset.

not form actual words. We argue that requiring the
model to generate a known word is a reasonable
constraint in the special case of English derivational
morphology, and doing so avoids a large number
of common errors.

Second, sequence-based models can only gen-
eralize string manipulations (such as “add -ment”)
if they appear frequently in the training data. Be-
cause of this, they are unable to generate derived
words that do not follow typical patterns, such as
generating truth as the nominative derivation of
true. We propose to learn a function for each trans-
formation in a low dimensional vector space that
corresponds to mapping from representations of
the root word to the derived word. This eliminates
the reliance on orthographic information, unlike re-
lated approaches to distributional semantics, which
operate at the suffix level (Gupta et al., 2017).

We contribute an aggregation model of derived
word generation that produces hypotheses inde-
pendently from two separate learned models: one
from a seq2seq model with only orthographic in-
formation, and one from a feed-forward network
using only distributional semantic information in
the form of pretrained word vectors. The model
learns to choose between the hypotheses accord-
ing to the relative confidence of each. This system
can be interpreted as learning to decide between
positing an orthographically regular form or a se-
mantically salient word. See Figure 1 for a diagram
of our model.

We show that this model helps with two open
problems with current state-of-the-art seq2seq de-
rived word generation systems, suffix ambiguity
and orthographic irregularity (Section 2). We also

improve the accuracy of seq2seq-only derived word
systems by adding external information through
constrained decoding and hypothesis rescoring.
These methods provide orthogonal gains to our
main contribution.

We evaluate models in two categories: open vo-
cabulary models that can generate novel words
unattested in a preset vocabulary, and closed-
vocabulary models, which cannot. Our best open-
vocabulary and closed-vocabulary models demon-
strate 22% and 37% relative error reductions over
the current state of the art.

2 Background: Derivational Morphology

Derivational transformations generate novel words
that are semantically composed from the root word
and the transformation. We identify two unsolved
problems in derived word transformation, each of
which we address in Sections 3 and 4.

First, many plausible choices of suffix for a sin-
gle pair of root word and transformation. For ex-
ample, for the verb ground, the RESULT transfor-
mation could plausibly take as many forms as2

(ground, RESULT)→ grounding

(ground, RESULT)→ *groundation

(ground, RESULT)→ *groundment

(ground, RESULT)→ *groundal

However, only one is correct, even though each
suffix appears often in the RESULT transformation
of other words. We will refer to this problem as
“suffix ambiguity.”

Second, many derived words seem to lack a gen-
eralizable orthographic relationship to their root
words. For example, the RESULT of the verb speak
is speech. It is unlikely, given an orthographically
similar verb creak, that the RESULT be creech in-
stead of, say, creaking. Seq2seq models must grap-
ple with the problem of derived words that are
the result of unlikely or potentially unseen string
transformations. We refer to this problem as “or-
thographic irregularity.”

3 Sequence Models and Corpus
Knowledge

In this section, we introduce the prior state-of-the-
art model, which serves as our baseline system.
Then we build on top of this system by incorpo-
rating a dictionary constraint and rescoring the

2The * indicates a non-word.
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model’s hypotheses with token frequency informa-
tion to address the suffix ambiguity problem.

3.1 Baseline Architecture

We begin by formalizing the problem and defin-
ing some notation. For source word x =
x1, x2, . . . xm, a derivational transformation t, and
target word y = y1, y2, . . . yn, our goal is to learn
some function from the pair (x, t) to y. Here, xi
and yj are the ith and jth characters of the input
strings x and y. We will sometimes use x1:i to
denote x1, x2, . . . xi, and similarly for y1:j .

The current state-of-the-art model for derived-
form generation approaches this problem by learn-
ing a character-level encoder-decoder neural net-
work with an attention mechanism (Cotterell et al.,
2017b; Bahdanau et al., 2014).

The input to the bidirectional LSTM en-
coder (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005) is the sequence #,
x1, x2, . . . xm, #, t, where # is a special symbol to
denote the start and end of a word, and the encoding
of the derivational transformation t is concatenated
to the input characters. The model is trained to
minimize the cross entropy of the training data. We
refer to our reimplementation of this model as SEQ.

For a more detailed treatment of neural sequence-
to-sequence models with attention, we direct the
reader to Luong et al. (2015).

3.2 Dictionary Constraint

The suffix ambiguity problem poses challenges for
models which rely exclusively on input charac-
ters for information. As previously demonstrated,
words derived via the same transformation may
take different suffixes, and it is hard to select among
them based on character information alone. Here,
we describe a process for restricting our inference
procedure to only generate known English words,
which we call a dictionary constraint. We believe
that for English morphology, a large enough cor-
pus will contain the vast majority of derived forms,
so while this approach is somewhat restricting, it
removes a significant amount of ambiguity from
the problem.

To describe how we implemented this dictionary
constraint, it is useful first to discuss how decoding
in a seq2seq model is equivalent to solving a short-
est path problem. The notation is specific to our
model, but the argument is applicable to seq2seq
models in general.

The goal of decoding is to find the most probable
structure ŷ conditioned on some observation x and
transformation t. That is, the problem is to solve

ŷ = argmax
y∈Y

p(y | x, t) (1)

= argmin
y∈Y
− log p(y | x, t) (2)

where Y is the set of valid structures. Sequential
models have a natural ordering y = y1, y2, . . . yn
over which − log p(y | x, t) can be decomposed

− log p(y | x, t) =
n∑

t=1

− log p(yt | y1:t−1,x, t)

(3)
Solving Equation 2 can be viewed as solving a
shortest path problem from a special starting state
to a special ending state via some path which
uniquely represents y. Each vertex in the graph
represents some sequence y1:i, and the weight of
the edge from y1:i to y1:i+1 is given by

− log p(yi+1 | y1:i−1,x, t) (4)

The weight of the path from the start state to the end
state via the unique path that describes y is exactly
equal to Equation 3. When the vocabulary size is
too large, the exact shortest path is intractable, and
approximate search methods, such as beam search,
are used instead.

In derived word generation, Y is an infinite set
of strings. Since Y is unrestricted, almost all of
the strings in Y are not valid words. Given a dic-
tionary YD, the search space is restricted to only
those words in the dictionary by searching over the
trie induced from YD, which is a subgraph of the
unrestricted graph. By limiting the search space
to YD, the decoder is guaranteed to generate some
known word. Models which use this dictionary-
constrained inference procedure will be labeled
with +DICT. Algorithm 1 has the pseudocode for
our decoding procedure.

We discuss specific details of the search pro-
cedure and interesting observations of the search
space in Section 6. Section 5.2 describes how we
obtained the dictionary of valid words.

3.3 Word Frequency Knowledge through
Rescoring

We also consider the inclusion of explicit word
frequency information to help solve suffix ambi-
guity, using the intuition that “real” derived words



1941

are likely to be frequently attested. This permits a
high-recall, potentially noisy dictionary.

We are motivated by very high top-10 accu-
racy compared to top-1 accuracy, even among
dictionary-constrained models. By rescoring the
hypotheses of a model using word frequency (a
word-global signal) as a feature, attempt to recover
a portion of this top-10 accuracy.

When a model has been trained, we query it for
its top-10 most likely hypotheses. The union of all
hypotheses for a subset of the training observations
forms the training set for a classifier that learns
to predict whether a hypothesis generated by the
model is correct. Each hypothesis is labelled with
its correctness, a value in {±1}. We train a sim-
ple combination of two scores: the seq2seq model
score for the hypothesis, and the log of the word
frequency of the hypothesis.

To permit a nonlinear combination of word fre-
quency and model score, we train a small multi-
layer perceptron with the model score and the fre-
quency of a derived word hypothesis as features.

At testing time, the 10 hypotheses generated by
a single seq2seq model for a single observation are
rescored. The new model top-1 hypothesis, then,
is the argmax over the 10 hypotheses according to
the rescorer. In this way, we are able to incorporate
word-global information, e.g. word frequency, that
is ill-suited for incorporation at each character pre-
diction step of the seq2seq model. We label models
that are rescored in this way +FREQ.

4 Distributional Models

So far, we have presented models that learn deriva-
tional transformations as orthographic operations.
Such models struggle by construction with the or-
thographic irregularity problem, as they are trained
to generalize orthographic information. However,
the semantic relationships between root words and
derived words are the same even when the orthog-
raphy is dissimilar. It is salient, for example, that
irregular word speech is related to its root speak in
about the same way as how exploration is related
to the word explore.

We model distributional transformations as func-
tions in dense distributional word embedding
spaces, crucially learning a function per deriva-
tional transformation, not per suffix pair. In this
way, we aim to explicitly model the semantic trans-
formation, not the othographic information.

4.1 Feed-forward derivational
transformations

For all source words x and all target words y, we
look up static distributional embeddings vx, vy ∈
Rd. For each derivational transformation t, we
learn a function ft : Rd → Rd that maps vx to vy.
ft is parametrized as two-layer perceptron, trained
using a squared loss,

L = bTb (5)

b = ft(vx)− vy (6)

We perform inference by nearest neighbor search
in the embedding space. This inference strategy
requires a subset of strings for our embedding dic-
tionary, YV .

Upon receiving (x, t) at test time, we compute
ft(vx) and find the most similar embeddings in YV .
Specifically, we find the top-k most similar embed-
dings, and take the most similar derived word that
starts with the same 4 letters as the root word, and
is not identical to it. This heuristic filters out highly
implausible hypotheses.

We use the single-word subset of the Google
News vectors (Mikolov et al., 2013) as YV , so the
size of the vocabulary is 929k words.

4.2 SEQ and DIST Aggregation
The seq2seq and distributional models we have pre-
sented learn with disjoint information to solve sepa-
rate problems. We leverage this intuition to build a
model that chooses, for each observation, whether
to generate according to orthographic information
via the SEQ model, or produce a potentially irregu-
lar form via the DIST model.

To train this model, we use a held-out portion of
the training set, and filter it to only observations for
which exactly one of the two models produces the
correct derived form. Finally, we make the strong
assumption that the probability of a derived form
being generated correctly according to 1 model
as opposed to the other is dependent only on the
unnormalized model score from each. We model
this as a logistic regression (t is omitted for clarity):

P (·|yD,yS,x) =

softmax(We [DIST(yD|x); SEQ(yS|x)] + be)

where We and be are learned parameters, yD and
yS are the hypotheses of the distributional and
seq2seq models, and DIST(·) and SEQ(·) are the
models’ likelihood functions. We denote this ag-
gregate AGGR in our results.
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5 Datasets

In this section we describe the derivational mor-
phology dataset used in our experiments and how
we collected the dictionary and token frequencies
used in the dictionary constraint and rescorer.

5.1 Derivational Morphology

In our experiments, we use the derived word gen-
eration derivational morphology dataset released
in Cotterell et al. (2017b). The dataset, derived
from NomBank (Meyers et al., 2004) , consists of
4,222 training, 905 validation, and 905 test triples
of the form (x, t,y). The transformations are from
the following categories: ADVERB (ADJ→ ADV),
RESULT (V→ N), AGENT (V→ N), and NOMI-
NAL (ADJ→ N). Examples from the dataset can
be found in Table 1.

5.2 Dictionary and Token Frequency
Statistics

The dictionary and token frequency statistics used
in the dictionary constraint and frequency rerank-
ing come from the Google Books NGram corpus
(Michel et al., 2011). The unigram frequency
counts were aggregated across years, and any to-
kens which appear fewer than approximately 2,000
times, do not end in a known possible suffix, or
contain a character outside of our vocabulary were
removed.

The frequency threshold was determined using
development data, optimizing for high recall. We
collect a set of known suffixes from the training
data by removing the longest common prefix be-
tween the source and target words from the target
word. The result is a dictionary with frequency
information for around 360k words, which covers
98% of the target words in the training data.3

6 Inference Procedure Discussion

In many sequence models where the vocabulary
size is large, exact inference by finding the true
shortest path in the graph discussed in Section 3.2
is intractable. As a result, approximate inference
techniques such as beam search are often used, or
the size of the search space is reduced, for exam-
ple, by using a Markov assumption. We, however,
observed that exact inference via a shortest path
algorithm is not only tractable in our model, but

3 The remaining 2% is mostly words with hyphens or
mistakes in the dataset.

Method Accuracy Avg. #States

GREEDY 75.9 11.8
BEAM 76.2 101.2

SHORTEST 76.2 11.8

DICT+GREEDY 77.2 11.7
DICT+BEAM 82.6 91.2

DICT+SHORTEST 82.6 12.4

Table 2: The average accuracies and number of states explored
in the search graph of 30 runs of the SEQ model with various
search procedures. The BEAM models use a beam size of 10.

only slightly more expensive than greedy search
and significantly less expensive than beam search.

To quantify this claim, we measured the ac-
curacy and number of states explored by greedy
search, beam search, and shortest path with and
without a dictionary constraint on the development
data. Table 2 shows the results averaged over 30
runs. As expected, beam search and shortest path
have higher accuracies than greedy search and ex-
plore more of the search space. Surprisingly, beam
search and shortest path have nearly identical ac-
curacies, but shortest path explores significantly
fewer hypotheses.

At least two factors contribute to the tractability
of exact search in our model. First, our character-
level sequence model has a vocabulary size of 63,
which is significantly smaller than token-level mod-
els, in which a vocabulary of 50k words is not un-
common. The search space of sequence models is
dependent upon the size of the vocabulary, so the
model’s search space is dramatically smaller than
for a token-level model.

Second, the inherent structure of the task makes
it easy to eliminate large subgraphs of the search
space. The first several characters of the input word
and output word are almost always the same, so
the model assigns very low probability to any se-
quence with different starting characters than the
input. Then, the rest of the search procedure is
dedicated to deciding between suffixes. Any suffix
which does not appear frequently in the training
data receives a low score, leaving the search to de-
cide between a handful of possible options. The
result is that the learned probability distribution is
very spiked; it puts very high probability on just
a few output sequences. It is empirically true that
the top few most probable sequences have signif-
icantly higher scores than the next most probable
sequences, which supports this hypothesis.

In our subsequent experiments, we decode using
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Algorithm 1 The decoding procedure uses a
shortest-path algorithm to find the most probable
output sequence. The dictionary constraint is (op-
tionally) implemented on line 9 by only considering
prefixes that are contained in some trie T .

1: procedure DECODE(x, t, V , T )
2: H ← Heap()
3: H .insert(0, #)
4: while H is not empty do
5: y← H .remove()
6: if y is a complete word then return y

7: for y ∈ V do
8: y′ ← y + y
9: if y′ ∈ T then

10: s← FORWARD(x, t,y′)
11: H .insert(s, y′)

exact inference by running a shortest path algo-
rithm (see Algorithm 1). For reranking models,
instead of typically using a beam of size k, we use
the top k most probable sequences.

7 Results

In all of our experiments, we use the training, de-
velopment, and testing splits provided by Cotterell
et al. (2017b) and average over 30 random restarts.
Table 3 displays the accuracies and average edit
distances on the test set of each of the systems pre-
sented in this work and the state-of-the-art model
from Cotterell et al. (2017b).

First, we observed that SEQ outperforms the re-
sults reported in Cotterell et al. (2017b) by a large
margin, despite the fact that the model architectures
are the same. We attribute this difference to better
hyperparameter settings and improved learning rate
annealing.

Then, it is clear that the accuracy of the distri-
butional model, DIST, is significantly lower than
any seq2seq model. We believe the orthography-
informed models perform better because most ob-
servations in the dataset are orthographically regu-
lar, providing low-hanging fruit.

Open-vocabulary models Our open-vocabulary
aggregation model AGGR improves performance
by 3.8 points accuracy over SEQ, indicating that
the sequence models and the distributional model
are contributing complementary signals. AGGR

is an open-vocabulary model like Cotterell et al.
(2017b) and improves upon it by 6.3 points, making
it our best comparable model. We provide an in-

Model Accuracy Edit

Cotterell et al. (2017b) 71.7 0.97

DIST 54.9 3.23
SEQ 74.2 0.88

AGGR 78.0 0.83
SEQ+FREQ 79.3 0.71

DUAL+FREQ 82.0 0.64

SEQ+DICT 80.4 0.72
AGGR+DICT 81.0 0.78

SEQ+FREQ+DICT 81.2 0.71
AGGR+FREQ+DICT 82.4 0.67

Table 3: The accuracies and edit distances of the models
presented in this paper and prior work. For edit distance,
lower is better. The dictionary-constrained models are on the
lower half of the table.

depth analysis of the strengths of SEQ and DIST in
Section 7.1.

Closed-vocabulary models We now consider
closed-vocabulary models that improve upon the
seq2seq model in AGGR. First, we see that re-
stricting the decoder to only generate known words
is extremely useful, with SEQ+DICT improving
over SEQ by 6.2 points. Qualitatively, we note
that this constraint helps solve the suffix ambiguity
problem, since orthographically plausible incorrect
hypotheses are pruned as non-words. See Table 6
for examples of this phenomenon. Additionally,
we observe that the dictionary-constrained model
outperforms the unconstrained model according to
top-10 accuracy (see Table 5).

Rescoring (+FREQ) provides further improve-
ment of 0.8 points, showing that the decoding dic-
tionary constraint provides a higher-quality beam
that still has room for top-1 improvement. All to-
gether, AGGR+FREQ+DICT provides a 4.4 point
improvement over the best open-vocabulary model,
AGGR. This shows the disambiguating power of
assuming a closed vocabulary.

Edit Distance One interesting side effect of the
dictionary constraint appears when comparing
AGGR+FREQ with and without the dictionary con-
straint. Although the accuracy of the dictionary-
constrained model is better, the average edit dis-
tance is worse. The unconstrained model is free
to put invalid words which are orthographically
similar to the target word in its top-k, however the
constrained model can only choose valid words.
This means it is easier for the unconstrained model
to generate words which have a low edit distance
to the ground truth, whereas the constrained model
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Cotterell et al.
(2017b)

AGGR
AGGR+FREQ

+DICT

acc edit acc edit acc edit

NOMINAL 35.1 2.67 68.0 1.32 62.1 1.40
RESULT 52.9 1.86 59.1 1.83 69.7 1.29
AGENT 65.6 0.78 73.5 0.65 79.1 0.57

ADVERB 93.3 0.18 94.0 0.18 95.0 0.22

Table 4: The accuracies and edit distances of our best
open-vocabulary and closed-vocabulary models, AGGR and
AGGR+FREQ+DICT compared to prior work, evaluated at the
transformation level. For edit distance, lower is better.

can only do that if such a word exists. The result is
a more accurate, yet more orthographically diverse,
set of hypotheses.

Results by Transformation Next, we compare
our best open vocabulary and closed vocabulary
models to previous work across each derivational
transformation. These results are in Table 4.

The largest improvement over the baseline sys-
tem is for NOMINAL transformations, in which the
AGGR has a 49% reduction in error. We attribute
most of this gain to the difficulty of this particular
transformation. NOMINAL is challenging because
there are several plausible endings (e.g. -ity, -ness,
-ence) which occur at roughly the same rate. Addi-
tionally, NOMINAL examples are the least frequent
transformation in the dataset, so it is challenging
for a sequential model to learn to generalize. The
distributional model, which does not rely on suffix
information, does not have this same weakness, so
the aggregation AGGR model has better results.

The performance of AGGR+FREQ+DICT is
worse than AGGR, however. This is surprising
because, in all other transformations, adding dic-
tionary information improves the accuracies. We
believe this is due to the ambiguity of the ground
truth: Many root words have seemingly multi-
ple plausible nominal transformations, such as
rigid → {rigidness, rigidity} and equivalent →
{equivalence, equivalency}. The dictionary con-
straint produces a better set of hypotheses to
rescore, as demonstrated in Table 5. Therefore,
the dictionary-constrained model is likely to have
more of these ambiguous cases, which makes the
task more difficult.

7.1 Strengths of SEQ and DIST

In this subsection we explore why AGGR improves
consistently over SEQ even though it maintains an
open vocabulary. We have argued that DIST is
able to correctly produce derived words that are

Cotterell et al.
(2017b)

SEQ SEQ+DICT

top-10-acc top-10-acc top-10-acc

NOMINAL 70.2 73.7 87.5
RESULT 72.6 79.9 90.4
AGENT 82.2 88.4 91.6

ADVERB 96.5 96.9 96.9

Table 5: The accuracies of the top-10 best outputs for the SEQ,
SEQ+DICT, and prior work demonstrate that the dictionary
constraint significantly improves the overall candidate quality.

Figure 2: Aggregating across 30 random restarts, we tallied
when SEQ and DIST correctly produced derived forms of each
suffix. The y-axis shows the logarithm of the difference, per
suffix, between the tally for DIST and the tally for SEQ. On
the x-axis is the logarithm of the frequency of derived words
with each suffix in the training data. A linear regression line is
plotted to show the relationship between log suffix frequency
and log difference in correct predictions. Suffixes that differ
only by the first letter, as with -ger and -er, have been merged
and represented by the more frequent of the two.

orthographically irregular or infrequent in the train-
ing data. Figure 2 quantifies this phenomenon,
analyzing the difference in accuracy between the
two models, and plotting this in relationship to the
frequency of the suffix in the training data. The
plot shows that SEQ excels at generating derived
words ending in -ly, -ion, and other suffixes that
appeared frequently in the training data. DIST’s
improvements over SEQ are generally much less
frequent in the training data, or as in the case of
-ment, are less frequent than other suffixes for the
same transformation (like -ion.) By producing de-
rived words whose suffixes show up rarely in the
training data, DIST helps solve the orthographic
irregularity problem.

8 Prior Work

There has been much work on the related task of
inflected word generation (Durrett and DeNero,
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x t DIST SEQ AGGR AGGR+DICT

approve RESULT approval approvation approval approval
bankrupt NOMINAL bankruptcy bankruption bankruptcy bankruptcy

irretrievable ADVERB irreparably irretrievably irretrievably irretrievably
connect RESULT connectivity connection connection connection

stroll AGENT strolls stroller stroller stroller
emigrate SUBJECT emigre emigrator emigrator emigrant

ubiquitous NOMINAL ubiquity ubiquit ubiquit ubiquity
hinder AGENT hinderer hinderer hinderer hinderer
vacant NOMINAL vacance vacance vacance vacance

Table 6: Sample output from a selection of models. The words in bold mark the correct derivations. “Hindrance” and “vacancy”
are the expected derived words for the last two rows.

2013; Rastogi et al., 2016; Hulden et al., 2014). It is
a structurally similar task to ours, but does not have
the same difficulty of challenges (Cotterell et al.,
2017a,b), which we have addressed in our work.
The paradigm completion for derivational morphol-
ogy dataset we use in this work was introduced in
Cotterell et al. (2017b). They apply the model that
won the 2016 SIGMORPHON shared task on in-
flectional morphology to derivational morphology
(Kann and Schütze, 2016; Cotterell et al., 2016).
We use this as our baseline.

Our implementation of the dictionary constraint
is an example of a special constraint which can
be directly incorporated into the inference algo-
rithm at little additional cost. Roth and Yih (2004,
2007) propose a general inference procedure that
naturally incorporates constraints through recasting
inference as solving an integer linear program.

Beam or hypothesis rescoring to incorporate an
expensive or non-decomposable signal into search
has a history in machine translation (Huang and
Chiang, 2007). In inflectional morphology, Nico-
lai et al. (2015) use this idea to rerank hypothe-
ses using orthographic features and Faruqui et al.
(2016) use a character-level language model. Our
approach is similar to Faruqui et al. (2016) in that
we use statistics from a raw corpus, but at the token
level.

There have been several attempts to use distri-
butional information in morphological generation
and analysis. Soricut and Och (2015) collect pairs
of words related by any morphological change in
an unsupervised manner, then select a vector off-
set which best explains their observations. There
has been subsequent work exploring the vector
offset method, finding it unsuccessful in captur-

ing derivational transformations (Gladkova et al.,
2016). However, we use more expressive, non-
linear functions to model derivational transforma-
tions and report positive results. Gupta et al. (2017)
then learn a linear transformation per orthographic
rule to solve a word analogy task. Our distribu-
tional model learns a function per derivational trans-
formation, not per orthographic rule, which allows
it to generalize to unseen orthography.

9 Implementation Details

Our models are implemented in Python using the
DyNet deep learning library (Neubig et al., 2017).
The code is freely available for download.4

Sequence Model The sequence-to-sequence
model uses character embeddings of size 20, which
are shared across the encoder and decoder, with
a vocabulary size of 63. The hidden states of the
LSTMs are of size 40.

For training, we use Adam with an initial learn-
ing rate of 0.005, a batch size of 5, and train for a
maximum of 30 epochs. If after one epoch of the
training data, the loss on the validation set does not
decrease, we anneal the learning rate by half and
revert to the previous best model.

During decoding, we find the top 1 most prob-
able sequence as discussed in Section 6 unless
rescoring is used, in which we use the top 10.

Rescorer The rescorer is a 1-hidden-layer per-
ceptron with a tanh nonlinearity and 4 hidden
units. It is trained for a maximum of 5 epochs.

Distributional Model The DIST model is a 1-
hidden-layer perceptron with a tanh nonlinearity

4https://github.com/danieldeutsch/
acl2018

https://github.com/danieldeutsch/acl2018
https://github.com/danieldeutsch/acl2018
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and 100 hidden units. It is trained for a maximum
of 25 epochs.

10 Conclusion

In this work, we present a novel aggregation model
for derived word generation. This model learns to
choose between the predictions of orthographically-
and distributionally-informed models. This amelio-
rates suffix ambiguity and orthographic irregularity,
the salient problems of the generation task. Concur-
rently, we show that derivational transformations
can be usefully modeled as nonlinear functions on
distributional word embeddings. The distributional
and orthographic models aggregated contribute or-
thogonal information to the aggregate, as shown
by substantial improvements over state-of-the-art
results, and qualitative analysis. Two ways of incor-
porating corpus knowledge – constrained decoding
and rescoring – demonstrate further improvements
to our main contribution.
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