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Abstract

Small perturbations in the input can
severely distort intermediate representa-
tions and thus impact translation quality of
neural machine translation (NMT) mod-
els. In this paper, we propose to improve
the robustness of NMT models with adver-
sarial stability training. The basic idea is
to make both the encoder and decoder in
NMT models robust against input pertur-
bations by enabling them to behave sim-
ilarly for the original input and its per-
turbed counterpart. Experimental results
on Chinese-English, English-German and
English-French translation tasks show that
our approaches can not only achieve sig-
nificant improvements over strong NMT
systems but also improve the robustness of
NMT models.

1 Introduction

Neural machine translation (NMT) models have
advanced the state of the art by building a sin-
gle neural network that can better learn represen-
tations (Cho et al., 2014; Sutskever et al., 2014).
The neural network consists of two components:
an encoder network that encodes the input sen-
tence into a sequence of distributed representa-
tions, based on which a decoder network generates
the translation with an attention model (Bahdanau
etal., 2015; Luong et al., 2015). A variety of NMT
models derived from this encoder-decoder frame-
work have further improved the performance of
machine translation systems (Gehring et al., 2017;
Vaswani et al., 2017). NMT is capable of general-
izing better to unseen text by exploiting word simi-
larities in embeddings and capturing long-distance
reordering by conditioning on larger contexts in a
continuous way.

Input tamen bupa kunnan zuochu weiqi Al

Output They are not afraid of difficulties to
make Go Al

Input | tamen buwei kunnan zuochu weiqi Al.

Output | They are not afraid to make Go Al

Table 1: The non-robustness problem of neural
machine translation. Replacing a Chinese word
with its synonym (i.e., “bupa” — “buwei’’) leads to
significant erroneous changes in the English trans-
lation. Both “bupa” and “buwei” can be translated
to the English phrase “be not afraid of”’

However, studies reveal that very small changes
to the input can fool state-of-the-art neural net-
works with high probability (Goodfellow et al.,
2015; Szegedy et al., 2014). Belinkov and Bisk
(2018) confirm this finding by pointing out that
NMT models are very brittle and easily falter
when presented with noisy input. In NMT, due
to the introduction of RNN and attention, each
contextual word can influence the model predic-
tion in a global context, which is analogous to the
“butterfly effect.” As shown in Table 1, although
we only replace a source word with its synonym,
the generated translation has been completely dis-
torted. We investigate severe variations of trans-
lations caused by small input perturbations by re-
placing one word in each sentence of a test set with
its synonym. We observe that 69.74% of transla-
tions have changed and the BLEU score is only
79.01 between the translations of the original in-
puts and the translations of the perturbed inputs,
suggesting that NMT models are very sensitive to
small perturbations in the input. The vulnerabil-
ity and instability of NMT models limit their ap-
plicability to a broader range of tasks, which re-
quire robust performance on noisy inputs. For ex-
ample, simultaneous translation systems use auto-
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matic speech recognition (ASR) to transcribe in-
put speech into a sequence of hypothesized words,
which are subsequently fed to a translation sys-
tem. In this pipeline, ASR errors are presented as
sentences with noisy perturbations (the same pro-
nunciation but incorrect words), which is a signif-
icant challenge for current NMT models. More-
over, instability makes NMT models sensitive to
misspellings and typos in text translation.

In this paper, we address this challenge with
adversarial stability training for neural machine
translation. The basic idea is to improve the ro-
bustness of two important components in NMT:
the encoder and decoder. To this end, we pro-
pose two approaches to constructing noisy inputs
with small perturbations to make NMT models re-
sist them. As important intermediate representa-
tions encoded by the encoder, they directly deter-
mine the accuracy of final translations. We intro-
duce adversarial learning to make behaviors of the
encoder consistent for both an input and its per-
turbed counterpart. To improve the stability of the
decoder, our method jointly maximizes the likeli-
hoods of original and perturbed data. Adversarial
stability training has the following advantages:

1. Improving both the robustness and transla-
tion performance: Our adversarial stability
training is capable of not only improving the
robustness of NMT models but also achiev-
ing better translation performance.

2. Applicable to arbitrary noisy perturbations:
In this paper, we propose two approaches to
constructing noisy perturbations for inputs.
However, our training framework can be eas-
ily extended to arbitrary noisy perturbations.
Especially, we can design task-specific per-
turbation methods.

3. Transparent to network architectures: Our
adversarial stability training does not depend
on specific NMT architectures. It can be ap-
plied to arbitrary NMT systems.

Experiments on Chinese-English, English-
French and English-German translation tasks
show that adversarial stability training achieves
significant improvements across different lan-
guages pairs. Our NMT system outperforms
the state-of-the-art RNN-based NMT system
(GNMT) (Wu et al., 2016) and obtains compara-
ble performance with the CNN-based NMT sys-

tem (Gehring et al., 2017). Related experimen-
tal analyses validate that our training approach can
improve the robustness of NMT models.

2 Background

NMT is an end-to-end framework which directly
optimizes the translation probability of a target
sentence y = i, ..., YN given its corresponding

source sentence X = 1, ..., Tj/:
N
P(y[x;0) = [ P(unly<n.x;0) e))
n=1

where 0 is a set of model parameters and y,, is a
partial translation. P(y|x; @) is defined on a holis-
tic neural network which mainly includes two core
components: an encoder encodes a source sen-
tence x into a sequence of hidden representations
Hy, = Hy,...,H),, and a decoder generates the
n-th target word based on the sequence of hidden
representations:

P(yn|Y<n7 X3 0) 08 eXp{g(yn—la Sn, Hx; 0)} 2)

where s,, is the n-th hidden state on target side.
Thus the model parameters of NMT include the
parameter sets of the encoder 6.y, and the decoder
Odec: @ = {Oenc, Ogec }- The standard training ob-
jective is to minimize the negative log-likelihood
of the training corpus S = {(x(*), y(5)>}|s‘§:‘1:

6 = argmin/L(x,y;0)
0
= argmin{ Z —log P(y|x; 0)} )
O Cixyes

Due to the vulnerability and instability of deep
neural networks, NMT models usually suffer from
a drawback: small perturbations in the input can
dramatically deteriorate its translation results. Be-
linkov and Bisk (2018) point out that character-
based NMT models are very brittle and easily fal-
ter when presented with noisy input. We find
that word-based and subword-based NMT mod-
els also confront with this shortcoming, as shown
in Table 1. We argue that the distributed repre-
sentations should fulfill the stability expectation,
which is the underlying concept of the proposed
approach. Recent work has shown that adversar-
ially trained models can be made robust to such
perturbations (Zheng et al., 2016; Madry et al.,
2018). Inspired by this, in this work, we im-
prove the robustness of encoder representations
against noisy perturbations with adversarial learn-

ing (Goodfellow et al., 2014).
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Figure 1: The architecture of NMT with adversar-
ial stability training. The dark solid arrow lines
represent the forward-pass information flow for
the input sentence x, while the red dashed arrow
lines for the noisy input sentence x’, which is
transformed from x by adding small perturbations.

3 Approach

3.1 Overview

The goal of this work is to propose a general ap-
proach to make NMT models learned to be more
robust to input perturbations. Our basic idea is
to maintain the consistency of behaviors through
the NMT model for the source sentence x and its
perturbed counterpart x’. As aforementioned, the
NMT model contains two procedures for project-
ing a source sentence x to its target sentence y:
the encoder is responsible for encoding x as a se-
quence of representations Hy, while the decoder
outputs y with Hy as input. We aim at learning
the perturbation-invariant encoder and decoder.

Figure 1 illustrates the architecture of our ap-
proach. Given a source sentence x, we construct a
set of perturbed sentences N '(x), in which each
sentence x’ is constructed by adding small per-
turbations to x. We require that x’ is a subtle
variation from x and they have similar semantics.
Given the input pair (x, x’), we have two expecta-
tions: (1) the encoded representation Hy should
be close to Hy; and (2) given H,/, the decoder is
able to generate the robust output y. To this end,
we introduce two additional objectives to improve
the robustness of the encoder and decoder:

* Linv(x,%’) to encourage the encoder to out-
put similar intermediate representations Hy
and H, for x and x’ to achieve an invariant

encoder, which benefits outputting the same
translations. We cast this objective in the ad-
versarial learning framework.

* Luoisy(X',y) to guide the decoder to generate
output y given the noisy input x’, which is
modeled as — log P(y|x’). It can also be de-
fined as KL divergence between P(y|x) and
P(y|x’) that indicates using P(y|x) to teach

P(y|x').

As seen, the two introduced objectives aim to im-
prove the robustness of the NMT model which can
be free of high variances in target outputs caused
by small perturbations in inputs. It is also natural
to introduce the original training objective £(x,y)
on x and y, which can guarantee good transla-
tion performance while keeping the stability of the
NMT model.

Formally, given a training corpus S, the adver-
sarial stability training objective is

J(0)
= Z (»Ctrue (X, Y; Oenm edeC)

(x,y)eS

+«o Z ﬁinv (X7 X/; eenm adis)
x'eN(x)

+0 Z Enoisy (X/7 Y Ocnc, edec)) 4)
x'eN(x)

where Lirue (X, y) and Lyoisy (X', y) are calculated
using Equation 3, and L, (x,x’) is the adversar-
ial loss to be described in Section 3.3. « and
control the balance between the original transla-
tion task and the stability of the NMT model. 8 =
{Oecnc, Odec, Oqis } are trainable parameters of the
encoder, decoder, and the newly introduced dis-
criminator used in adversarial learning. As seen,
the parameters of encoder Oy, and decoder 0 4ec
are trained to minimize both the translation loss
Lirue(x,y) and the stability losses (Lnoisy (X', y)
and Liny (x,x)).

Since L’noisy(x’ ,y) evaluates the translation
loss on the perturbed neighbour x’ and its corre-
sponding target sentence y, it means that we aug-
ment the training data by adding perturbed neigh-
bours, which can potentially improve the transla-
tion performance. In this way, our approach not
only makes the output of NMT models more ro-
bust, but also improves the performance on the
original translation task.
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In the following sections, we will first describe
how to construct perturbed inputs with different
strategies to fulfill different goals (Section 3.2),
followed by the proposed adversarial learning
mechanism for the perturbation-invariant encoder
(Section 3.3). We conclude this section with the
training strategy (Section 3.4).

3.2 Constructing Perturbed Inputs

At each training step, we need to generate a per-
turbed neighbour set N (x) for each source sen-
tence x for adversarial stability training. In this
paper, we propose two strategies to construct the
perturbed inputs at multiple levels of representa-
tions.

The first approach generates perturbed neigh-
bours at the lexical level. Given an input sentence
x, we randomly sample some word positions to
be modified. Then we replace words at these posi-
tions with other words in the vocabulary according
to the following distribution:

olx) = exp {cos (E[x;], E[x])
P(z|xi) 2 zev,\x; exp {cos (E[x;], E[z])} (5)

where E|[x;] is the word embedding for word x;,
V. \x; is the source vocabulary set excluding the
word x;, and cos (E[x;], E[z]) measures the simi-
larity between word x; and z. Thus we can change
the word to another word with similar semantics.
One potential problem of the above strategy is
that it is hard to enumerate all possible positions
and possible types to generate perturbed neigh-
bours. Therefore, we propose a more general ap-
proach to modifying the sentence at the feature
level. Given a sentence, we can obtain the word
embedding for each word. We add the Gaussian
noise to a word embedding to simulate possible
types of perturbations. That is
E[x)] = E[x;] + €,

(2

e ~ N(0,0°1) (6)

where the vector € is sampled from a Gaussian dis-
tribution with variance 2. ¢ is a hyper-parameter.
We simply introduce Gaussian noise to all of word
embeddings in x.

The proposed scheme is a general framework
where one can freely define the strategies to con-
struct perturbed inputs. We just present two pos-
sible examples here. The first strategy is poten-
tially useful when the training data contains noisy
words, while the latter is a more general strategy

to improve the robustness of common NMT mod-
els. In practice, one can design specific strategies
for particular tasks. For example, we can replace
correct words with their homonyms (same pronun-
ciation but different meanings) to improve NMT
models for simultaneous translation systems.

3.3 Adversarial Learning for the
Perturbation-invariant Encoder

The goal of the perturbation-invariant encoder is
to make the representations produced by the en-
coder indistinguishable when fed with a correct
sentence x and its perturbed counterpart x’, which
is directly beneficial to the output robustness of
the decoder. We cast the problem in the adversar-
ial learning framework (Goodfellow et al., 2014).
The encoder serves as the generator G, which de-
fines the policy that generates a sequence of hid-
den representations Hy given an input sentence x.
We introduce an additional discriminator D to dis-
tinguish the representation of perturbed input H,/
from that of the original input Hy. The goal of
the generator GG (i.e., encoder) is to produce sim-
ilar representations for x and x’ which could fool
the discriminator, while the discriminator D tries
to correctly distinguish the two representations.
Formally, the adversarial learning objective is

Einv (X, Xl; Henc, adis)
= Ex.s[-log D(G(x))] +
IEx’fv./\/(x) [_ 10g(1 - D(G(X,)))] (7)

The discriminator outputs a classification score
given an input representation, and tries to max-
imize D(G(x)) to 1 and minimize D(G(x’)) to
0. The objective encourages the encoder to output
similar representations for x and x’, so that the
discriminator fails to distinguish them.

The training procedure can be regarded as a
min-max two-player game. The encoder parame-
ters Oy are trained to maximize the loss function
to fool the discriminator. The discriminator pa-
rameters 64;s are optimized to minimize this loss
for improving the discriminating ability. For ef-
ficiency, we update both the encoder and the dis-
criminator simultaneously at each iteration, rather
than the periodical training strategy that is com-
monly used in adversarial learning. Lamb et al.
(2016) also propose a similar idea to use Professor
Forcing to make the behaviors of RNNs be indis-
tinguishable when training and sampling the net-
works.
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3.4 Training

As shown in Figure 1, our training objective in-
cludes three sets of model parameters for three
modules. We use mini-batch stochastic gradient
descent to optimize our model. In the forward
pass, besides a mini-batch of x and y, we also
construct a mini-batch consisting of the perturbed
neighbour x’ and y. We propagate the informa-
tion to calculate these three loss functions accord-
ing to arrows. Then, gradients are collected to up-
date three sets of model parameters. Except for
the gradients of L;,, with respect to Oy are mul-
tiplying by —1, other gradients are normally back-
propagated. Note that we update 0y, and Oy si-
multaneously for training efficiency.

4 Experiments

4.1 Setup

We evaluated our adversarial stability training on
translation tasks of several language pairs, and re-
ported the 4-gram BLEU (Papineni et al., 2002)
score as calculated by the multi-bleu.perl script.
Chinese-English We used the LDC corpus con-
sisting of 1.25M sentence pairs with 27.9M Chi-
nese words and 34.5M English words respectively.
We selected the best model using the NIST 2006
set as the validation set (hyper-parameter opti-
mization and model selection). The NIST 2002,
2003, 2004, 2005, and 2008 datasets are used as
test sets.

English-German We used the WMT 14 corpus
containing 4.5M sentence pairs with 118M En-
glish words and 111M German words. The vali-
dation set is newstest2013, and the test set is new-
stest2014.

English-French We used the IWSLT corpus
which contains 0.22M sentence pairs with 4.03M
English words and 4.12M French words. The
IWLST corpus is very dissimilar from the NIST
and WMT corpora. As they are collected from
TED talks and inclined to spoken language,
we want to verify our approaches on the non-
normative text. The IWSLT 14 test set is taken
as the validation set and 15 test set is used as the
test set.

For English-German and English-French, we
tokenize both English, German and French words
using tokenize.perl script. We follow Sen-
nrich et al. (2016b) to split words into sub-
word units. The numbers of merge operations
in byte pair encoding (BPE) are set to 30K,

40K and 30K respectively for Chinese-English,
English-German, and English-French. We re-
port the case-sensitive tokenized BLEU score for
English-German and English-French and the case-
insensitive tokenized BLEU score for Chinese-
English.

Our baseline system is an in-house NMT sys-
tem. Following Bahdanau et al. (2015), we im-
plement an RNN-based NMT in which both the
encoder and decoder are two-layer RNNs with
residual connections between layers (He et al.,
2016b). The gating mechanism of RNNs is gated
recurrent unit (GRUs) (Cho et al., 2014). We
apply layer normalization (Ba et al., 2016) and
dropout (Hinton et al., 2012) to the hidden states
of GRUs. Dropout is also added to the source and
target word embeddings. We share the same ma-
trix between the target word embeedings and the
pre-softmax linear transformation (Vaswani et al.,
2017). We update the set of model parameters us-
ing Adam SGD (Kingma and Ba, 2015). Its learn-
ing rate is initially set to 0.05 and varies according
to the formula in Vaswani et al. (2017).

Our adversarial stability training initializes the
model based on the parameters trained by maxi-
mum likelihood estimation (MLE). We denote ad-
versarial stability training based on lexical-level
perturbations and feature-level perturbations re-
spectively as ASTiexical and ASTfeature. We only
sample one perturbed neighbour x’ € N (x) for
training efficiency. For the discriminator used in
Linv, we adopt the CNN discriminator proposed
by Kim (2014) to address the variable-length prob-
lem of the sequence generated by the encoder. In
the CNN discriminator, the filter windows are set
to 3, 4, 5 and rectified linear units are applied af-
ter convolution operations. We tune the hyper-
parameters on the validation set through a grid
search. We find that both the optimal values of
« and [ are set to 1.0. The standard variance in
Gaussian noise used in the formula (6) is set to
0.01. The number of words that are replaced in
the sentence x during lexical-level perturbations is
taken as max(0.2|x/, 1) in which |x] is the length
of x. The default beam size for decoding is 10.

4.2 Translation Results

4.2.1 NIST Chinese-English Translation

Table 2 shows the results on Chinese-English
translation. Our strong baseline system signifi-
cantly outperforms previously reported results on
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System | Training | MT06 | MT02 MTO03 MT04 MTO05 MTO8

Shen et al. (2016) | MRT 37.34 | 40.36 4093 41.37 38.81 29.23
Wang et al. (2017) | MLE 3729 | - 3935 41.15 38.07 -
Zhang et al. (2018) | MLE 38.38 | - 40.02 4232 38.84 -

MLE 41.38 | 43.52 4150 43.64 41.58 31.60

this work ASTiexical | 43.57 | 44.82 4295 4505 4345 3485

ASTfeature | 4444 | 46.10 4407 45.61 44.06 34.94

Table 2: Case-insensitive BLEU scores on Chinese-English translation.
System ‘ Architecture Training BLEU

Shen et al. (2016) Gated RNN with 1 layer MRT 20.45
Luong et al. (2015) LSTM with 4 layers MLE 20.90
Kalchbrenner et al. (2017) | ByteNet with 30 layers MLE 23.75
Wang et al. (2017) DeepLAU with 4 layers MLE 23.80
Wu et al. (2016) LSTM with 8 layers RL 24.60
Gehring et al. (2017) CNN with 15 layers MLE 25.16
Vaswani et al. (2017) Self-attention with 6 layers | MLE 28.40
MLE 24.06
this work Gated RNN with 2 layers ASTiexical | 25.17
ASTfeature | 25.26

Table 3: Case-sensitive BLEU scores on WMT 14 English-German translation.

Training tst2014  tst2015
MLE 36.92  36.90
ASTlexical | 37.35 37.03
ASTfeature | 38.03  37.64

Table 4: Case-sensitive BLEU scores on IWSLT
English-French translation.

Chinese-English NIST datasets trained on RNN-
based NMT. Shen et al. (2016) propose minimum
risk training (MRT) for NMT, which directly op-
timizes model parameters with respect to BLEU
scores. Wang et al. (2017) address the issue of
severe gradient diffusion with linear associative
units (LAU). Their system is deep with an encoder
of 4 layers and a decoder of 4 layers. Zhang et al.
(2018) propose to exploit both left-to-right and
right-to-left decoding strategies for NMT to cap-
ture bidirectional dependencies. Compared with
them, our NMT system trained by MLE outper-
forms their best models by around 3 BLEU points.
We hope that the strong baseline systems used in
this work make the evaluation convincing.

We find that introducing adversarial stability
training into NMT can bring substantial improve-
ments over previous work (up to +3.16 BLEU

points over Shen et al. (2016), up to +3.51
BLEU points over Wang et al. (2017) and up to
+2.74 BLEU points over Zhang et al. (2018))
and our system trained with MLE across all the
datasets. Compared with our baseline system,
ASTexical achieves +1.75 BLEU improvement on
average. ASTfeature performs better, which can
obtain +2.59 BLEU points on average and up to
+3.34 BLEU points on NISTOS.

4.2.2 WMT 14 English-German Translation

In Table 3, we list existing NMT systems as com-
parisons. All these systems use the same WMT 14
English-German corpus. Except that Shen et al.
(2016) and Wu et al. (2016) respectively adopt
MRT and reinforcement learning (RL), other sys-
tems all use MLE as training criterion. All the sys-
tems except for Shen et al. (2016) are deep NMT
models with no less than four layers. Google’s
neural machine translation (GNMT) (Wu et al.,
2016) represents a strong RNN-based NMT sys-
tem. Compared with other RNN-based NMT sys-
tems except for GNMT, our baseline system with
two layers can achieve better performance than
theirs.
When

ASTleixcal,

training our
significant

NMT system with
improvement (41.11
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Synthetic Type | Training 0Op. 10p. 20p. 30p. 40p. 50p.
MLE 41.38 38.86 37.23 3597 34.61 3296
Swap ASTiexical | 43.57 41.18 39.88 37.95 37.02 36.16
ASTieature | 4444 42.08 40.20 38.67 36.89 35.81
MLE 4138 37.21 3140 2743 2394 21.03
Replacement ASTiexical | 43.57 40.53 37.59 35.19 3256 3042
ASTfeature | 4444  40.04 35.00 30.54 2742 2457
MLE 41.38 3845 36.15 3328 31.17 28.65
Deletion ASTiexical | 43.57 41.89 38.56 36.14 34.09 31.77
ASTfeature | 4444 4175 39.06 36.16 33.49 30.90

Table 5: Translation results of synthetic perturbations on the validation set in Chinese-English translation.
“1 Op.” denotes that we conduct one operation (swap, replacement or deletion) on the original sentence.

come into effect on march 1

Source zhongguo dianzi yinhang yewu guanli xingui jiangyu sanyue yiri qi shixing
Reference china’s new management rules for e-banking operations to take effect on march 1
MLE china’s electronic bank rules to be implemented on march 1

new rules for business administration of china ’s electronic banking industry
ASTlexical . .

will come into effect on march 1 .

new rules for business management of china ’s electronic banking industry to
ASTfeature

Perturbed Source

zhongfang dianzi yinhang yewu guanli xingui jiangyu sanyue yiri qi shixing

come into effect on march 1

MLE china to implement new regulations on business management
ASTioient the new regulatipns for the business administrations of the chinese electronics
bank will come into effect on march 1 .
new rules for business management of china’s electronic banking industry to
ASTfeature

Table 6: Example translations of a source sentence and its perturbed counterpart by replacing a Chinese

word “zhongguo” with its synonym “zhongfang.”

BLEU points) can be observed.  ASTgature
can obtain slightly better performance. Our
NMT system outperforms the state-of-the-art
RNN-based NMT system, GNMT, with +0.66
BLEU point and performs comparably with
Gehring et al. (2017) which is based on CNN
with 15 layers. Given that our approach can be
applied to any NMT systems, we expect that
the adversarial stability training mechanism can
further improve performance upon the advanced
NMT architectures. We leave this for future work.

4.2.3 IWSLT English-French Translation

Table 4 shows the results on IWSLT English-
French Translation. Compared with our strong
baseline system trained by MLE, we observe that
our models consistently improve translation per-
formance in all datasets. ASTie.ture Can achieve
significant improvements on the tst2015 although
ASTexical Obtains comparable results. These

demonstrate that our approach maintains good per-
formance on the non-normative text.

4.3 Results on Synthetic Perturbed Data

In order to investigate the ability of our training
approaches to deal with perturbations, we experi-
ment with three types of synthetic perturbations:

* Swap: We randomly choose N positions
from a sentence and then swap the chosen
words with their right neighbours.

* Replacement: We randomly replace sam-
pled words in the sentence with other words.

* Deletion: We randomly delete /N words from
each sentence in the dataset.

As shown in Table 5, we can find that our train-
ing approaches, AST)exical and ASTieature, CONSiS-
tently outperform MLE against perturbations on
all the numbers of operations. This means that our
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Etrue Enoisy Eadv ‘ BLEU

vV X x | 41.38
V x J | 4191
X Vv x | 4220
V V x | 42.93
Vv Vv Vv | 4357

Table 7: Ablation study of adversarial stabil-
ity training ASTjexicai On Chinese-English trans-
lation. “y/”” means the loss function is included in
the training objective while “x” means it is not.

approaches have the capability of resisting pertur-
bations. Along with the number of operations in-
creasing, the performance on MLE drops quickly.
Although the performance of our approaches also
drops, we can see that our approaches consistently
surpass MLE. In ASTjeyical, With O operation, the
difference is +2.19 (43.57 Vs. 41.38) for all syn-
thetic types, but the differences are enlarged to
+3.20, +9.39, and +3.12 respectively for the three
types with 5 operations.

In the Swap and Deletion types, ASTiexical and
ASTfeature perform comparably after more than
four operations. Interestingly, ASTieyical per-
forms significantly better than both of MLE and
ASTfeature after more than one operation in the
Replacement type. This is because ASTiexical
trains the model specifically on perturbation data
that is constructed by replacing words, which
agrees with the Replacement Type. Overall,
ASTexical performs better than ASTfeature against
perturbations after multiple operations. We spec-
ulate that the perturbation method for ASTieyical
and synthetic type are both discrete and they keep
more consistent. Table 6 shows example transla-
tions of a Chinese sentence and its perturbed coun-
terpart.

These findings indicate that we can construct
specific perturbations for a particular task. For
example, in simultaneous translation, an auto-
matic speech recognition system usually generates
wrong words with the same pronunciation of cor-
rect words, which dramatically affects the quality
of machine translation system. Therefore, we can
design specific perturbations aiming for this task.

4.4 Analysis
4.4.1 Ablation Study

Our training objective function Eq. (4) contains
three loss functions. We perform an ablation

. . . . . . . . .
“o 20 40 60 80 100 120 140 160 180 200
Iterations % 103

Figure 2: BLEU scores of ASTjeyxical OVer itera-
tions on Chinese-English validation set.

0 50 100 150 23()0
Iterations x 10

Figure 3: Learning curves of three loss functions,
Lerues Linv and Lyoisy over iterations on Chinese-
English validation set.

study on the Chinese-English translation to under-
stand the importance of these loss functions by
choosing ASTjexical as an example. As Table 7
shows, if we remove L,qy, the translation perfor-
mance decreases by 0.64 BLEU point. However,
when L,y is excluded from the training objec-
tive function, it results in a significant drop of 1.66
BLEU point. Surprisingly, only using Lyisy 1S
able to lead to an increase of 0.88 BLEU point.

4.4.2 BLEU Scores over Iterations

Figure 2 shows the changes of BLEU scores
over iterations respectively for ASTieyica and
ASTfeature- They behave nearly consistently. Ini-
tialized by the model trained by MLE, their per-
formance drops rapidly. Then it starts to go up
quickly. Compared with the starting point, the
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maximal dropping points reach up to about 7.0
BLEU points. Basically, the curves present the
state of oscillation. We think that introducing
random perturbations and adversarial learning can
make the training not very stable like MLE.

4.4.3 Learning Curves of Loss Functions

Figure 3 shows the learning curves of three loss
functions, Lirue, Liny and Lyoisy. We can find that
their costs of loss functions decrease not steadily.
Similar to the Figure 2, there still exist oscilla-
tions in the learning curves although they do not
change much sharply. We find that £;,, converges
to around 0.68 after about 100K iterations, which
indicates that discriminator outputs probability 0.5
for both positive and negative samples and it can-
not distinguish them. Thus the behaviors of the
encoder for x and its perturbed neighbour x’ per-
form nearly consistently.

5 Related Work

Our work is inspired by two lines of research: (1)
adversarial learning and (2) data augmentation.

Adversarial Learning Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) and
its related derivative have been widely applied
in computer vision (Radford et al., 2015; Sali-
mans et al., 2016) and natural language process-
ing (Li et al., 2017; Yang et al., 2018). Previous
work has constructed adversarial examples to at-
tack trained networks and make networks resist
them, which has proved to improve the robust-
ness of networks (Goodfellow et al., 2015; Miy-
ato et al., 2016; Zheng et al., 2016). Belinkov
and Bisk (2018) introduce adversarial examples
to training data for character-based NMT models.
In contrast to theirs, adversarial stability training
aims to stabilize both the encoder and decoder in
NMT models. We adopt adversarial learning to
learn the perturbation-invariant encoder.

Data Augmentation Data augmentation has the
capability to improve the robustness of NMT mod-
els. In NMT, there is a number of work that aug-
ments the training data with monolingual corpora
(Sennrich et al., 2016a; Cheng et al., 2016; He
et al., 2016a; Zhang and Zong, 2016). They all
leverage complex models such as inverse NMT
models to generate translation equivalents for
monolingual corpora. Then they augment the par-
allel corpora with these pseudo corpora to improve

NMT models. Some authors have recently en-
deavored to achieve zero-shot NMT through trans-
ferring knowledge from bilingual corpora of other
language pairs (Chen et al., 2017; Zheng et al.,
2017; Cheng et al., 2017) or monolingual corpora
(Lample et al., 2018; Artetxe et al., 2018). Our
work significantly differs from these work. We do
not resort to any complicated models to generate
perturbed data and do not depend on extra mono-
lingual or bilingual corpora. The way we exploit
is more convenient and easy to implement. We
focus more on improving the robustness of NMT
models.

6 Conclusion

We have proposed adversarial stability training to
improve the robustness of NMT models. The ba-
sic idea is to train both the encoder and decoder
robust to input perturbations by enabling them to
behave similarly for the original input and its per-
turbed counterpart. We propose two approaches
to construct perturbed data to adversarially train
the encoder and stabilize the decoder. Experi-
ments on Chinese-English, English-German and
English-French translation tasks show that the pro-
posed approach can improve both the robustness
and translation performance.

As our training framework is not limited to spe-
cific perturbation types, it is interesting to evalu-
ate our approach in natural noise existing in prac-
tical applications, such as homonym in the simul-
taneous translation system. It is also necessary to
further validate our approach on more advanced
NMT architectures, such as CNN-based NMT
(Gehring et al., 2017) and Transformer (Vaswani
etal., 2017).
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