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Abstract

A DAG automaton is a formal device for
manipulating graphs. By augmenting a
DAG automaton with transduction rules,
a DAG transducer has potential applica-
tions in fundamental NLP tasks. In this
paper, we propose a novel DAG transducer
to perform graph-to-program transforma-
tion. The target structure of our transducer
is a program licensed by a declarative pro-
gramming language rather than linguis-
tic structures. By executing such a pro-
gram, we can easily get a surface string.
Our transducer is designed especially for
natural language generation (NLG) from
type-logical semantic graphs. Taking Ele-
mentary Dependency Structures, a format
of English Resource Semantics, as input,
our NLG system achieves a BLEU-4 score
of 68.07. This remarkable result demon-
strates the feasibility of applying a DAG
transducer to resolve NLG, as well as the
effectiveness of our design.

1 Introduction

The recent years have seen an increased interest as
well as rapid progress in semantic parsing and sur-
face realization based on graph-structured seman-
tic representations, e.g. Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013), Ele-
mentary Dependency Structure (EDS; Oepen and
Lønning, 2006) and Depedendency-based Min-
imal Recursion Semantics (DMRS; Copestake,
2009). Still underexploited is a formal frame-
work for manipulating graphs that parallels au-
tomata, tranducers or formal grammars for strings
and trees. Two such formalisms have recently
been proposed and applied for NLP. One is graph
grammar, e.g. Hyperedge Replacement Gram-

mar (HRG; Ehrig et al., 1999). The other is
DAG automata, originally studied by Kamimura
and Slutzki (1982) and extended by Chiang et al.
(2018). In this paper, we study DAG transducers in
depth, with the goal of building accurate, efficient
yet robust natural language generation (NLG) sys-
tems.

The meaning representation studied in this work
is what we call type-logical semantic graphs, i.e.
semantic graphs grounded under type-logical se-
mantics (Carpenter, 1997), one dominant theoreti-
cal framework for modeling natural language se-
mantics. In this framework, adjuncts, such as
adjective and adverbal phrases, are analyzed as
(higher-order) functors, the function of which is to
consume complex arguments (Kratzer and Heim,
1998). In the same spirit, generalized quanti-
fiers, prepositions and function words in many lan-
guages other than English are also analyzed as
higher-order functions. Accordingly, all the lin-
guistic elements are treated as roots in type-logical
semantic graphs, such as EDS and DMRS. This
makes the typological structure quite flat rather
than hierachical, which is an essential distinction
between natural language semantics and syntax.

To the best of our knowledge, the only exist-
ing DAG transducer for NLG is the one proposed
by Quernheim and Knight (2012). Quernheim and
Knight introduced a DAG-to-tree transducer that
can be applied to AMR-to-text generation. This
transducer is designed to handle hierarchical struc-
tures with limited reentrencies, and it is unsuitable
for meaning graphs transformed from type-logical
semantics. Furthermore, Quernheim and Knight
did not describe how to acquire graph recognition
and transduction rules from linguistic data, and re-
ported no result of practical generation. It is still
unknown to what extent a DAG transducer suits
realistic NLG.

The design for string and tree transducers
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(Comon et al., 1997) focuses on not only the logic
of the computation for a new data structure, but
also the corresponding control flow. This is very
similar the imperative programming paradigm:
implementing algorithms with exact details in ex-
plicit steps. This design makes it very diffi-
cult to transform a type-logical semantic graph
into a string, due to the fact their internal struc-
tures are highly diverse. We borrow ideas from
declarative programming, another programming
paradigm, which describes what a program must
accomplish, rather than how to accomplish it. We
propose a novel DAG transducer to perform graph-
to-program transformation (§3). The input of our
transducer is a semantic graph, while the output is
a program licensed by a declarative programming
language rather than linguistic structures. By exe-
cuting such a program, we can easily get a surface
string. This idea can be extended to other types of
linguistic structures, e.g. syntactic trees or seman-
tic representations of another language.

We conduct experiments on richly detailed se-
mantic annotations licensed by English Resource
Grammar (ERG; Flickinger, 2000). We introduce
a principled method to derive transduction rules
from DeepBank (Flickinger et al., 2012). Further-
more, we introduce a fine-to-coarse strategy to en-
sure that at least one sentence is generated for any
input graph. Taking EDS graphs, a variable-free
ERS format, as input, our NLG system achieves
a BLEU-4 score of 68.07. On average, it pro-
duces more than 5 sentences in a second on an
x86 64 GNU/Linux platform with two Intel Xeon
E5-2620 CPUs. Since the data for experiments
is newswire data, i.e. WSJ sentences from PTB
(Marcus et al., 1993), the input graphs are quite
large on average. The remarkable accuracy, effi-
ciency and robustness demonstrate the feasibility
of applying a DAG transducer to resolve NLG, as
well as the effectiveness of our transducer design.

2 Previous Work and Challenges

2.1 Preliminaries

A node-labeled simple graph over alphabet Σ is
a triple G = (V,E, ℓ), where V is a finite set of
nodes, E ⊆ V × V is an finite set of edges and
ℓ : V → Σ is a labeling function. For a node
v ∈ V , sets of its incoming and outgoing edges
are denoted by in(v) and out(v) respectively. For
an edge e ∈ E, its source node and target node are
denoted by src(e) and tar(e) respectively. Gen-

erally speaking, a DAG is a directed acyclic sim-
ple graph. Different from trees, a DAG allows
nodes to have multiple incoming edges. In this pa-
per, we only consider DAGs that are unordered,
node-labeled, multi-rooted1 and connected.

Conceptual graphs, including AMR and EDS,
are both node-labeled and edge-labeled. It seems
that without edge labels, a DAG is inadequate, but
this problem can be solved easily by using the
strategies introduced in (Chiang et al., 2018). Take
a labeled edge proper q

BV−→ named for exam-
ple2. We can represent the same information by
replacing it with two unlabeled edges and a new
labeled node: proper q→ BV→ named.

2.2 Previous Work
DAG automata are the core engines of graph trans-
ducers (Bohnet and Wanner, 2010; Quernheim and
Knight, 2012). In this work, we adopt Chiang et al.
(2018)’s design and define a weighted DAG au-
tomaton as a tuple M = ⟨Σ, Q, δ,K⟩:

• Σ is an alphabet of node labels.

• Q is a finite set of states.

• (K,⊕,⊗, 0, 1) is a semiring of weights.

• δ : Θ → K\{0} is a weight function that
assigns nonzero weights to a finite transition
set Θ. Every transition t ∈ Θ is of the form

{q1, · · · , qm}
σ−→ {r1, · · · , rn}

where qi and rj are states in Q. A transition t
getsm states on the incoming edges of a node
and puts n states on the outgoing edges. A
transition that does not belong to Θ recieves
a weight of zero.

A run ofM on a DAGD = ⟨V,E, ℓ⟩ is an edge
labeling function ρ : E → Q. The weight of a run
ρ (denoted as δ′(ρ)) is the product of all weights
of local transitions:

δ′(ρ) =
⊗
v∈V

δ

(
ρ(in(v))

ℓ(v)−−→ ρ(out(v))

)
Here, for a function f , we use f({a1, · · · , an}) to
represent {f(a1), · · · , f(an)}. If K is a boolean
semiring, the automata fall backs to an unweighted

1A node without incoming edges is called root and a node
without outgoing edges is called leaf.

2 proper q and named are node labels, while BV is the
edge label.
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DAG automata or DAG acceptor. A accepting run
or recognition is a run, the weight of which is 1,
meaning true.

2.3 Challenges

The DAG automata defined above can only
be used for recognition. In order to gener-
ate sentences from semantic graphs, we need
DAG transducers. A DAG transducer is a
DAG automata-augmented computation model for
transducing well-formed DAGs to other data struc-
tures. Quernheim and Knight (2012) focused on
feature structures and introduced a DAG-to-Tree
transducer to perform graph-to-tree transforma-
tion. The input of their transducer is limited to
single-rooted DAGs. When the labels of the leaves
of an output tree in order are interpreted as words,
this transducer can be applied to generate natural
language sentences.

When applying Quernheim and Knight’s DAG-
to-Tree transducer on type-logic semantic graphs,
e.g. ERS, there are some significant problems.
First, it lacks the ability to reverse the direction
of edges during transduction because it is difficult
to keep acyclicy anymore if edge reversing is al-
lowed. Second, it cannot handle multiple roots.
But we have discussed and reached the conclusion
that multi-rootedness is a necessary requirement
for representing type-logical semantic graphs. It
is difficult to decide which node should be the tree
root during a ‘top-down’ transduction and it is also
difficult to merge multiple unconnected nodes into
one during a ‘bottom-up’ transduction. At the risk
of oversimplifying, we argue that the function of
the existing DAG-to-Tree transducer is to trans-
form a hierachical structure into another hierarchi-
cal structure. Since the type-local semantic graphs
are so flat, it is extremely difficult to adopt Quern-
heim and Knight’s design to handle such graphs.
Third, there are unconnected nodes with direct de-
pendencies, meaning that their correpsonding sur-
face expressions appear to be very close. The con-
ceptual nodes even x deg and steep a 1 in
Figure 4 are an example. It is extremely difficult
for the DAG-to-Tree transducer to handle this sit-
uation.

3 A New DAG Transducer

3.1 Basic Idea

In this paper, we introduce a design of transducers
that can perform structure transformation towards

many data structures, including but not limited to
trees. The basic idea is to give up the rewritting
method to directly generate a new data structure
piece by piece, while recognizing an input DAG.
Instead, our transducer obtains target structures
based on side effects of DAG recognition. The
output of our transducer is no longer the target
data structure itself, e.g. a tree or another DAG,
and is now a program, i.e. a bunch of statements
licensed by a particular declarative programming
language. The target structures are constructed by
executing such programs.

Since our main concern of this paper is natu-
ral language generation, we take strings, namely
sequences of words, as our target structures. In
this section, we introduce an extremely simple
programming language for string concatenation
and then details about how to leverage the power
of declarative programming to perform DAG-to-
string transformation.

3.2 A Declarative Programming Language
The syntax in the BNF format of our declarative
programming language, denoted as Lc, for string
calculation is:

⟨program⟩ ::= ⟨statement⟩∗
⟨statement⟩ ::= ⟨variable⟩ = ⟨expr⟩

⟨expr⟩ ::= ⟨variable⟩ | ⟨string⟩
| ⟨expr⟩ + ⟨expr⟩

Here a string is a sequence of characters selected
from an alphabet (denoted as Σout) and can be
empty (denoted as ϵ). The semantics of ‘=’ is
value assignment, while the semantics of ‘+’ is
string concatenation. The value of variables are
strings. For every statement, the left hand side is
a variable and the right hand side is a sequence
of string literals and variables that are combined
through ‘+’. Equation (1) presents an exmaple
program licensed by this language.

S = x21 + want+ x11

x11 = to+ go

x21 = x41 + John

x41 = ϵ

(1)

After solving these statements, we can query the
values of all variables. In particular, we are inter-
ested in S, which is related to the desired natural
language expression John want to go3.

3 The expression is a sequence of lemmas rather than in-
flected words. Refer to §4 for more details.
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Using the relation between the variables, we can
easily convert the statements in (1) to a rooted tree.
The result is shown in Figure 1. This tree is sig-
nificantly different from the target structures dis-
cussed by Quernheim and Knight (2012) or other
normal tree transducers (Comon et al., 1997). This
tree represents calculation to solve the program.
Constructing such internal trees is an essential
function of the compiler of our programming lan-
guage.

S

x21

x41

ε

John

want x11

to go

Figure 1: Variable relation tree.

3.3 Informal Illustration

We introduce our DAG transducer using a sim-
ple example. Figure 2 shows the original input
graph D = (V,E, ℓ). Without any loss of gener-
ality, we remove edge labels. Table 1 lists the rule
set—R—for this example. Every row represents
an applicable transduction rule that consists of two
parts. The left column is the recognition part dis-
played in the form I

σ−→ O, where I , O and σ de-
code the state set of incoming edges, the state set
of outgoing edges and the node label respectively.
The right column is the generation part which con-
sists of (multiple) templates of statements licensed
by the programming language defined in the pre-
vious section. In practice, two different rules may
have a same recognition part but different genera-
tion parts.

Every state q is of the form l(n, d) where l is
the finite state label, n is the count of possible
variables related to q, and d denotes the direction.
The value of d can only be r (reversed), u (un-
changed) or e(empty). Variable vl(j,d) represents
the jth (1 ≤ j ≤ n) variable related to state q.
For example, vX(2,r) means the second variable
of state X(3,r). There are two special variables:
S, which corresponds to the whole sentence and
L, which corresponds to the output string associ-
ated to current node label. It is reasonable to as-
sume that there exists a function ψ : Σ → Σ∗

out
that maps a particular node label, i.e. concept, to a
surface string. Therefore L is determined by ψ.

Now we are ready to apply transduction rules to

named(John)

want v 1

go v 1

proper q

Figure 2: An input graph. The intended reading
is John wants to go.

named(John)

want v 1

go v 1

proper q

VP(1,u) e1

e2 NP(1,u)

Empty(0,e) e3
DET(1,r)

e4

Figure 3: A run of the graph in Figure 2.

translateD into a string. The transduction consists
of two steps:

Recognition The goal of this step is to find an
edge labeling function ρ : E → Q which satisfies

that for every node v, ρ(in(v))
ℓ(v)−−→ ρ(out(v))

matches the recognition part of a rule in R. The
recognition result is shown in Figure 3. The red
dashed edges in Figure 3 make up an intermedi-
ate graph T (ρ), which is a subgraph of D if edge
direction is not taken into account. Sometimes,
T (ρ) paralles the syntactic structure of an output
sentence. For a labeling function ρ, we can con-
struct intermediate graph T (ρ) by checking the
direction parameter of every edge state. For an
edge e = (u, v) ∈ E, if the direction of ρ(e)
is r, then (v, u) is in T (ρ). If the direction is
u, then (u, v) is in T (ρ). If the direction is e,
neither (u, v) nor (v, u) is included. The recog-
nition process is slightly different from the one
in Chiang et al. (2018). Since incoming edges
with an Empty(0,e) state carry no semantic in-
formation, they will be ignored during recogni-
tion. For example, in Figure 3, we will only use
e2 and e4 to match transducation rules for node
named(John).

Instantiation We use rule(v) to denotes the
rule used on node v. Assume s is the genera-
tion part of rule(v). For every edge ei adjacent
to v, assume ρ(ei) = l(n, d). We replace L with
ψ(ℓ(v)) and replace every occurrence of vl(j,d) in
s with a new variable xij (1 ≤ j ≤ n). Then we
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Q = {DET(1,r),Empty(0,e),VP(1,u),NP(1,u)}
Rule For Recognition For Generation
1 {} proper q−−−−−−→ {DET(1,r)} vDET(1,r) = ϵ

2 {} want v 1−−−−−−→ {VP(1,u),NP(1,u)} S = vNP(1,u) + L+ vVP(1,u)

3 {VP(1,u)} go v 1−−−−→ {Empty(0,e)} vVP(1,u) = to+ L

4 {NP(1,u),DET(1,r)} named−−−−→ {} vNP(1,u) = vDET(1,r) + L

Table 1: Sets of states (Q) and rules (R) that can be used to process the graph in Figure 2.

get a newly generated expression for v. For ex-
ample, node want v 1 is recognized using Rule
2, so we replace vNP(1,u) with x21, vVP(1,u) with
x11 and L with want. After instantiation, we get
all the statements in Equation (1).

Our transducer is suitable for type-logical se-
mantic graphs. Because declarative programming
brings in more freedom for graph transduction.
We can arrange the variables in almost any order
without regard to the edge directions in original
graphs. Meanwhile, the multi-rooted problem can
be solved easily because the generation is based
on side effects. We do not need to decide which
node is the tree root.

3.4 Definition

The formal definition of our DAG transducer de-
scribed above is a tuple M = (Σ, Q,R,w, V, S)
where:

• Σ is an alphabet of node labels.

• Q is a finite set of edge states. Every state
q ∈ Q is of the form l(n, d) where l is the
state label, n is the variable count and d is the
direction of state which can be r, u or e.

• R is a finite set of rules. Every rule is of the
form I

σ−→ ⟨O,E⟩. E can be any kind of
statement in a declarative programming lan-
guage. It is called the generation part. I , σ
and O have the same meanings as they do in
the previous section and they are called the
recognition part.

• w is a score function. Given a particular run
and an anchor node,w assigns a score to mea-
sure the preference for a particular rule at this
anchor node.

• V is the set of parameterized variables that
can be used in every expression.

• S ∈ V is a distinguished, global variable. It
is like the ‘goal’ of a program.

4 DAG Transduction-based NLG

Different languages exhibit different morpho-
syntactic and syntactico-semantic proper-
ties. For example, Russian and Arabic are
morphologically-rich languages and heavily uti-
lize grammatical markers to indicate grammatical
as well as semantic functions. On the contrary,
Chinese, as an analytic language, encodes gram-
matical and semantic information in a highly
configurational rather than either inflectional or
derivational way. Such differences affects NLG
significantly. Considering generating Chinese
sentences, it seems sufficient to employ our DAG
transducer to obtain a sequence of lemmas, since
no morpholical production is needed. But for
morphologically-rich languages, we do need to
model complex morphological changes.

To unify a general framework for DAG
transduction-based NLG, we propose a two-step
strategy to achive meaning-to-text transformation.

• In the first phase, we are concerned with
syntactico-semantic properties and utilize our
DAG transducer to translate a semantic graph
into sequential lemmas. Information such as
tense, apsects, gender, etc. is attached to an-
chor lemmas. Actually, our transducer gen-
erates “want.PRES” rather than “wants”.
Here, “PRES” indicates a particular tense.

• In the second phase, we are concerned with
morpho-syntactic properties and utilize a
neural sequence-to-sequence model to obtain
final surface strings from the outputs of the
DAG transducer.

5 Inducing Transduction Rules

We present an empirical study on the feasibility
of DAG transduction-based NLG. We focus on
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steep a 1<21:28>

decline n 1<5:12>

focus d

mofy<37:48>

comp pronoun q

pron<49:51>

say v to<52:57>

proper q the q<0:4>

even x deg<16:20>

in p temp<34:36>

e4
{PP<34:48>}

e3
{S<0:48>}

e2{S<0:48>}
e5

{ADV<16:20>,PP<29:48>} e12

e1{ADV<16:20>}

e10{DET<0:4>}e9 {}

e7 {}

e9
{NP<37:48>}

e6

{NP<49:51>}

e11 {NP<0:12>}

Figure 4: An example graph. The intended reading is “the decline is even steeper than in September”,
he said. Original edge labels are removed for clarity. Every edge is associated with a span list, and spans
are written in the form label<begin:end>. The red dashed edges belong to the intermediate graph
T .

variable-free MRS representations, namely EDS
(Oepen and Lønning, 2006). The data set used
in this work is DeepBank 1.1 (Flickinger et al.,
2012).

5.1 EDS-specific Constraints

In order to generate reasonable strings, three con-
straints must be kept during transduction. First,
for a rule I

σ−→ ⟨O,E⟩, a state with direction
u in I or a state with direction r in O is called
head state and its variables are called head vari-
ables. For example, the head state of rule 3 in Ta-
ble 1 is VP(1,u) and the head state of rule 2 is
DET(1,r). There is at most one head state in
a rule and only head variables or S can be the left
sides of statements. If there is no head state, we as-
sign the global S as its head. Otherwise, the num-
ber of statements is equal to the number of head
variables and each statement has a distinguished
left side variable. An empty state does not have
any variables. Second, every rule has no-copying,
no-deleting statements. In other words, all vari-
ables must be used exactly once in a statement.
Third, during recognition, a labeling function ρ is
valid only if T (ρ) is a rooted tree.

After transduction, we get result ρ∗. The first
and second constraints ensure that for all nodes,
there is at most one incoming red dashed edge in
T (ρ∗) and ‘data’ carried by variables of the only
incoming red dashed edge or S is separated into
variables of outgoing red dashed edges. The last
constraint ensures that we can solve all statements
by a bottom-up process on tree T (ρ∗).

5.2 Fine-to-Coarse Transduction

Almost all NLG systems that heavily utilize
a symbolic system to encode deep syntactico-
semantic information lack some robustness, mean-
ing that some input graphs may not be successfully
processed. There are two reasons: (1) some ex-
plicit linguistic constraints are not included; (2)
exact decoding is too time-consuming while in-
exact decoding cannot cover the whole search
space. To solve the robustness problem, we in-
troduce a fine-to-coarse strategy to ensure that
at least one sentence is generated for any input
graph. There are three types of rules in our system,
namely induced rules, extended rules and dynamic
rules. The most fine-grained rules are applied to
bring us precision, while the most coarse-grained
rules are for robustness.

In order to extract reasonable rules, we will use
both EDS graphs and the corresponding deriva-
tion trees provided by ERG. The details will be
described step-by-step in the following sections.

5.3 Induced Rules

Figure 4 shows an example for obtaining induced
rules. The induced rules are directly obtained by
following three steps:

Finding intermediate tree T EDS graphs are
highly regular semantic graphs. It is not difficult to
generate T based on a highly customized ‘breadth-
first’ search. The generation starts from the ‘top’
node ( say v to in Figure 4) given by the EDS
graph and traverse the whole graph. No more than
thirty heuristic rules are used to decide the visiting
order of nodes.
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Assigning states EDS graphs also provide span
information for nodes. We select a group of lexi-
cal nodes which have corresponding substrings in
the original sentence. In Figure 4, these nodes are
in bold font and directly followed by a span. Then
we merge spans from the bottom of T to the top
to assign each red edge a span list. For each node
n in T , we collect spans of every outgoing dashed
edge of n into a list s. Some additional spans may
be inserted into s. These spans do not occur in
the EDS graph but they do occur in the sentence,
i.e. than<29:33>. Then we merge continuous
spans in s and assign the remaining spans in s to
the incoming red dashed edge of n. We apply a
similar method to the derivation tree. As a result,
every inner node of the derivation tree is associ-
ated with a span. Then we align the edges in T
to nodes of the inner derivation tree by compar-
ing their spans. Finally edge labels in Figure 4 are
generated.

We use the concatenation of the edge labels in
a span list as the state label. The edge labels are
joined in order with ‘ ’. Empty(0,e) is the state
of the edges that do not belong to T (ignoring di-
rection), such as e12. The variable count of a state
is equal to the size of the span list and the direc-
tion of a state is decided by whether the edge in T
related to the state and its corresponding edge in
D have different directions. For example, the state
of e5 should be ADV PP(2,r).

Generating statements After the above two
steps, we are ready to generate statements accord-
ing to how spans are merged. For all nodes, spans
of the incoming edges represent the left hand side
and the outgoing edges represent the right hand
side. For example, the rule for node comp will be:

{ADV(1,r)} comp−−−→ {PP(1,u),
ADV PP(2,r)}

vADV PP(1,r) = vADV(1,r)

vADV PP(2,r) = than+ vPP(1,u)

5.4 Extended Rules
Extended rules are used when no induced rules can
cover a given node. In theory, there can be un-
limited modifier nodes pointing to a given node,
such as PP and ADJ. We use some manually writ-
ten rules to slightly change an induced rule (pro-
totype) by addition or deletion to generate a group
of extended rules. The motivation here is to deal
with the data sparseness problem.

For a group of selected non-head states in I ,
such as PP and ADJ. We can produce new rules
by removing or duplicating more of them. For ex-
ample:

{NP(1,u),ADJ(1,r)} X n 1−−−−→ {}
vNP(1,u) = vADJ(1,r) + L

As a result, we get the two rules below:

{NP(1,u)} X n 1−−−−→ {} vNP(1,u) = L

{NP(1,u),ADJ(1,r)1,

ADJ(1,r)2}
X n 1−−−−→ {}

vNP(1,u) = vADJ(1,r)1
+ vADJ(1,r)2 + L

5.5 Dynamic Rules
During decoding, when neither induced nor ex-
tended rule is applicable, we create a dynamic rule
on-the-fly. Our rule creator builds a new rule fol-
lowing the Markov assumption:

P (O|C) = P (q1|C)
n∏

i=2

P (qi|C)P (qi|qi−1, C)

C = ⟨I,D⟩ represents the context.
O = {q1, · · · , qn} denotes the outgoing states and
I , D have the same meaning as before. Though
they are unordered multisets, we can give them an
explicit alphabet order by their edge labels. There
is also a group of hard constraints to make sure
that the predicted rules are well-formed as the def-
inition in §5 requires. This Markovization strategy
is widely utilized by lexicalized and unlexicalized
PCFG parsers (Collins, 1997; Klein and Manning,
2003). For a dynamic rule, all variables in this
rule will appear in the statement. We use a simple
perceptron-based scorer to assign every variable a
score and arrange them in an decreasing order.

6 Evaluation and Analysis

6.1 Set-up
We use DeepBank 1.1 (Flickinger et al., 2012),
i.e. gold-standard ERS annotations, as our main
experimental data set to train a DAG trans-
ducer as well as a sequence-to-sequence mor-
pholyzer, and wikiwoods (Flickinger et al., 2010),
i.e. automatically-generated ERS annotations
by ERG, as additional data set to enhance the
sequence-to-sequence morpholyzer. The training,
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development and test data sets are from DeepBank
and split according to DeepBank’s recommenda-
tion. There are 34,505, 1,758 and 1,444 sentences
(all disconnected graphs as well as their associated
sentences are removed) in the training, develop-
ment and test data sets. We use a small portion of
wikiwoods data, c.a. 300K sentences, for experi-
ments.

37,537 induced rules are directly extracted from
the training data set, and 447,602 extended rules
are obtained. For DAG recognition, at one par-
ticular position, there may be more than one rule
applicable. In this case, we need a disambigua-
tion model as well as a decoder to search for a
globally optimal solution. In this work, we train
a structured perceptron model (Collins, 2002) for
disambiguation and employ a beam decoder. The
perceptron model used by our dynamic rule gen-
erator are trained with the induced rules. To get
a sequence-to-sequence model, we use the open
source tool—OpenNMT4.

6.2 The Decoder
We implement a fine-to-coarse beam search de-
coder. Given a DAG D, our goal is to find the
highest scored labeling function ρ:

ρ = argmax
ρ

n∏
i=1

∑
j

wj · fj(rule(vi), D)

s.t. rule(vi) = ρ(in(vi))
ℓ(vi)−−−→ ⟨ρ(out(vi)), Ei⟩

where n is the node count and fj(·, ·) and wj

represent a feature and the corresponding weight,
respectively. The features are chosen from the
context of the given node vi. We perform ‘top-
down’ search to translate an input DAG into a
morphology-function-enhanced lemma sequence.
Each hypothesis consists of the current DAG
graph, the partial labeling function, the current hy-
pothesis score and other graph information used
to perform rule selection. The decoder will keep
the corresponding partial intermediate graph T
acyclic when decoding. The algorithm used by
our decoder is displayed in Algorithm 1. Function
FindRules(h, n,R) will use hard constraints to
select rules from the rule set R according to the
contextual information. It will also perform an
acyclic check on T . Function Insert(h, r, n,B)
will create and score a new hypothesis made from
the given context and then insert it into beam B.

4https://github.com/OpenNMT/OpenNMT/

After we get the edge labeling function ρ, we
use a simple linear equation solver to convert all
statements to a sequence of lemmas.

Algorithm 1: Algorithm for our decoder.
Input: D is the EDS graph. RI and RE

are induced-rules and
extended-rules respectively.

Result: The edge labeling function ρ.
1 Q← all the roots in D
2 B1← empty beam
3 E ← ∅
4 Insert initial hypothesis into B1
5 while Q is not empty:
6 B2← empty beam
7 n← dequeue a node from Q
8 for h ∈ B1:
9 rules← FindRules(h, n,RI)

10 if rules is not empty:
11 for r ∈ rules:
12 Insert(h, r, n,B2)

else:
13 rules← FindRules(h, n,RE)
14 for r ∈ rules:
15 Insert(h, r, n,B2)

16 if B2 is still empty:
17 for h ∈ B1:
18 r ← RuleGenerator(h, n)
19 Insert(h, r, n,B2)

20 B1← B2
21 for e ∈ out(n):
22 E ← E ∪ {e}
23 if in(tar(e)) ⊆ E:
24 Q← Q ∪ {tar(e)}
25 Extract ρ from best hypothesis in B1

6.3 Accuracy
In order to evaluate the effectiveness of our trans-
ducer for NLG, we try a group of tests showed
in Table 2. All sequence-to-sequence models (ei-
ther from lemma sequences to lemma sequences
or lemma sequences to sentences) are trained on
DeepBank and wikiwoods data set and tuned on
the development data. The second column shows
the BLEU-4 scores between generated lemma se-
quences and golden sequences of lemmas. The
third column shows the BLEU-4 scores between
generated sentences and golden sentences. The
fourth column shows the fraction of graphs in
the test data set that can reach output sentences.

https://github.com/OpenNMT/OpenNMT/
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Transducer Lemmas Sentences Coverage
I 89.44 74.94 67%
I+E 88.41 74.03 77%
I+E+D 82.04 68.07 100%
DFS-NN 50.45 100%
AMR-NN 33.8 100%
AMR-NRG 25.62 100%

Table 2: Accuracy (BLEU-4 score) and coverage
of different systems. I denotes transduction only
using induced rules; I+E denotes transduction us-
ing both induced and extended rules; I+E+D de-
notes transduction using all kinds of rules. DFS-
NN is a rough implementation of Konstas et al.
(2017) but with the EDS data, while AMR-NN
includes the results originally reported by Kon-
stas et al., which are evaluated on the AMR data.
AMR-NRG includes the results obtained by a syn-
chronous graph grammar (Song et al., 2017).

The graphs that cannot received any natural lan-
guage sentences are removed while conducting the
BLEU evaluation.

As we can conclude from Table 2, using only
induced rules achieves the highest accuracy but
the coverage is not satisfactory. Extended rules
lead to a slight accuracy drop but with a great
improvement of coverage (c.a. 10%). Using dy-
namic rules, we observe a significant accuracy
drop. Nevertheless, we are able to handle all EDS
graphs. The full-coverage robustness may bene-
fit many NLP applications. The lemma sequences
generated by our transducer are really close to the
golden one. This means that our model actually
works and most reordering patterns are handled
well by induced rules.

Compared to the AMR generation task, our
transducer on EDS graphs achieves much higher
accuracies. To make clear how much improvement
is from the data and how much is from our DAG
transducer, we implement a purely neural baseline.
The baseline converts a DAG into a concept se-
quence by a pre-order DFS traversal on the inter-
mediate tree of this DAG. Then we use a sequence-
to-sequence model to transform this concept se-
quence to the lemma sequence for comparison.
This is a kind of implementation of Konstas et al.’s
model but evaluated on the EDS data. We can see
that on this task, our transducer is much better than
a pure sequence-to-sequence model on DeepBank
data.

Transducer Average (s) Maximal (s)
I 0.090 0.40
I+E 0.093 0.46
I+E+D 0.18 3.2

Table 3: Efficiency of our NL generator.

6.4 Efficiency

Table 3 shows the efficiency of the beam search
decoder with a beam size of 128. The platform for
this experiment is x86 64 GNU/Linux with two
Intel Xeon E5-2620 CPUs. The second and third
columns represent the average and the maximal
time (in seconds) to translate an EDS graph. Using
dynamic rules slow down the decoder to a great
degree. Since the data for experiments is newswire
data, i.e. WSJ sentences from PTB (Marcus et al.,
1993), the input graphs are quite large on average.
On average, it produces more than 5 sentences
per second on CPU. We consider this a promising
speed.

7 Conclusion

We extend the work on DAG automata in Chiang
et al. (2018) and propose a general method to build
flexible DAG transducer. The key idea is to lever-
age a declarative programming language to min-
imize the computation burden of a graph trans-
ducer. We think may NLP tasks that involve graph
manipulation may benefit from this design. To ex-
emplify our design, we develop a practical system
for the semantic-graph-to-string task. Our system
is accurate (BLEU 68.07), efficient (more than 5
sentences per second on a CPU) and robust (full-
coverage). The empirical evaluation confirms the
usefulness a DAG transducer to resolve NLG, as
well as the effectiveness of our design.
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