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Abstract

In neural machine translation, a source se-
quence of words is encoded into a vector
from which a target sequence is generated
in the decoding phase. Differently from
statistical machine translation, the associa-
tions between source words and their pos-
sible target counterparts are not explicitly
stored. Source and target words are at the
two ends of a long information process-
ing procedure, mediated by hidden states
at both the source encoding and the target
decoding phases. This makes it possible
that a source word is incorrectly translated
into a target word that is not any of its ad-
missible equivalent counterparts in the tar-
get language.

In this paper, we seek to somewhat
shorten the distance between source and
target words in that procedure, and thus
strengthen their association, by means of a
method we term bridging source and target
word embeddings. We experiment with
three strategies: (1) a source-side bridging
model, where source word embeddings are
moved one step closer to the output target
sequence; (2) a target-side bridging model,
which explores the more relevant source
word embeddings for the prediction of the
target sequence; and (3) a direct bridging
model, which directly connects source and
target word embeddings seeking to mini-
mize errors in the translation of ones by
the others.

Experiments and analysis presented in
this paper demonstrate that the proposed
bridging models are able to significantly
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Figure 1: Schematic representation of seq2seq
NMT, where x1, ...,z and hq, ..., hy represent
source-side word embeddings and hidden states
respectively, c; represents a source-side context
vector, s; a target-side decoder RNN hidden state,
and y; a predicted word. Seeking to shorten the
distance between source and target word embed-
dings, in what we term bridging, is the key insight
for the advances presented in this paper.

improve quality of both sentence transla-
tion, in general, and alignment and transla-
tion of individual source words with target
words, in particular.

1 Introduction

Neural machine translation (NMT) is an end-
to-end approach to machine translation that has
achieved competitive results vis-a-vis statisti-
cal machine translation (SMT) on various lan-
guage pairs (Bahdanau et al., 2015; Cho et al.,,
2014; Sutskever et al., 2014; Luong and Man-
ning, 2015). In NMT, the sequence-to-sequence
(seq2seq) model learns word embeddings for both
source and target words synchronously. However,
as illustrated in Figure 1, source and target word
embeddings are at the two ends of a long informa-
tion processing procedure. The individual associ-
ations between them will gradually become loose
due to the separation of source-side hidden states
(represented by hq, ..., A7 in Fig. 1) and a target-
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Reference two warring sides in sri lanka agreed to hold talks in geneva late this month
Baseline ~ sir lanka UNK to hold talks in geneva eos

T
source 7L A U7 R A(this) A (month) 7 #flate) ££ H AT %A eos
(@)

Reference  french athletes participating in special winter olympics returned to paris with honors
Baseline the french athletes , who have participated in the disabled , have returned to paris . eos

Source Bl BkiE N K4 Hwinter olympics) ) #[E 355 5t £ A{honors) &[] 1 eos
(b)

Figure 2: Examples of NMT output with incorrect
alignments of source and target words that can-
not be the translation of each other in any possible
context.

side hidden state (represented by s; in Fig. 1). As
a result, in the absence of a more tight interaction
between source and target word pairs, the seq2seq
model in NMT produces tentative translations that
contain incorrect alignments of source words with
target counterparts that are non-admissible equiv-
alents in any possible translation context.

Differently from SMT, in NMT an attention
model is adopted to help align output with input
words. The attention model is based on the es-
timation of a probability distribution over all in-
put words for each target word. Word alignments
with attention weights can then be easily deduced
from such distributions and support the transla-
tion. Nevertheless, sometimes one finds trans-
lations by NMT that contain surprisingly wrong
word alignments, that would unlikely occur in
SMT.

For instance, Figure 2 shows two Chinese-
to-English translation examples by NMT. In the
top example, the NMT seq2seq model incorrectly
aligns the target side end of sentence mark eos to
N E)/late with a high attention weight (0.80 in this
example) due to the failure of appropriately cap-
turing the similarity, or the lack of it, between the
source word | ‘H)/late and the target eos. It is also
worth noting that, as 4%/this and A /month end up
not being translated in this example, inappropriate
alignment of target side eos is likely the respon-
sible factor for under translation in NMT as the
decoding process ends once a target eos is gener-
ated. Statistics on our development data show that
as much as 50% of target side eos do not properly
align to source side eos.

The second example in Figure 2 shows another
case where source words are translated into tar-
get items that are not their possible translations in
that or in any other context. In particular, &
2> /winter olympics is incorrectly translated into a

target comma . and ;2 /honors into have.

In this paper, to address the problem illustrated
above, we seek to shorten the distance within the
seq2seq NMT information processing procedure
between source and target word embeddings. This
is a method we term as bridging, and can be con-
ceived as strengthening the focus of the attention
mechanism into more translation-plausible source
and target word alignments. In doing so, we hope
that the seq2seq model is able to learn more appro-
priate word alignments between source and target
words.

We propose three simple yet effective strategies
to bridge between word embeddings. The inspir-
ing insight in all these three models is to move
source word embeddings closer to target word em-
beddings along the seq2seq NMT information pro-
cessing procedure. We categorize these strategies
in terms of how close the source and target word
embeddings are along that procedure, schemati-
cally depicted in Fig. 1.

(1) Source-side bridging model: Our first strat-
egy for bridging, which we call source-side
bridging, is to move source word embeddings
just one step closer to the target end. Each
source word embedding is concatenated with
the respective source hidden state at the same
position so that the attention model can more
closely benefit from source word embeddings
to produce word alignments.

(2) Target-side bridging model: In a second
more bold strategy, we seek to incorporate rel-
evant source word embeddings more closely
into the prediction of the next target hid-
den state. In particular, the most appropriate
source words are selected according to their
attention weights and they are made to more
closely interact with target hidden states.

(3) Direct bridging model: The third model con-
sists of directly bridging between source and
target word embeddings. The training objec-
tive is optimized towards minimizing the dis-
tance between target word embeddings and
their most relevant source word embeddings,
selected according to the attention model.

Experiments on Chinese-English translation
with extensive analysis demonstrate that directly
bridging word embeddings at the two ends can
produce better word alignments and thus achieve
better translation.
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Figure 3: Architecture of the source-side bridging
model.

a1 Atz ar

Figure 4: Architecture of target-side bridging
model.

2 Bridging Models

As suggested by Figure 1, there may exist different
ways to bridge between x and y;. We concentrate
on the folowing three bridging models.

2.1 Source-side Bridging Model

Figure 3 illustrates the source-side bridging
model. The encoder reads a word sequence
equipped with word embeddings and generates a
word annotation vector for each position. Then
we simply concatenate the word annotation vec-
tor with its corresponding word embedding as
the final annotation vector. For example, the fi-
nal annotation vector h; for the word z; in Fig-

ure 3 is [hj; hj; x;], where the first two sub-items

[hj; hj] are the source-side forward and back-
ward hidden states and x; is the corresponding
word embedding. In this way, the word embed-
dings will not only have a more strong contribu-
tion in the computation of attention weights, but
also be part of the annotation vector to form the
weighted source context vector and consequently
have a more strong impact in the prediction of tar-
get words.

2.2 Target-side Bridging Model

While the above source-side bridging method uses
the embeddings of all words for every target
word, in the target-side method only more rel-
evant source word embeddings for bridging are
explored, rather than all of them. This is par-

word embedding loss
!

Decoder

argmax;(a.;)

Figure 5: Architecture of direct bridging model.

tially inspired by the word alignments from SMT,
where words from the two ends are paired as they
are possible translational equivalents of each other
and those pairs are explicitly recorded and enter
into the system inner workings. In particular, for
a given target word, we explicitly determine the
most likely source word aligned to it and use the
word embedding of this source word to support the
prediction of the target hidden state of the next tar-
get word to be generated.

Figure 4 schematically illustrates the target-side
bridging method, where the input for computing
the hidden state s; of the decoder is augmented by
T4+, as follows:

st = f(St—1,Yt—1,Ct, Tx) ()

where x,; is the word embedding of the se-
lected source word which has the highest attention
weight:

t* = arg max; (o) 2)

where ay; is the attention weight of each hidden
state h; computed by the attention model

2.3 Direct Bridging Model

Further to the above two bridging methods, which
use source word embeddings to predict target
words, we seek to bridge the word embeddings of
the two ends in a more direct way. This is done by
resorting to an auxiliary objective function to nar-
row the discrepancy between word embeddings of
the two sides.

Figure 5 is a schematic representation of our
direct bridging method, with an auxiliary objec-
tive function. More specifically, the goal is to let
the learned word embeddings on the two ends be
transformable, i.e. if a target word e; aligns with
a source word f;, a transformation matrix W is
learned with the hope that the discrepancy of Wx;
and y; tends to be zero. Accordingly, we update
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the objective function of training for a single sen-
tence with its following extended formulation:

Ty
L(0) = - Z(logp(yt|y<t,:v) — Wz — ytHQ)

t=1
3)

where log p(y¢|y<t,z) is the original objective
function of the NMT model, and the term
Wz — y¢|> measures and penalizes the differ-
ence between target word 1, and its aligned source
word x4+, i.e. the one with the highest attention
weight, as computed in Equation 2. Similar to Mi
et al. (2016), we view the two parts of the loss in
Equation 3 as equally important.

At this juncture, it is worth noting the following:

e QOur direct bridging model is an extension of
the source-side bridging model, where the
source word embeddings are part of the fi-
nal annotation vector of the encoder. We
have also tried to place the auxiliary object
function directly on the NMT baseline model.
However, our empirical study showed that the
combined objective consistently worsens the
translation quality. We blame this on that the
learned word embeddings on two sides by the
baseline model are too heterogeneous to be
constrained.

e Rather than using a concrete source word em-
bedding x;+ in Equation 3, we could also use
a weighted sum of source word embeddings,
ie. > ;O h;. However, our preliminary ex-
periments showed that the performance gap
between these two methods is very small.
Therefore, we use x4+ to calculate the new
training objective as shown in Equation 3 in
all experiments.

3 Experiments

As we have presented above three different meth-
ods to bridge between source and target word em-
beddings, in the present section we report on a se-
ries of experiments on Chinese to English transla-
tion that are undertaken to assess the effectiveness
of those bridging methods.

3.1 Experimental Settings

We resorted to Chinese-English bilingual corpora
that contain 1.25M sentence pairs extracted from

LDC corpora, with 27.9M Chinese words and
34.5M English words respectively.! We chose the
NISTO06 dataset as our development set, and the
NISTO02, NISTO03, NIST04, NISTO8 datasets as
our test sets.

We used the case-insensitive 4-gram NIST
BLEU score as our evaluation metric (Papineni
et al.,, 2002) and the script ‘mteval-vl1b.pl’ to
compute BLEU scores. We also report TER scores
on our dataset (Snover et al., 2006).

For the efficient training of the neural net-
works, we limited the source (Chinese) and target
(English) vocabularies to the most frequent 30k
words, covering approximately 97.7% and 99.3%
of the two corpora respectively. All the out-of-
vocabulary words were mapped to the special to-
ken UNK. The dimension of word embedding was
620 and the size of the hidden layer was 1000. All
other settings were the same as in Bahdanau et al.
(2015). The maximum length of sentences that we
used to train the NMT model in our experiments
was set to 50, for both the Chinese and English
sides. Additionally, during decoding, we used the
beam-search algorithm and set the beam size to 10.
The model parameters were selected according to
the maximum BLEU points on the development
set.

We compared our proposed models against the
following two systems:

e cdec (Dyer et al., 2010): this is an open
source hierarchical phrase-based SMT sys-
tem (Chiang, 2007) with default configura-
tion and a 4-gram language model trained on
the target side of the training data.

o RNNSearch*: this is an attention-based
NMT system, taken from the dl4mt tutorial
with slight changes. It improves the atten-
tion model by feeding the lastly generated
word. For the activation function f of an
RNN, we use the gated recurrent unit (GRU)
(Chung et al., 2014). Dropout was applied
only on the output layer and the dropout
(Hinton et al., 2012) rate was set to 0.5.
We used the stochastic gradient descent algo-
rithm with mini-batch and Adadelta (Zeiler,
2012) to train the NMT models. The mini-
batch was set to 80 sentences and decay rates

' The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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Model NIST06 NIST02 NIST03 NIST04 NISTO0S | Avg
cdec (SMT) 34.00 35.81 34.70 37.15 25.28 33.23
RNNSearch* 3592 37.88 36.21 38.83 26.30 34.81
BLEU | Source bridging | 36.79% 38.71% 37.24% 40.28% 27.40% 3591
Target bridging | 36.69 39.04% 37.63% 40.41% 27.981 36.27
Direct bridging | 36.97% 39.77% 38.02% 40.83% 27.85% 36.62
cdec (SMT) 58.29 59.65 59.28 58.12 61.54 59.64
RNNSearch* 59.56 57.79 59.25 57.88 64.22 59.78
TER Source bridging | 58.13 56.25 57.33 56.32 62.13 58.01
Target bridging | 58.01 56.27 57.76 56.33 62.12 58.12
Direct bridging | 57.20 56.68 57.29 55.62 62.49 58.02

Table 1: BLEU and TER scores on the NIST Chinese-English translation tasks. The BLEU scores are
case-insensitive. Avg means the average scores on all test sets. “1”: statistically better than RNNSearch*
(p < 0.01). Higher BLEU (or lower TER) scores indicate better translation quality.

p and € of Adadelta were set to 0.95 and
10-S.

For our NMT system with the direct bridging
model, we use a simple pre-training strategy to
train our model. We first train a regular attention-
based NMT model, then use this trained model
to initialize the parameters of the NMT system
equipped with the direct bridging model and ran-
domly initialize the additional parameters of the
direct bridging model in this NMT system. The
reason of using pre-training strategy is that the em-
bedding loss requires well-trained word alignment
as a starting point.

3.2 Experimental Results

Table 1 displays the translation performance mea-
sured in terms of BLEU and TER scores. Clearly,
every one of the three NMT models we proposed,
with some bridging method, improve the transla-
tion accuracy over all test sets in comparison to
the SMT (cdec) and NMT (RNNSearch*) baseline
systems.

Parameters

The three proposed models introduce new param-
eters in different ways. The source-side bridg-
ing model augments source hidden states from a
dimension of 2,000 to 2,620, requiring 3.7M ad-
ditional parameters to accommodate the hidden
states that are appended. The target-side bridg-
ing model introduces 1.8M additional parameters
for catering x4+ in calculating target side state, as
in Equation 1. Based on the source-side bridging
model, the direct bridging model requires extra
0.4M parameters (i.e. the transformation matrix
W in Equation 3 is 620 * 620), resulting in 4.1M
additional parameters over the baseline. Given
that the baseline model has 74.8M parameters, the

System Percentage (%)
RNNSearch* 49.82
Direct bridging 81.30

Table 2: Percentage of target side eos translated
from source side eos on the development set.

size of extra parameters in our proposed models
are comparably small.

Comparison with the baseline systems

The results in Table 1 indicate that all NMT sys-
tems outperform the SMT system taking into ac-
count the evaluation metrics considered, BLEU
and TER. This is consistent with other studies on
Chinese to English machine translation (Mi et al.,
2016; Tu et al., 2016; Li et al., 2017). Addi-
tionally, all the three NMT models with bridging
mechanisms we proposed outperform the baseline
NMT model RNNSearch*.

With respect to BLEU scores, we observe a con-
sistent trend that the target-side bridging model
works better than the source-side bridging model,
while the direct bridging model achieves the best
accuracy over all test sets, with the only exception
of NIST MT 08. On all test sets, the direct bridg-
ing model outperforms the baseline RNNSearch*
by 1.81 BLEU points and outperforms the other
two bridging-improved NMT models by 0.4~0.6
BLEU points.

Though all models are not tuned on TER score,
our three models perform favorably well with sim-
ilar average improvement, of about 1.70 TER
points, below the baseline model.

4 Analysis

As the direct bridging system proposed achieves
the best performance, we further look at it and at
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Source POS Tag

System Target POS Tag Y N CD I AD

v 6495 - - - 1209

N 731 3924 - - -
«

RNNSearch CD - 33.37  53.40 - -
17 - 26.79 - 14.67 -

v 6629 - - - 1054
) o N 7.19  39.71 - - -
Direct bridging CD _ 3225 56.29 - -
17 - 26.12 - 15.22 -

Table 3: Confusion matrix for translation by POS, in percentage. To cope with fine-grained differences
among verbs (e.g., VV, VC and VE in Chinese, and VB, VBD, VBP, etc. in English), we merge all
verbs into V. Similarly, we merged all nouns into N. CD stands for Cardinal numbers, JJ for adjectives or
modifiers, AD for adverbs. These POS tags exist in both Chinese and English. For the sake of simplicity,
for each target POS tag, we present only the two source POS tags that are more frequently aligned with

it.

the RNNSearch* baseline system to gain further
insight on how bridging may help in translation.
Our approach presents superior results along all
the dimensions assessed.

4.1 Analysis of Word Alignment

Since our improved model strengthens the focus
of attention between pairs of translation equiva-
lents by explicitly bridging source and target word
embeddings, we expect to observe improved word
alignment quality. The quality of the word align-
ment is examined from the following three as-
pects.

Better eos translation

As a special symbol marking the end of sentence,
target side eos has a critical impact on controlling
the length of the generated translation. A target
eos is a correct translation when is aligned with
the source eos. Table 2 displays the percentage of
target side eos that are translations of the source
side eos. It indicates that our model improved with
bridging substantially achieves better translation
of source eos.

Better word translation

To have a further insight into the quality of word
translation, we group generated words by their
part-of-speech (POS) tags and examine the POS
of their aligned source words. 2

Table 3 is a confusion matrix for translations by
POS. For example, under RNNSearch*, 64.95%
of target verbs originate from verbs in the source

>We used Stanford POS tagger (Toutanova et al., 2003)
to get POS tags for the words in source sentences and their
translations.

System SAER AER
RNNSearch* 62.68  47.61
Direct bridging  59.72  44.71

Table 4: Alignment error rate (AER) and soft
AER. quality. A lower score indicates better align-
ment.

side. This is enhanced to 66.29% in our direct
bridging model. From the data in that table, one
observes that in general more target words align to
source words with the same POS tags in our im-
proved system than in the baseline system.

Better word alignment

Next we report on the quality of word alignment
taking into account a manually aligned dataset,
from Liu and Sun (2015), which contains 900
manually aligned Chinese-English sentence pairs.
We forced the decoder to output reference trans-
lations in order to get automatic alignments be-
tween input sentences and their reference trans-
lations yielded by the translation systems. To
evaluate alignment performance, we measured the
alignment error rate (AER) (Och and Ney, 2003)
and the soft AER (SAER) (Tu et al., 2016), which
are registered in Table 4.

The data in this Table 4 indicate that, as ex-
pected, bridging improves the alignment quality
as a consequence of its favoring of a stronger re-
lationship between the source and target word em-
beddings of translational equivalents.

4.2 Analysis of Long Sentence Translation

Following Bahdanau et al. (2015), we partition
sentences by their length and compute the respec-
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Figure 6: BLEU scores for the translation of sen-
tences with different lengths.

tive BLEU scores, which are presented in Fig-
ure 6. These results indicate that our improved
system outperforms RNNSearch* for all the sen-
tence lengths. They also reveal that the perfor-
mance drops substantially when the length of the
input sentence increases. This trend is consistent
with the findings in (Cho et al., 2014; Tu et al.,
2016; Li et al., 2017).

One also observes that the NMT systems per-
form very badly on sentences of length over 50,
when compared to the performance of the baseline
SMT system (cdec). We think that the degradation
of NMT systems performance over long sentences
is due to the following reasons: (1) during training,
the maximum source sentence length limit is set
to 50, thus making the learned models not ready
to cope well with sentences over this maximum
length limit; (2) for long input sentences, NMT
systems tend to stop early in the generation of the
translation.

4.3 Analysis of Over and Under Translation

To assess the expectation that improved translation
of eos improves the appropriate termination of the
translations generated by the decoder, we analyze
the performance of our best model with respect to
over translation and under translation, which are
both notoriously a hard problem for NMT.

To estimate the over translation generated by an
NMT system, we follow Li et al. (2017) and report
the ratio of over translation (ROT)?, which is com-
puted as the total number of times of over transla-
tion of words in a word set (e.g., all nouns in the
source part of the test set) divided by the number
of words in the word set.

Table 5 displays ROTs of words grouped by
some prominent POS tags. These data indicate
that both systems have higher over translation with
proper nouns (NR) and other nouns (NN) than

3please refer to (Li et al., 2017) for more details of ROT.

System POS ROT(%)

NN 8.63

NR 12.92
RNNSearch* DT 4.01
CD 7.05
ALL 5.28
NN 7.56

NR 10.88
Direct bridging | DT 2.37
CD 4.79
ALL 4.49

Table 5: Ratios of over translation (ROT) on test
sets. NN stands for nouns excluding proper nouns
and temporal nouns, NR for proper nouns, DT for
determiners, and CD for cardinal numbers.

System 1-gram BLEU
cdec (SMT) 77.09
RNNSearch* 72.70
Direct bridging 74.22

Table 6: 1-gram BLEU scores averaged on test
sets, supporting the assessment of under transla-
tion. A larger score indicates less under transla-
tion.

with other POS tags, which is consistent with the
results in (Li et al., 2017). The likely reason is that
these two POS tags usually have more unknown
words, which are words that tend to be over trans-
lated. Importantly, these data also show that our
direct bridging model alleviates the over transla-
tion issue by 15%, as ROT drops from 5.28% to
4.49%.

While it is hard to obtain an accurate estima-
tion of under translation, we simply report 1-gram
BLEU score that measures how many words in the
translation outcome appear in the reference trans-
lation, roughly indicating the proportion of source
words that are translated. Table 6 presents the av-
erage 1-gram BLEU scores on our test datasets.
These data indicate that our improved system has
a higher score than RNNSearch*, suggesting that
it is less prone to under translation.

It is also worth noting that the SMT baseline
(cdec) presents the highest 1-gram BLEU score,
as expected, given that under translation is known
to be less of an issue for SMT.

4.4 Analysis of Learned Word Embeddings

In the direct bridging model, we introduced a
transformation matrix to convert a source-side
word embedding into its counterpart on the target
side. We seek now to assess the contribution of
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Src Transformation Lexical Table

= is is

] and and

X and and

B will will

= will will

countries countries
RIE development development
7 economic economic
R question issue
AR people people

Table 7: Top 10 more frequent source words and
their closest translations obtained, respectively, by
embedding transformation in NMT and from the
lexical translation table in SMT.

this transformation. Given a source word z;, we
obtain its closest target word y™* via:

y* = argmin, (|wx; — y|) ()]

Table 7 lists the 10 more frequent source words
and their corresponding closest target words. For
the sake of comparison, it also displays their most
likely translations from the lexical translation ta-
ble in SMT. These results suggest that the closest
target words obtained via the transformation ma-
trix of our direct bridging method are very con-
sistent with those obtained from the SMT lexical
table, containing only admissible translation pairs.
These data thus suggest that our improved model
has a good capability of capturing the translation
equivalence between source and target word em-
beddings.

5 Related Work

Since the pioneer work of Bahdanau et al. (2015)
to jointly learning alignment and translation in
NMT, many effective approaches have been pro-
posed to further improve the alignment quality.

The attention model plays a crucial role in the
alignment quality and thus its enhancement has
continuously attracted further efforts. To obtain
better attention focuses, Luong et al. (2015) pro-
pose global and local attention models; and Cohn
et al. (2016) extend the attentional model to in-
clude structural biases from word based alignment
models, including positional bias, Markov condi-
tioning, fertility and agreement over translation di-
rections.

In contrast, we did not delve into the attention
model or sought to redesign it in our new bridg-
ing proposal. And yet we achieve enhanced align-

ment quality by inducing the NMT model to cap-
ture more favorable pairs of words that are trans-
lation equivalents of each other under the effect of
the bridging mechanism.

Recently there have been also studies towards
leveraging word alignments from SMT models.
Mi et al. (2016) and Liu et al. (2016) use pre-
obtained word alignments to guide the NMT atten-
tion model in the learning of favorable word pairs.
Arthur et al. (2016) leverage a pre-obtained word
dictionary to constrain the prediction of target
words. Despite these approaches having a some-
what similar motivation of using pairs of transla-
tion equivalents to benefit the NMT translation, in
our new bridging approach we do not use extra re-
sources in the NMT model, but let the model itself
learn the similarity of word pairs from the training
data. 4

Besides, there exist also studies on the learning
of cross-lingual embeddings for machine transla-
tion. Mikolov et al. (2013) propose to first learn
distributed representation of words from large
monolingual data, and then learn a linear map-
ping between vector spaces of languages. Gehring
et al. (2017) introduce source word embeddings to
predict target words. These approaches are some-
what similar to our source-side bridging model.
However, inspired by the insight of shortening the
distance between source and target embeddings in
the seq2seq processing chain, in the present paper
we propose more strategies to bridge source and
target word embeddings and with better results.

6 Conclusion

We have presented three models to bridge source
and target word embeddings for NMT. The three
models seek to shorten the distance between
source and target word embeddings along the
extensive information procedure in the encoder-
decoder neural network.

Experiments on Chinese to English translation
shows that the proposed models can significantly
improve the translation quality. Further in-depth
analysis demonstrate that our models are able (1)
to learn better word alignments than the baseline
NMT, (2) to alleviate the notorious problems of
over and under translation in NMT, and (3) to learn
direct mappings between source and target words.

“Though the pre-obtained word alignments or word dic-
tionaries can be learned from MT training data in an unsuper-
vised fashion, these are still extra knowledge with respect to
to the NMT models.
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In future work, we will explore further strate-
gies to bridge the source and target side for
sequence-to-sequence and tree-based NMT. Addi-
tionally, we also intend to apply these methods to
other sequence-to-sequence tasks, including natu-
ral language conversation.
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