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Abstract

Stochastic Gradient Descent (SGD) with
negative sampling is the most prevalent
approach to learn word representations.
However, it is known that sampling meth-
ods are biased especially when the sam-
pling distribution deviates from the true
data distribution. Besides, SGD suffers
from dramatic fluctuation due to the one-
sample learning scheme. In this work, we
propose AllVec that uses batch gradient
learning to generate word representations
from all training samples. Remarkably,
the time complexity of AllVec remains at
the same level as SGD, being determined
by the number of positive samples rather
than all samples. We evaluate AllVec
on several benchmark tasks. Experiments
show that AllVec outperforms sampling-
based SGD methods with comparable ef-
ficiency, especially for small training cor-
pora.

1 Introduction

Representing words using dense and real-valued
vectors, aka word embeddings, has become the
cornerstone for many natural language processing
(NLP) tasks, such as document classification (Se-
bastiani, 2002), parsing (Huang et al., 2012), dis-
course relation recognition (Lei et al., 2017) and
named entity recognition (Turian et al., 2010).
Word embeddings can be learned by optimizing
that words occurring in similar contexts have sim-
ilar embeddings, i.e. the well-known distribu-
tional hypothesis (Harris, 1954). A representa-
tive method is skip-gram (SG) (Mikolov et al.,
2013a,b), which realizes the hypothesis using a
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(a) (b)
Figure 1: Impact of different settings of negative sampling on
skip-gram for the word analogy task on Text8. Clearly, the
accuracy depends largely on (a) the sampling size of negative
words, and (b) the sampling distribution (β = 0 means the
uniform distribution and β = 1 means the word frequency
distribution).

shallow neural network model. The other family
of methods is count-based, such as GloVe (Pen-
nington et al., 2014) and LexVec (Salle et al.,
2016a,b), which exploit low-rank models such as
matrix factorization (MF) to learn embeddings by
reconstructing the word co-occurrence statistics.

By far, most state-of-the-art embedding meth-
ods rely on SGD and negative sampling for opti-
mization. However, the performance of SGD is
highly sensitive to the sampling distribution and
the number of negative samples (Chen et al., 2018;
Yuan et al., 2016), as shown in Figure 1. Es-
sentially, sampling is biased, making it difficult
to converge to the same loss with all examples,
regardless of how many update steps have been
taken. Moreover, SGD exhibits dramatic fluc-
tuation and suffers from overshooting on local
minimums (Ruder, 2016). These drawbacks of
SGD can be attributed to its one-sample learning
scheme, which updates parameters based on one
training sample in each step.

To address the above-mentioned limitations of
SGD, a natural solution is to perform exact (full)
batch learning. In contrast to SGD, batch learning
does not involve any sampling procedure and com-
putes the gradient over all training samples. As
such, it can easily converge to a better optimum
in a more stable way. Nevertheless, a well-known
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difficulty in applying full batch learning lies in the
expensive computational cost for large-scale data.
Taking the word embedding learning as an exam-
ple, if the vocabulary size is |V |, then evaluating
the loss function and computing the full gradient
takes O(|V |2k) time, where k is the embedding
size. This high complexity is unaffordable in prac-
tice, since |V |2 can easily reach billion level or
even higher.

In this paper, we introduce AllVec, an exact and
efficient word embedding method based on full
batch learning. To address the efficiency challenge
in learning from all training samples, we devise
a regression-based loss function for word embed-
ding, which allows fast optimization with memo-
rization strategies. Specifically, the acceleration is
achieved by reformulating the expensive loss over
all negative samples using a partition and a decou-
ple operation. By decoupling and caching the bot-
tleneck terms, we succeed to use all samples for
each parameter update in a manageable time com-
plexity which is mainly determined by the positive
samples. The main contributions of this work are
summarized as follows:

• We present a fine-grained weighted least
square loss for learning word embeddings.
Unlike GloVe, it explicitly accounts for all
negative samples and reweights them with a
frequency-aware strategy.

• We propose an efficient and exact optimiza-
tion algorithm based on full batch gradient
optimization. It has a comparable time com-
plexity with SGD, but being more effective
and stable due to the consideration of all sam-
ples in each parameter update.

• We perform extensive experiments on several
benchmark datasets and tasks to demonstrate
the effectiveness, efficiency, and convergence
property of our AllVec method.

2 Related Work

2.1 Skip-gram with Negative Sampling

Mikolov et al. (2013a,b) proposed the skip-gram
model to learn word embeddings. SG formulates
the problem as a predictive task, aiming at predict-
ing the proper context c for a target word w within
a local window. To speed up the training process,
it applies the negative sampling (Mikolov et al.,
2013b) to approximate the full softmax. That is,

each positive (w, c) pair is trained with n ran-
domly sampled negative pairs (w,wi). The sam-
pled loss function of SG is defined as

LSG
wc =log σ(UwŨ

T
c )+

n∑
i=1

Ewi∼Pn(w) log σ(−UwŨ
T
wi

)

where Uw and Ũc denote the k-dimensional em-
bedding vectors for word w and context c. Pn(w)
is the distribution from which negative context wi
is sampled.

Plenty of research has been done based on SG,
such as the use of prior knowledge from another
source (Kumar and Araki, 2016; Liu et al., 2015a;
Bollegala et al., 2016), incorporating word type in-
formation (Cao and Lu, 2017; Niu et al., 2017),
character level n-gram models (Bojanowski et al.,
2016; Joulin et al., 2016) and jointly learning with
topic models like LDA (Shi et al., 2017; Liu et al.,
2015b).

2.2 Importance of the Sampling Distribution

Mikolov et al. (2013b) showed that the unigram
distribution raised to the 3/4th power as Pn(w)
significantly outperformed both the unigram and
the uniform distribution. This suggests that the
sampling distribution (of negative words) has a
great impact on the embedding quality. Further-
more, Chen et al. (2018) and Guo et al. (2018)
recently found that replacing the original sam-
pler with adaptive samplers could result in bet-
ter performance. The adaptive samplers are used
to find more informative negative examples dur-
ing the training process. Compared with the orig-
inal word-frequency based sampler, adaptive sam-
plers adapt to both the target word and the current
state of the model. They also showed that the fine-
grained samplers not only speeded up the conver-
gence but also significantly improved the embed-
ding quality. Similar observations were also found
in other fields like collaborative filtering (Yuan
et al., 2016). While being effective, it is proven
that negative sampling is a biased approximation
and does not converges to the same loss as the full
softmax — regardless of how many update steps
have been taken (Bengio and Senécal, 2008; Blanc
and Rendle, 2017).

2.3 Count-based Embedding Methods

Another line of research is the count-based em-
bedding, such as GloVe (Pennington et al., 2014).
GloVe performs a biased MF on the word-context
co-occurrence statistics, which is a common ap-
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proach in the field of collaborative filtering (Ko-
ren, 2008). However, GloVe only formulates the
loss on positive entries of the co-occurrence ma-
trix, meaning that negative signals about word-
context co-occurrence are discarded. A remedy
solution is LexVec (Salle et al., 2016a,b) which
integrates negative sampling into MF. Some other
methods (Li et al., 2015; Stratos et al., 2015;
Ailem et al., 2017) also use MF to approximate
the word-context co-occurrence statistics. Al-
though predictive models and count-based models
seem different at first glance, Levy and Goldberg
(2014) proved that SG with negative sampling is
implicitly factorizing a shifted pointwise mutual
information (PMI) matrix, which means that the
two families of embedding models resemble each
other to a certain degree.

Our proposed method departs from all above
methods by using the full batch gradient optimizer
to learn from all (positive and negative) samples.
We propose a fast learning algorithm to show that
such batch learning is not “heavy” even with tens
of billions of training examples.

3 AllVec Loss

In this work, we adopt the regression loss that is
commonly used in count-based models (Penning-
ton et al., 2014; Stratos et al., 2015; Ailem et al.,
2017) to perform matrix factorization on word co-
occurrence statistics. As highlighted, to retain the
modeling fidelity, AllVec eschews using any sam-
pling but optimizes the loss on all positive and
negative word-context pairs.

Given a word w and a symmetric window of
win contexts, the set of positive contexts can be
obtained by sliding through the corpus. Let c de-
note a specific context, Mwc be the number of co-
occurred (w, c) pairs in the corpus within the win-
dow. Mwc=0 means that the pair (w, c) has never
been observed, i.e. the negative signal. rwc is the
association coefficient between w and c, which is
calculated from Mwc. Specifically, we use r+wc to
denote the ground truth value for positive (w, c)
pairs and a constant value r−(e.g., 0 or -1) for neg-
ative ones since there is no interaction between w
and c in negative pairs. Finally, with all positive
and negative pairs considered, a regular loss func-
tion can be given as Eq.(1), where V is the vocab-
ulary and S is the set of positive pairs. α+

wc and
α−wc represent the weight for positive and negative

(w, c) pairs, respectively.

L =
∑

(w,c)∈S

α+
wc(r

+
wc − UwŨ

T
c )2

︸ ︷︷ ︸
LP

+
∑

(w,c)∈(V×V )\S

α−wc(r
− − UwŨ

T
c )2

︸ ︷︷ ︸
LN

(1)

When it comes to r+wc, there are several choices.
For example, GloVe applies the log of Mwc with
bias terms for w and c. However, research from
Levy and Goldberg (2014) showed that the SG
model with negative sampling implicitly factorizes
a shifted PMI matrix. The PMI value for a (w, c)
pair can be defined as

PMIwc = log
P (w, c)

P (w)P (c)
= log

MwcM∗∗
Mw∗M∗c

(2)

where ‘*’ denotes the summation of all corre-
sponding indexes (e.g., Mw∗=

∑
c∈V Mwc). In-

spired by this connection, we set r+wc as the posi-
tive point-wise mutual information (PPMI) which
has been commonly used in the NLP literature
(Stratos et al., 2015; Levy and Goldberg, 2014).
Sepcifically, PPMI is the positive version of PMI
by setting the negative values to zero. Finally, r+wc
is defined as

r+wc = PPMIwc = max(PMIwc, 0) (3)

3.1 Weighting Strategies

Regarding α+
wc, we follow the design in GloVe,

where it is defined as

α+
wc =

{
(Mwc/xmax)ρ Mwc < xmax

1 Mwc ≥ xmax
(4)

As for the weight for negative instances α−wc, con-
sidering that there is no interaction between w and
negative c, we set α−wc as α−c (or α−w), which means
that the weight is determined by the word itself
rather than the word-context interaction. Note that
either α−wc = α−c or α−wc = α−w does not in-
fluence the complexity of AllVec learning algo-
rithm described in the next section. The design of
α−c is inspired by the frequency-based oversam-
pling scheme in skip-gram and missing data re-
weighting in recommendation (He et al., 2016).
The intuition is that a word with high frequency
is more likely to be a true negative context word
if there is no observed word-context interactions.
Hence, to effectively differentiate the positive and
negative examples, we assign a higher weight for
the negative examples that have a higher word fre-
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quency, and a smaller weight for infrequent words.
Formally, α−wc is defined as

α−wc = α−c = α0
M δ
∗c∑

c∈V M
δ
∗c

(5)

where α0 can be seen as a global weight to control
the overall importance of negative samples. α0 =
0 means that no negative information is utilized in
the training. The exponent δ is used for smoothing
the weights. Specially, δ = 0 means a uniform
weight for all negative examples and δ = 1 means
that no smoothing is applied.

4 Fast Batch Gradient Optimization

Once specifying the loss function, the main chal-
lenge is how to perform an efficient optimization
for Eq.(1). In the following, we develop a fast
batch gradient optimization algorithm that is based
on a partition reformulation for the loss and a de-
couple operation for the inner product.

4.1 Loss Partition

As can be seen, the major computational cost in
Eq.(1) lies in the term LN , because the size of
(V×V ) \S is very huge, which typically contains
over billions of negative examples. To this end, we
show our first key design that separates the loss of
negative samples into the difference between the
loss on all samples and that on positive samples1.
The loss partition serves as the prerequisite for the
efficient computation of full batch gradients.

LN=
∑
w∈V

∑
c∈V

α−c (r−−UwŨ
T
c )2−

∑
(w,c)∈S

α−c (r−− UwŨ
T
c )2 (6)

By replacing LN in Eq.(1) with Eq.(6), we can ob-
tain a new loss function with a more clear struc-
ture. We further simplify the loss function by
merging the terms on positive examples. Finally,
we achieve a reformulated loss

L =
∑
w∈V

∑
c∈V

α−c (r−−UwŨ
T
c )

2

︸ ︷︷ ︸
LA

+
∑

(w,c)∈S

(α+
wc − α−c )(∆− UwŨ

T
c )

2

︸ ︷︷ ︸
L

P
′

+C
(7)

where ∆ = (α+
wcr

+
wc − α−c r

−)/(α+
wc − α−c ). It

can be seen that the new loss function consists of
two components: the loss LA on the whole V ×V
training examples and LP ′ on positive examples.
The major computation now lies in LA which has

1The idea here is similar to that used in (He et al., 2016;
Li et al., 2016) for a different problem.

a time complexity of O(k|V |2). In the following,
we show how to reduce the huge volume of com-
putation by a simple mathematical decouple.

4.2 Decouple

To clearly show the decouple operation, we
rewrite LA as L̃A by omitting the constant term
α−c (r−)2. Note that uwd and ũcd denote the d-th
element in Uw and Ũc, respectively.

L̃A =
∑
w∈V

∑
c∈V

α−c

k∑
d=0

uwdũcd

k∑
d′=0

uwd′ ũcd′

− 2r−
∑
w∈V

∑
c∈V

α−c

k∑
d=0

uwdũcd

(8)

Now we show our second key design that is based
on a decouple manipulation for the inner product
operation. Interestingly, we observe that the sum-
mation operator and elements in Uw and Ũc can
be rearranged by the commutative property (Dai
et al., 2007), as shown below.

L̃A =

k∑
d=0

k∑
d′=0

∑
w∈V

uwduwd′
∑
c∈V

α−c ũcdũcd′

− 2r−
k∑

d=0

∑
w∈V

uwd

∑
c∈V

α−c ũcd

(9)

An important feature in Eq.(9) is that the original
inner product terms are disappeared, while in the
new equation

∑
c∈V α

−
c ũcdũcd′ and

∑
c∈V α

−
c ũcd

are “constant” values relative to uwduwd′ and
uwd respectively. This means that they can be
pre-calculated before training in each iteration.
Specifically, we define pwdd′ , p

c
dd′ , q

w
d and qcd as the

pre-calculated terms

pwdd′ =
∑
w∈V

uwduwd′ qwd =
∑
w∈V

uwd

pcdd′ =
∑
c∈V

α−c ũcdũcd′ qcd =
∑
c∈V

α−c ũcd

(10)

Then the computation of L̃A can be simplified to∑k
d=0

∑k
d′=0 p

w
dd′p

c
dd′ − 2r−qwd q

c
d.

It can be seen that the time complexity to com-
pute all pwdd′ is O(|V |k2), and similarly, O(|V |k2)
for pcdd′ andO(|V |k) for qwd and qcd. With all terms
pre-calculated before each iteration, the time com-
plexity of computing L̃A is justO(k2). As a result,
the total time complexity of computing LA is de-
creased toO(2|V |k2+2|V |k+k2) ≈ O(2|V |k2),
which is much smaller than the originalO(k|V |2).
Moreover, it’s worth noting that our efficient com-
putation for L̃A is strictly equal to its original
value, which means AllVec does not introduce any
approximation in evaluating the loss function.

Finally, we can derive the batch gradients for
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uwd and ũcd as
∂L

∂uwd
=

k∑
d′=0

uwd′p
c
dd′ −

∑
c∈I+w

Λ · ũcd − r−qcd

∂L

∂ũcd
=

k∑
d′=0

ũcd′p
w
dd′α

−
c−

∑
w∈I+c

Λ · uwd − r−α−c qwd

(11)

where I+w denotes the set of positive contexts for
w, I+c denotes the set of positive words for c and
Λ = (α+

wc−α−c )(∆−UwŨTc ). Algorithm 1 shows
the training procedure of AllVec.

Algorithm 1 AllVec learning

Input: corpus Γ, win, α0, δ, iter, learning rate η
Output: embedding matrices U and Ũ

1: Build vocabulary V from Γ
2: Obtain all positive (w, c) and Mwc from Γ
3: Compute all r+wc, α

+
wc and α−c

4: Initialize U and Ũ
5: for i = 1, ..., iter do
6: for d ∈ {0, .., k} do
7: Compute and store qcd .O(|V |k)

8: for d′ ∈ {0, .., k} do
9: Compute and store pcdd′ .O(|V |k2)

10: end for
11: end for
12: for w ∈ V do
13: Compute Λ .O(|S|k)

14: for d ∈ {0, .., k} do
15: Update uwd .O(|S|k + |V |k2)

16: end for
17: end for
18: Repeat 6-17 for ũcd .O(2|S|k+2|V |k2)

19: end for

4.3 Time Complexity Analysis

In the following, we show that AllVec can achieve
the same time complexity with negative sampling
based SGD methods.

Given the sample size n, the total time com-
plexity for SG is O((n + 1)|S|k), where n + 1
denotes n negative samples and 1 positive exam-
ple. Regarding the complexity of AllVec, we can
see that the overall complexity of Algorithm 1 is
O(4|S|k + 4|V |k2).

For the ease of discussion, we denote c as the
average number of positive contexts for a word in
the training corpus, i.e. |S| = c|V | (c ≥ 1000 in
most cases). We then obtain the ratio

4|S|k + 4|V |k2

(n+ 1)|S|k
=

4

n+ 1
(1 +

k

c
) (12)

where k is typically set from 100 to 300 (Mikolov
et al., 2013a; Pennington et al., 2014), resulting in
k ≤ c. Hence, we can give the lower and upper
bound for the ratio:

4

n+1
<

4|S|k+4|V |k2

(n+1)|S|k =
4

n+1
(1+

k

c
)≤ 8

n+1
(13)

The above analysis suggests that the complexity
of AllVec is same as that of SGD with negative
sample size between 3 and 7. In fact, considering
that c is much larger than k in most datasets, the
major cost of AllVec comes from the part 4|S|k
(see Section 5.4 for details), which is linear with
respect to the number of positive samples.

5 Experiments

We conduct experiments on three popular evalua-
tion tasks, namely word analogy (Mikolov et al.,
2013a), word similarity (Faruqui and Dyer, 2014)
and QVEC (Tsvetkov et al., 2015).

Word analogy task. The task aims to answer
questions like, “a is to b as c is to ?”. We adopt
the Google testbed2 which contains 19, 544 such
questions in two categories: semantic and syntac-
tic. The semantic questions are usually analogies
about people or locations, like “king is to man as
queen is to ?”, while the syntactic questions fo-
cus on forms or tenses, e.g., “swimming is to swim
as running to ?”.

Word similarity tasks. We perform evalua-
tion on six datasets, including MEN (Bruni et al.,
2012), MC (Miller and Charles, 1991), RW (Lu-
ong et al., 2013), RG (Rubenstein and Good-
enough, 1965), WS-353 Similarity (WSim) and
Relatedness (WRel) (Finkelstein et al., 2001).
We compute the spearman rank correlation be-
tween the similarity scores calculated based on the
trained embeddings and human labeled scores.

QVEC. QVEC is an intrinsic evaluation met-
ric of word embeddings based on the alignment
to features extracted from manually crafted lexi-
cal resources. QVEC has shown strong correlation
with the performance of embeddings in several se-
mantic tasks (Tsvetkov et al., 2015).

We compare AllVec with the following word
embedding methods.

• SG: This is the original skip-gram model with
SGD and negative sampling (Mikolov et al.,
2013a,b).
• SGA: This is the skip-gram model with an

adaptive sampler (Chen et al., 2018).
2https://code.google.com/archive/p/word2vec/
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Table 1: Corpora statistics.

Corpus Tokens Vocab Size

Text8 17M 71K 100M
NewsIR 78M 83K 500M
Wiki-sub 0.8B 190K 4.0G
Wiki-all 2.3B 200K 13.4G

• GloVe: This method applies biased MF on
the positive samples of word co-occurrence
matrix (Pennington et al., 2014).
• LexVec: This method applies MF on the

PPMI matrix. The optimization is done with
negative sampling and mini-batch gradient
descent (Salle et al., 2016b).

For all baselines, we use the original implementa-
tion released by the authors.

5.1 Datasets and Experimental Setup

We evaluate the performance of AllVec on four
real-world corpora, namely Text83, NewsIR4,
Wiki-sub and Wiki-all. Wiki-sub is a subset of
2017 Wikipedia dump5. All corpora have been
pre-processed by a standard pipeline (i.e. remov-
ing non-textual elements, lowercasing and tok-
enization). Table 1 summarizes the statistics of
these corpora.

To obtain Mwc for positive (w, c) pairs, we fol-
low GloVe where word pairs that are xwords apart
contribute 1/x to Mwc. The window size is set as
win = 8. Regarding α+

wc, we set xmax = 100
and ρ = 0.75. For a fair comparison, the embed-
ding size k is set as 200 for all models and cor-
pora. AllVec can be easily trained by AdaGrad
(Zeiler, 2012) like GloVe or Newton-like (Bayer
et al., 2017; Bradley et al., 2011) second order
methods. For models based on negative sampling
(i.e. SG, SGA and LexVec), the sample size is set
as n = 25 for Text8, n = 10 for NewsIR and
n = 5 for Wiki-sub and Wiki-all. The setting is
also suggested by Mikolov et al. (2013b). Other
detailed hyper-parameters are reported in Table 2.

5.2 Accuracy Comparison

We present results on the word analogy task in
Table 2. As shown, AllVec achieves the high-
est total accuracy (Tot.) in all corpora, particu-

3http://mattmahoney.net/dc/text8.zip
4http://research.signalmedia.co/newsir16/signal-

dataset.html
5https://dumps.wikimedia.org/enwiki/

larly in smaller corpora (Text8 and NewsIR). The
reason is that in smaller corpora the number of
positive (w, c) pairs is very limited, thus making
use of negative examples will bring more benefits.
Similar reason also explains the poor accuracy of
GloVe in Text8, because GloVe does not consider
negative samples. Even in the very large corpus
(Wiki-all), ignoring negative samples still results
in sub-optimal performance.

Our results also show that SGA achieves better
performance than SG, which demonstrates the im-
portance of a good sampling strategy. However,
regardless what sampler (except the full softmax
sampling) is utilized and how many updates are
taken, sampling is still a biased approach. AllVec
achieves the best performance because it is trained
on the whole batch data for each parameter update
rather than a fraction of sampled data.

Another interesting observation is AllVec per-
forms better in semantic tasks in general. The rea-
son is that our model utilizes global co-occurrence
statistics, which capture more semantic signals
than syntactic signals. While both AllVec and
GloVe use global contexts, AllVec performs much
better than GloVe in syntactic tasks. We argue
that the main reason is because AllVec can dis-
till useful signals from negative examples, while
GloVe simply ignores all negative information.
By contrast, local-window based methods, such
as SG and SGA, are more effective to capture
local sentence features, resulting in good perfor-
mance on syntactic analogies. However, Rekabsaz
et al. (2017) argues that these local-window based
methods may suffer from the topic shifting issue.

Table 3 and Table 4 provide results in the word
similarity and QVEC tasks. We can see that Al-
lVec achieves the best performance in most tasks,
which admits the advantage of batch learning with
all samples. Interestingly, although GloVe per-
forms well in semantic analogy tasks, it shows
extremely worse results in word similarity and
QVEC. The reason shall be the same as that it per-
forms poorly in syntactic tasks.

5.3 Impact of α−c
In this subsection, we investigate the impact of the
proposed weighting scheme for negative (context)
words. We show the performance change of word
analogy tasks on NewsIR in Figure 2 by tuning α0

and δ. Results in other corpora show similar trends
thus are omitted due to space limitation.
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Table 2: Results (“Tot.” denotes total accuracy) on the word analogy task.

Corpus
Text8 NewsIR

para. Sem. Syn. Tot. para. Sem. Syn. Tot.

SG 1e-4 8 25 47.51 32.26 38.60 1e-5 10 10 70.81 47.48 58.10
SGA 6e-3 - - 48.10 33.78 39.74 6e-3 - - 71.74 48.71 59.20

GloVe 10 15 1 45.11 26.89 34.47 50 8 1 78.79 41.58 58.52
LexVec 1e-4 25 - 51.87 31.78 40.14 1e-5 10 - 76.11 39.09 55.95
AllVec 350 0.75 - 56.66 32.42 42.50 100 0.8 - 78.47 48.33 61.57

Wiki-sub Wiki-all

SG 1e-5 10 5 72.05 55.88 63.24 1e-5 10 5 73.91 61.91 67.37
SGA 6e-3 - - 73.93 56.10 63.81 6e-3 - - 75.11 61.94 67.92

GloVe 100 8 1 77.22 53.16 64.13 100 8 1 77.38 58.94 67.33
LexVec 1e-5 5 - 75.95 52.78 63.33 1e-5 5 - 76.31 56.83 65.48
AllVec 100 0.75 - 76.66 54.72 64.75 50 0.75 - 77.64 60.96 68.52

The parameter columns (para.) for each model are given from left to right as follows. SG: subsampling of frequent words,
window size and the number of negative samples; SGA: λ (Chen et al., 2018) that controls the distribution of the rank,
the other parameters are the same with SG; GloVe: xmax, window size and symmetric window; LexVec: subsampling of
frequent words and the number of negative samples; AllVec: the negative weight α0 and δ. Boldface denotes the highest
total accuracy.

Figure 2(a) shows the impact of the overall
weight α0 by setting δ as 0.75 (inspired by the set-
ting of skip-gram). Clearly, we observe that all
results (including semantic, syntactic and total ac-
curacy) have been greatly improved when α0 in-
creases from 0 to a larger value. As mentioned
before, α0 = 0 means that no negative informa-
tion is considered. This observation verifies that
negative samples are very important for learning
good embeddings. It also helps to explain why
GloVe performs poorly on syntactic tasks. In addi-
tion, we find that in all corpora the optimal results
are usually obtained when α0 falls in the range
of 50 to 400. For example, in the NewIR corpus
as shown, AllVec achieves the best performance
when α0 = 100. Figure 2(b) shows the impact of
δ with α0 = 100. As mentioned before, δ = 0 de-
notes a uniform value for all negative words and
δ = 1 denotes that no smoothing is applied to
word frequency. We can see that the total accuracy
is only around 55% when δ = 0. By increasing
its value, the performance is gradually improved,
achieving the highest score when δ is around 0.8.
Further increase of δ will degrade the total accu-
racy. This analysis demonstrates the effectiveness
of the proposed negative weighting scheme.

5.4 Convergence Rate and Runtime

Figure 3(a) compares the convergence between
AllVec and GloVe on NewsIR. Clearly, AllVec ex-

(a) (b)
Figure 2: Effect of α0 and δ on NewsIR.

(a) (b)
Figure 3: Convergence and runtime.

hibits a more stable convergence due to its full
batch learning. In contrast, GloVe has a more
dramatic fluctuation because of the one-sample
learning scheme. Figure 3(b) shows the relation-
ship between the embedding size k and runtime
on NewsIR. Although the analysis in Section 4.3
demonstrates that the time complexity of AllVec
is O(4|S|k + 4|V |k2), the actual runtime shows
a near linear relationship with k. This is because
4|V |k2/4|S|k = k/c, where c generally ranges
from 1000 ∼ 6000 and k is set from 200 to 300
in practice. The above ratio explains the fact that
4|S|k dominates the complexity, which is linear
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Table 3: Results on the word similarity task.

Corpus
Text8 NewsIR

MEN MC RW RG WSim WRel MEN MC RW RG WSim WRel

SG .6868 .6776 .3336 .6904 .7082 .6539 .7293 .7328 .3705 .7184 .7176 .6147
SGA .6885 .6667 .3399 .7035 .7291 .6708 .7409 .7513 .3797 .7508 .7442 .6398

GloVe .4999 .3349 .2614 .3367 .5168 .5115 .5839 .5637 .2487 .6284 .6029 .5329
LexVec .6660 .6267 .2935 .6076 .7005 .6862 .7301 .8403 .3614 .8341 .7404 .6545
AllVec .6966 .6975 .3424 .6588 .7484 .7002 .7407 .7642 .4610 .7753 .7453 .6322

Wiki-sub Wiki-all

SG .7532 .7943 .4250 .7555 .7627 .6563 .7564 .8083 .4311 .7678 .7662 .6485
SGA .7465 .7983 .4296 .7623 .7715 .6560 .7577 .7940 .4379 .7683 .7110 .6488

GloVe .6898 .6963 .3184 .7041 .6669 .5629 .7370 .7767 .3197 .7499 .7359 .6336
LexVec .7318 .7591 .4225 .7628 .7292 .6219 .7256 .8219 .4383 .7797 .7548 .6091
AllVec .7155 .8305 .4667 .7945 .7675 .6459 .7396 .7840 .4966 .7800 .7492 .6518

Table 4: Results on QVEC.

Qvec Text8 NewsIR Wiki-sub Wiki-all

SG .3999 .4182 .4280 .4306
SGA .4062 .4159 .4419 .4464

GloVe .3662 .3948 .4174 .4206
LexVec .4211 .4172 .4332 .4396
AllVec .4211 .4319 .4351 .4489

with k and |S|.
We also compare the overall runtime of AllVec

and SG on NewsIR and show the results in Table
5. As can be seen, the runtime of AllVec falls in
the range of SG-3 and SG-7 in a single iteration,
which confirms the theoretical analysis in Section
4.3. In contrast with SG, AllVec needs more itera-
tions to converge. The reason is that each parame-
ter in SG is updated many times during each iter-
ation, although only one training example is used
in each update. Despite this, the total run time of
AllVec is still in a feasible range. Assuming the
convergence is measured by the number of param-
eter updates, our AllVec yields a much faster con-
vergence rate than the one-sample SG method.

In practice, the runtime of our model in each it-
eration can be further reduced by increasing the
number of parallel workers. Although baseline
methods like SG and GloVe can also be paral-
lelized, the stochastic gradient steps in these meth-
ods unnecessarily influence each other as there is
no exact way to separate these updates for differ-
ent workers. In other words, the parallelization of
SGD is not well suited to a large number of work-

Table 5: Comparison of runtime.

Model SI Iter Tot.

SG-3 259s 15 65m
SG-7 521s 15 131m
SG-10 715s 15 179m
AllVec 388s 50 322m

SG-n represents n negative samples for skip-gram,
SI represents the runtime for a single iteration, and
Tot. denotes the total runtime. All models are of
embedding size 200 and trained with 8 threads.

ers. In contrast, the parameter updates in AllVec
are completely independent of each other, there-
fore AllVec does not have the update collision is-
sue. This means we can achieve the embarrassing
parallelization by simply separating the updates
by words; that is, letting different workers update
the model parameters for disjoint sets of words.
As such, AllVec can provide a near linear scaling
without any approximation since there is no poten-
tial conflicts between updates.

6 Conclusion

In this paper, we presented AllVec, an efficient
batch learning based word embedding model that
is capable to leverage all positive and negative
training examples without any sampling and ap-
proximation. In contrast with models based on
SGD and negative sampling, AllVec shows more
stable convergence and better embedding quality
by the all-sample optimization. Besides, both the-
oretical analysis and experiments demonstrate that
AllVec achieves the same time complexity with
the classic SGD models. In future, we will extend
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our proposed all-sample learning scheme to deep
learning methods, which are more expressive than
the shallow embedding model. Moreover, we will
integrate prior knowledge, such as the words that
are synonyms and antonyms, into the word em-
bedding process. Lastly, we are interested in ex-
ploring the recent adversarial learning techniques
to enhance the robustness of word embeddings.
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