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Abstract

Machine reading comprehension (MRC)
on real web data usually requires the ma-
chine to answer a question by analyzing
multiple passages retrieved by search en-
gine. Compared with MRC on a single
passage, multi-passage MRC is more chal-
lenging, since we are likely to get multiple
confusing answer candidates from differ-
ent passages. To address this problem, we
propose an end-to-end neural model that
enables those answer candidates from dif-
ferent passages to verify each other based
on their content representations. Specifi-
cally, we jointly train three modules that
can predict the final answer based on three
factors: the answer boundary, the answer
content and the cross-passage answer ver-
ification. The experimental results show
that our method outperforms the base-
line by a large margin and achieves the
state-of-the-art performance on the En-
glish MS-MARCO dataset and the Chi-
nese DuReader dataset, both of which are
designed for MRC in real-world settings.

1 Introduction

Machine reading comprehension (MRC), empow-
ering computers with the ability to acquire knowl-
edge and answer questions from textual data, is
believed to be a crucial step in building a general
intelligent agent (Chen et al., 2016). Recent years
have seen rapid growth in the MRC community.
With the release of various datasets, the MRC task
has evolved from the early cloze-style test (Her-
mann et al., 2015; Hill et al., 2015) to answer ex-
traction from a single passage (Rajpurkar et al.,

*This work was done while the first author was doing in-
ternship at Baidu Inc.

2016) and to the latest more complex question an-
swering on web data (Nguyen et al., 2016; Dunn
et al., 2017; He et al., 2017).

Great efforts have also been made to develop
models for these MRC tasks , especially for the
answer extraction on single passage (Wang and
Jiang, 2016; Seo et al., 2016; Pan et al., 2017).
A significant milestone is that several MRC mod-
els have exceeded the performance of human an-
notators on the SQuAD dataset1 (Rajpurkar et al.,
2016). However, this success on single Wikipedia
passage is still not adequate, considering the ulti-
mate goal of reading the whole web. Therefore,
several latest datasets (Nguyen et al., 2016; He
et al., 2017; Dunn et al., 2017) attempt to design
the MRC tasks in more realistic settings by involv-
ing search engines. For each question, they use the
search engine to retrieve multiple passages and the
MRC models are required to read these passages
in order to give the final answer.

One of the intrinsic challenges for such multi-
passage MRC is that since all the passages are
question-related but usually independently writ-
ten, it’s probable that multiple confusing answer
candidates (correct or incorrect) exist. Table 1
shows an example from MS-MARCO. We can
see that all the answer candidates have semantic
matching with the question while they are literally
different and some of them are even incorrect. As
is shown by Jia and Liang (2017), these confus-
ing answer candidates could be quite difficult for
MRC models to distinguish. Therefore, special
consideration is required for such multi-passage
MRC problem.

In this paper, we propose to leverage the an-
swer candidates from different passages to verify
the final correct answer and rule out the noisy in-
correct answers. Our hypothesis is that the cor-

1https://rajpurkar.github.io/SQuAD-explorer/
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Question: What is the difference between a mixed and pure culture?
Passages:
[1] A culture is a society’s total way of living and a society is a group that live in a defined territory and participate in
common culture. While the answer given is in essence true, societies originally form for the express purpose to enhance . . .
[2] . . . There has been resurgence in the economic system known as capitalism during the past two decades. 4. The mixed
economy is a balance between socialism and capitalism. As a result, some institutions are owned and maintained by . . .
[3] A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two or more
microbial species formed colonies. Culture on the other hand, is the lifestyle that the people in the country . . .
[4] Best Answer: A pure culture comprises a single species or strains. A mixed culture is taken from a source and may
contain multiple strains or species. A contaminated culture contains organisms that derived from some place . . .
[5] . . . It will be at that time when we can truly obtain a pure culture. A pure culture is a culture consisting of only one strain.
You can obtain a pure culture by picking out a small portion of the mixed culture . . .
[6] A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two or more
microbial species formed colonies. A pure culture is a culture consisting of only one strain. . . .
· · · · · ·
Reference Answer: A pure culture is one in which only one kind of microbial species is found whereas in mixed culture two
or more microbial species formed colonies.

Table 1: An example from MS-MARCO. The text in bold is the predicted answer candidate from each
passage according to the boundary model. The candidate from [1] is chosen as the final answer by this
model, while the correct answer is from [6] and can be verified by the answers from [3], [4], [5].

rect answers could occur more frequently in those
passages and usually share some commonalities,
while incorrect answers are usually different from
one another. The example in Table 1 demonstrates
this phenomenon. We can see that the answer can-
didates extracted from the last four passages are all
valid answers to the question and they are semanti-
cally similar to each other, while the answer candi-
dates from the other two passages are incorrect and
there is no supportive information from other pas-
sages. As human beings usually compare the an-
swer candidates from different sources to deduce
the final answer, we hope that MRC model can
also benefit from the cross-passage answer veri-
fication process.

The overall framework of our model is demon-
strated in Figure 1 , which consists of three mod-
ules. First, we follow the boundary-based MRC
models (Seo et al., 2016; Wang and Jiang, 2016)
to find an answer candidate for each passage by
identifying the start and end position of the an-
swer (Figure 2). Second, we model the mean-
ings of the answer candidates extracted from those
passages and use the content scores to measure
the quality of the candidates from a second per-
spective. Third, we conduct the answer verifica-
tion by enabling each answer candidate to attend
to the other candidates based on their represen-
tations. We hope that the answer candidates can
collect supportive information from each other ac-
cording to their semantic similarities and further
decide whether each candidate is correct or not.

Therefore, the final answer is determined by three
factors: the boundary, the content and the cross-
passage answer verification. The three steps are
modeled using different modules, which can be
jointly trained in our end-to-end framework.

We conduct extensive experiments on the MS-
MARCO (Nguyen et al., 2016) and DuReader (He
et al., 2017) datasets. The results show that our
answer verification MRC model outperforms the
baseline models by a large margin and achieves
the state-of-the-art performance on both datasets.

2 Our Approach

Figure 1 gives an overview of our multi-passage
MRC model which is mainly composed of three
modules including answer boundary prediction,
answer content modeling and answer verification.
First of all, we need to model the question and
passages. Following Seo et al. (2016), we com-
pute the question-aware representation for each
passage (Section 2.1). Based on this representa-
tion, we employ a Pointer Network (Vinyals et al.,
2015) to predict the start and end position of the
answer in the module of answer boundary predic-
tion (Section 2.2). At the same time, with the
answer content model (Section 2.3), we estimate
whether each word should be included in the an-
swer and thus obtain the answer representations.
Next, in the answer verification module (Section
2.4), each answer candidate can attend to the other
answer candidates to collect supportive informa-
tion and we compute one score for each candidate
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Figure 1: Overview of our method for multi-passage machine reading comprehension

to indicate whether it is correct or not according to
the verification. The final answer is determined by
not only the boundary but also the answer content
and its verification score (Section 2.5).

2.1 Question and Passage Modeling
Given a question Q and a set of passages {Pi} re-
trieved by search engines, our task is to find the
best concise answer to the question. First, we for-
mally present the details of modeling the question
and passages.

Encoding We first map each word into the vec-
tor space by concatenating its word embedding
and sum of its character embeddings. Then we
employ bi-directional LSTMs (BiLSTM) to en-
code the question Q and passages {Pi} as follows:

uQ
t = BiLSTMQ(uQ

t−1, [e
Q
t , c

Q
t ]) (1)

uPi
t = BiLSTMP (uPi

t−1, [e
Pi
t , c

Pi
t ]) (2)

where eQt , cQt , ePi
t , cPi

t are the word-level and
character-level embeddings of the tth word. uQ

t

and uPi
t are the encoding vectors of the tth words

in Q and Pi respectively. Unlike previous work
(Wang et al., 2017c) that simply concatenates all
the passages, we process the passages indepen-
dently at the encoding and matching steps.

Q-P Matching One essential step in MRC is to
match the question with passages so that impor-
tant information can be highlighted. We use the

Attention Flow Layer (Seo et al., 2016) to conduct
the Q-P matching in two directions. The similar-
ity matrix S ∈ R|Q|×|Pi| between the question and
passage i is changed to a simpler version, where
the similarity between the tth word in the question
and the kth word in passage i is computed as:

St,k = uQ
t

ᵀ
· uPi

k (3)

Then the context-to-question attention and
question-to-context attention is applied strictly
following Seo et al. (2016) to obtain the question-
aware passage representation {ũPi

t }. We do not
give the details here due to space limitation. Next,
another BiLSTM is applied in order to fuse the
contextual information and get the new represen-
tation for each word in the passage, which is re-
garded as the match output:

vPi
t = BiLSTMM (vPi

t−1, ũ
Pi
t ) (4)

Based on the passage representations, we intro-
duce the three main modules of our model.

2.2 Answer Boundary Prediction

To extract the answer span from passages, main-
stream studies try to locate the boundary of the an-
swer, which is called boundary model. Following
(Wang and Jiang, 2016), we employ Pointer Net-
work (Vinyals et al., 2015) to compute the proba-
bility of each word to be the start or end position
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of the span:

gtk = wa
1
ᵀ tanh(Wa

2 [vP
k ,h

a
t−1]) (5)

αt
k = exp(gtk)/

∑|P|

j=1
exp(gtj) (6)

ct =
∑|P|

k=1
αt
kv

P
k (7)

ha
t = LSTM(ha

t−1, ct) (8)

By utilizing the attention weights, the probabil-
ity of the kth word in the passage to be the start and
end position of the answer is obtained as α1

k and
α2
k. It should be noted that the pointer network is

applied to the concatenation of all passages, which
is denoted as P so that the probabilities are com-
parable across passages. This boundary model can
be trained by minimizing the negative log proba-
bilities of the true start and end indices:

Lboundary = − 1

N

N∑
i=1

(logα1
y1i

+ logα2
y2i

) (9)

where N is the number of samples in the dataset
and y1i , y2i are the gold start and end positions.

2.3 Answer Content Modeling

Previous work employs the boundary model to
find the text span with the maximum boundary
score as the final answer. However, in our context,
besides locating the answer candidates, we also
need to model their meanings in order to conduct
the verification. An intuitive method is to compute
the representation of the answer candidates sepa-
rately after extracting them, but it could be hard to
train such model end-to-end. Here, we propose a
novel method that can obtain the representation of
the answer candidates based on probabilities.

Specifically, we change the output layer of
the classic MRC model. Besides predicting the
boundary probabilities for the words in the pas-
sages, we also predict whether each word should
be included in the content of the answer. The con-
tent probability of the kth word is computed as:

pck = sigmoid(wc
1
ᵀReLU(Wc

2v
Pi
k )) (10)

Training this content model is also quite intu-
itive. We transform the boundary labels into a con-
tinuous segment, which means the words within
the answer span will be labeled as 1 and other
words will be labeled as 0. In this way, we define

the loss function as the averaged cross entropy:

Lcontent =− 1

N

1

|P|

N∑
i=1

|P |∑
j=1

[yck log pck

+ (1− yck) log(1− pck)]

(11)

The content probabilities provide another view
to measure the quality of the answer in addition to
the boundary. Moreover, with these probabilities,
we can represent the answer from passage i as a
weighted sum of all the word embeddings in this
passage:

rAi =
1

|Pi|
∑|Pi|

k=1
pck[ePi

k , c
Pi
k ] (12)

2.4 Cross-Passage Answer Verification
The boundary model and the content model focus
on extracting and modeling the answer within a
single passage respectively, with little considera-
tion of the cross-passage information. However,
as is discussed in Section 1, there could be mul-
tiple answer candidates from different passages
and some of them may mislead the MRC model
to make an incorrect prediction. It’s necessary to
aggregate the information from different passages
and choose the best one from those candidates.
Therefore, we propose a method to enable the an-
swer candidates to exchange information and ver-
ify each other through the cross-passage answer
verification process.

Given the representation of the answer candi-
dates from all passages {rAi}, each answer can-
didate then attends to other candidates to collect
supportive information via attention mechanism:

si,j =

{
0, if i = j,

rAi
ᵀ · rAj , otherwise

(13)

αi,j = exp(si,j)/
∑n

k=1
exp(si,k) (14)

r̃Ai =
∑n

j=1
αi,jr

Aj (15)

Here r̃Ai is the collected verification informa-
tion from other passages based on the attention
weights. Then we pass it together with the orig-
inal representation rAi to a fully connected layer:

gvi = wvᵀ[rAi , r̃Ai , rAi � r̃Ai ] (16)

We further normalize these scores over all pas-
sages to get the verification score for answer can-
didate Ai:

pvi = exp(gvi )/
∑n

j=1
exp(gvj ) (17)
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In order to train this verification model, we take
the answer from the gold passage as the gold an-
swer. And the loss function can be formulated as
the negative log probability of the correct answer:

Lverify = − 1

N

N∑
i=1

log pvyvi (18)

where yvi is the index of the correct answer in all
the answer candidates of the ith instance .

2.5 Joint Training and Prediction
As is described above, we define three objectives
for the reading comprehension model over multi-
ple passages: 1. finding the boundary of the an-
swer; 2. predicting whether each word should be
included in the content; 3. selecting the best an-
swer via cross-passage answer verification. Ac-
cording to our design, these three tasks can share
the same embedding, encoding and matching lay-
ers. Therefore, we propose to train them together
as multi-task learning (Ruder, 2017). The joint ob-
jective function is formulated as follows:

L = Lboundary + β1Lcontent + β2Lverify (19)

where β1 and β2 are two hyper-parameters that
control the weights of those tasks.

When predicting the final answer, we take the
boundary score, content score and verification
score into consideration. We first extract the an-
swer candidateAi that has the maximum boundary
score from each passage i. This boundary score is
computed as the product of the start and end prob-
ability of the answer span. Then for each answer
candidate Ai, we average the content probabilities
of all its words as the content score of Ai. And we
can also predict the verification score for Ai using
the verification model. Therefore, the final answer
can be selected from all the answer candidates ac-
cording to the product of these three scores.

3 Experiments

To verify the effectiveness of our model on multi-
passage machine reading comprehension, we con-
duct experiments on the MS-MARCO (Nguyen
et al., 2016) and DuReader (He et al., 2017)
datasets. Our method achieves the state-of-the-art
performance on both datasets.

3.1 Datasets
We choose the MS-MARCO and DuReader
datasets to test our method, since both of them are

MS-MARCO DuReader
Multiple Answers 9.93% 67.28%

Multiple Spans 40.00% 56.38%

Table 2: Percentage of questions that have multi-
ple valid answers or answer spans

designed from real-world search engines and in-
volve a large number of passages retrieved from
the web. One difference of these two datasets is
that MS-MARCO mainly focuses on the English
web data, while DuReader is designed for Chinese
MRC. This diversity is expected to reflect the gen-
erality of our method. In terms of the data size,
MS-MARCO contains 102023 questions, each of
which is paired up with approximately 10 passages
for reading comprehension. As for DuReader, it
keeps the top-5 search results for each question
and there are totally 201574 questions.

One prerequisite for answer verification is that
there should be multiple correct answers so that
they can verify each other. Both the MS-MARCO
and DuReader datasets require the human annota-
tors to generate multiple answers if possible. Ta-
ble 2 shows the proportion of questions that have
multiple answers. However, the same answer that
occurs many times is treated as one single an-
swer here. Therefore, we also report the propor-
tion of questions that have multiple answer spans
to match with the human-generated answers. A
span is taken as valid if it can achieve F1 score
larger than 0.7 compared with any reference an-
swer. From these statistics, we can see that the
phenomenon of multiple answers is quite common
for both MS-MARCO and DuReader. These an-
swers will provide strong signals for answer veri-
fication if we can leverage them properly.

3.2 Implementation Details

For MS-MARCO, we preprocess the corpus with
the reversible tokenizer from Stanford CoreNLP
(Manning et al., 2014) and we choose the span that
achieves the highest ROUGE-L score with the ref-
erence answers as the gold span for training. We
employ the 300-D pre-trained Glove embeddings
(Pennington et al., 2014) and keep it fixed dur-
ing training. The character embeddings are ran-
domly initialized with its dimension as 30. For
DuReader, we follow the preprocessing described
in He et al. (2017).

We tune the hyper-parameters according to the
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Model ROUGE-L BLEU-1
FastQA Ext (Weissenborn et al., 2017) 33.67 33.93
Prediction (Wang and Jiang, 2016) 37.33 40.72
ReasoNet (Shen et al., 2017) 38.81 39.86
R-Net (Wang et al., 2017c) 42.89 42.22
S-Net (Tan et al., 2017) 45.23 43.78
Our Model 46.15 44.47
S-Net (Ensemble) 46.65 44.78
Our Model (Ensemble) 46.66 45.41
Human 47 46

Table 3: Performance of our method and competing models on the MS-MARCO test set

validation performance on the MS-MARCO de-
velopment set. The hidden size is set to be 150
and we apply L2 regularization with its weight as
0.0003. The task weights β1, β2 are both set to
be 0.5. To train our model, we employ the Adam
algorithm (Kingma and Ba, 2014) with the initial
learning rate as 0.0004 and the mini-batch size as
32. Exponential moving average is applied on all
trainable variables with a decay rate 0.9999.

Two simple yet effective technologies are em-
ployed to improve the final performance on these
two datasets respectively. For MS-MARCO, ap-
proximately 8% questions have the answers as Yes
or No, which usually cannot be solved by ex-
tractive approach (Tan et al., 2017). We address
this problem by training a simple Yes/No classi-
fier for those questions with certain patterns (e.g.,
starting with “is”). Concretely, we simply change
the output layer of the basic boundary model so
that it can predict whether the answer is “Yes”
or “No”. For DuReader, the retrieved document
usually contains a large number of paragraphs that
cannot be fed into MRC models directly (He et al.,
2017). The original paper employs a simple a
simple heuristic strategy to select a representative
paragraph for each document, while we train a
paragraph ranking model for this. We will demon-
strate the effects of these two technologies later.

3.3 Results on MS-MARCO

Table 3 shows the results of our system and other
state-of-the-art models on the MS-MARCO test
set. We adopt the official evaluation metrics, in-
cluding ROUGE-L (Lin, 2004) and BLEU-1 (Pa-
pineni et al., 2002). As we can see, for both met-
rics, our single model outperforms all the other
competing models with an evident margin, which
is extremely hard considering the near-human per-

Model BLEU-4 ROUGE-L
Match-LSTM 31.8 39.0
BiDAF 31.9 39.2
PR + BiDAF 37.55 41.81
Our Model 40.97 44.18
Human 56.1 57.4

Table 4: Performance on the DuReader test set

Model ROUGE-L ∆

Complete Model 45.65 -
Answer Verification 44.38 -1.27
Content Modeling 44.27 -1.38
Joint Training 44.12 -1.53
YesNo Classification 41.87 -3.78
Boundary Baseline 38.95 -6.70

Table 5: Ablation study on MS-MARCO develop-
ment set

formance. If we ensemble the models trained with
different random seeds and hyper-parameters, the
results can be further improved and outperform the
ensemble model in Tan et al. (2017), especially in
terms of the BLEU-1.

3.4 Results on DuReader

The results of our model and several baseline sys-
tems on the test set of DuReader are shown in
Table 4. The BiDAF and Match-LSTM models
are provided as two baseline systems (He et al.,
2017). Based on BiDAF, as is described in Section
3.2, we tried a new paragraph selection strategy
by employing a paragraph ranking (PR) model.
We can see that this paragraph ranking can boost
the BiDAF baseline significantly. Finally, we im-
plement our system based on this new strategy,
and our system (single model) achieves further im-
provement by a large margin.
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Question: What is the difference between a mixed and pure culture Scores
Answer Candidates: Boundary Content Verification
[1] A culture is a society’s total way of living and a society is a group . . . 1.0× 10−2 1.0× 10−1 1.1× 10−1

[2] The mixed economy is a balance between socialism and capitalism. 1.0× 10−4 4.0× 10−2 3.2× 10−2

[3] A pure culture is one in which only one kind of microbial species is . . . 5.5× 10−3 7.7× 10−2 1.2× 10−1

[4] A pure culture comprises a single species or strains. A mixed . . . 2.7× 10−3 8.1× 10−2 1.3× 10−1

[5] A pure culture is a culture consisting of only one strain. 5.8× 10−4 7.9× 10−2 5.1× 10−2

[6] A pure culture is one in which only one kind of microbial species . . . 5.8× 10−3 9.1× 10−2 2.7× 10−1

. . . . . . . . . . . .

Table 6: Scores predicted by our model for the answer candidates shown in Table 1. Although the
candidate [1] gets high boundary and content scores, the correct answer [6] is preferred by the verification
model and is chosen as the final answer.

4 Analysis and Discussion

4.1 Ablation Study

To get better insight into our system, we conduct
in-depth ablation study on the development set of
MS-MARCO, which is shown in Table 5. Fol-
lowing Tan et al. (2017), we mainly focus on the
ROUGE-L score that is averaged case by case.

We first evaluate the answer verification by ab-
lating the cross-passage verification model so that
the verification loss and verification score will not
be used during training and testing. Then we re-
move the content model in order to test the ne-
cessity of modeling the content of the answer.
Since we don’t have the content scores, we use the
boundary probabilities instead to compute the an-
swer representation for verification. Next, to show
the benefits of joint training, we train the bound-
ary model separately from the other two models.
Finally, we remove the yes/no classification in or-
der to show the real improvement of our end-to-
end model compared with the baseline method that
predicts the answer with only the boundary model.

From Table 5, we can see that the answer ver-
ification makes a great contribution to the overall
improvement, which confirms our hypothesis that
cross-passage answer verification is useful for the
multi-passage MRC. For the ablation of the con-
tent model, we analyze that it will not only af-
fect the content score itself, but also violate the
verification model since the content probabilities
are necessary for the answer representation, which
will be further analyzed in Section 4.3. Another
discovery is that jointly training the three mod-
els can provide great benefits, which shows that
the three tasks are actually closely related and can
boost each other with shared representations at
bottom layers. At last, comparing our method with
the baseline, we achieve an improvement of nearly

3 points without the yes/no classification. This
significant improvement proves the effectiveness
of our approach.

4.2 Case Study
To demonstrate how each module of our model
takes effect when predicting the final answer, we
conduct a case study in Table 6 with the same ex-
ample that we discussed in Section 1. For each
answer candidate, we list three scores predicted
by the boundary model, content model and veri-
fication model respectively.

On the one hand, we can see that these three
scores generally have some relevance. For exam-
ple, the second candidate is given lowest scores
by all the three models. We analyze that this is
because the models share the same encoding and
matching layers at bottom level and this relevance
guarantees that the content and verification mod-
els will not violate the boundary model too much.
On the other hand, we also see that the verifica-
tion score can really make a difference here when
the boundary model makes an incorrect decision
among the confusing answer candidates ([1], [3],
[4], [6]). Besides, as we expected, the verifica-
tion model tends to give higher scores for those an-
swers that have semantic commonality with each
other ([3], [4], [6]), which are all valid answers
in this case. By multiplying the three scores, our
model finally predicts the answer correctly.

4.3 Necessity of the Content Model
In our model, we compute the answer representa-
tion based on the content probabilities predicted
by a separate content model instead of directly us-
ing the boundary probabilities. We argue that this
content model is necessary for our answer verifica-
tion process. Figure 2 plots the predicted content
probabilities as well as the boundary probabilities
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Figure 2: The boundary probabilities and content probabilities for the words in a passage

for a passage. We can see that the boundary and
content probabilities capture different aspects of
the answer. Since answer candidates usually have
similar boundary words, if we compute the an-
swer representation based on the boundary prob-
abilities, it’s difficult to model the real difference
among different answer candidates. On the con-
trary, with the content probabilities, we pay more
attention to the content part of the answer, which
can provide more distinguishable information for
verifying the correct answer. Furthermore, the
content probabilities can also adjust the weights of
the words within the answer span so that unimpor-
tant words (e.g. “and” and “.”) get lower weights
in the final answer representation. We believe that
this refined representation is also good for the an-
swer verification process.

5 Related Work

Machine reading comprehension made rapid
progress in recent years, especially for single-
passage MRC task, such as SQuAD (Rajpurkar
et al., 2016). Mainstream studies (Seo et al., 2016;
Wang and Jiang, 2016; Xiong et al., 2016) treat
reading comprehension as extracting answer span
from the given passage, which is usually achieved
by predicting the start and end position of the an-
swer. We implement our boundary model sim-
ilarly by employing the boundary-based pointer
network (Wang and Jiang, 2016). Another inspir-
ing work is from Wang et al. (2017c), where the
authors propose to match the passage against it-
self so that the representation can aggregate evi-
dence from the whole passage. Our verification
model adopts a similar idea. However, we collect
information across passages and our attention is
based on the answer representation, which is much
more efficient than attention over all passages. For
the model training, Xiong et al. (2017) argues that
the boundary loss encourages exact answers at the

cost of penalizing overlapping answers. There-
fore they propose a mixed objective that incorpo-
rates rewards derived from word overlap. Our joint
training approach has a similar function. By tak-
ing the content and verification loss into consid-
eration, our model will give less loss for overlap-
ping answers than those unmatched answers, and
our loss function is totally differentiable.

Recently, we also see emerging interests in
multi-passage MRC from both the academic
(Dunn et al., 2017; Joshi et al., 2017) and indus-
trial community (Nguyen et al., 2016; He et al.,
2017). Early studies (Shen et al., 2017; Wang
et al., 2017c) usually concat those passages and
employ the same models designed for single-
passage MRC. However, more and more latest
studies start to design specific methods that can
read multiple passages more effectively. In the as-
pect of passage selection, Wang et al. (2017a) in-
troduced a pipelined approach that rank the pas-
sages first and then read the selected passages
for answering questions. Tan et al. (2017) treats
the passage ranking as an auxiliary task that can
be trained jointly with the reading comprehension
model. Actually, the target of our answer verifi-
cation is very similar to that of the passage se-
lection, while we pay more attention to the an-
swer content and the answer verification process.
Speaking of the answer verification, Wang et al.
(2017b) has a similar motivation to ours. They
attempt to aggregate the evidence from different
passages and choose the final answer from n-best
candidates. However, they implement their idea as
a separate reranking step after reading comprehen-
sion, while our answer verification is a component
of the whole model that can be trained end-to-end.

6 Conclusion

In this paper, we propose an end-to-end frame-
work to tackle the multi-passage MRC task . We
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creatively design three different modules in our
model, which can find the answer boundary, model
the answer content and conduct cross-passage an-
swer verification respectively. All these three
modules can be trained with different forms of the
answer labels and training them jointly can pro-
vide further improvement. The experimental re-
sults demonstrate that our model outperforms the
baseline models by a large margin and achieves
the state-of-the-art performance on two challeng-
ing datasets, both of which are designed for MRC
on real web data.
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