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Abstract

Neural network based models commonly
regard event detection as a word-wise clas-
sification task, which suffer from the mis-
match problem between words and event
triggers, especially in languages without
natural word delimiters such as Chinese.
In this paper, we propose Nugget Pro-
posal Networks (NPNs), which can solve
the word-trigger mismatch problem by
directly proposing entire trigger nuggets
centered at each character regardless of
word boundaries. Specifically, NPNs per-
form event detection in a character-wise
paradigm, where a hybrid representation
for each character is first learned to capture
both structural and semantic information
from both characters and words. Then
based on learned representations, trigger
nuggets are proposed and categorized by
exploiting character compositional struc-
tures of Chinese event triggers. Experi-
ments on both ACE2005 and TAC KBP
2017 datasets show that NPNs significant-
ly outperform the state-of-the-art methods.

1 Introduction

Automatic event extraction is a fundamental task
of information extraction. Event detection, which
aims to identify event triggers of specific types, is
a key step of event extraction. For example, from
the sentence “Henry was injured, and then passed
away soon”, an event detection system should
detect an “Injure” event triggered by “injured”,
and a “Die” event triggered by “passed away”.
Recently, neural network methods, which trans-
form event detection into a word-wise classifica-
tion paradigm, have achieved significant progress
in event detection (Nguyen and Grishman, 2015;
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Figure 1: Examples of word-trigger mismatch.
Slashes in the figure indicate word boundaries.

Chen et al., 2015b; Ghaeini et al., 2016). For
instance, a model will detect events in sentence
“Henry was injured” by successively classifying
its three words into NIL, NIL and Injure. By
automatically extracting features from raw texts,
these methods rely little on prior knowledge and
achieved promising results.

Unfortunately, word-wise event detection mod-
els suffer from the word-trigger mismatch prob-
lem, because a number of triggers do not ex-
actly match with a word. Specifically, a trigger
can be part of a word or cross multiple words,
which is impossible to detect using word-wise
models. This problem is more severe in lan-
guages without natural word delimiters such as
Chinese. Figure 1 (a) shows several examples
of part-of-word triggers, where two characters in
one word “Jf:JJ”(acquire and merge) trigger two
different events: a “Merge_Org” event triggered by
“Jf”(merge) and a “Transfer_Ownership” event
triggered by “JJ” (acquire). Figure 1 (b) shows
a multi-word trigger, where three words “3¢”(is),
“7” and “f55”(injured) trigger an Injure event
together. Table 1 shows the statistics of differ-
ent types of word-trigger match on two standard
datasets. We can see that word-trigger mismatch
is crucial for Chinese event detection since nearly
25% of triggers in RichERE and 15% of them in
ACE2005 dataset don’t exactly match with a word.

To resolve the word-trigger mismatch problem,
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Match Type | Rich ERE | ACE2005
Exact Match 75.52% 85.39%
Part of Word 19.55% 11.67%
Cross words 4.93% 2.94%

Table 1: Percentages of different types of matches
between words and triggers.

this paper proposes Nugget Proposal Networks
(NPNs), which identify triggers by modeling char-
acter compositional structures of trigger nuggets
regardless of word boundaries. Given a sentence,
NPNs regard characters as basic detecting units
and are able to 1) directly propose the entire poten-
tial trigger nugget at each character by exploiting
inner compositional structure of triggers; 2) ef-
fectively categorize proposed triggers by learning
semantic representation from both characters and
words. For example, at character “{%”(injured)
in Figure 1 (b), NPNs are not only capable to
detect it is part of an Injure event trigger, but
also can propose the entire trigger nugget “%2 |
4> (is injured). The main idea behind NPNss is that
most Chinese triggers have regular character com-
positional structure (Li et al., 2012). Concretely,
most of Chinese event triggers have one central
character which can indicate its event type, e.g.
“R7(kill) in “FE Z%7(kill by shooting). Further-
more, characters are composed into a trigger based
on regular compositional structures, e.g. “manner
+ verb” for “f5% 7 (kill by shooting), “HX " (hack
to death), as well as “verb + auxiliary + noun” for
“52 1 4%5”(is injured) and “#% | #]’(beaten).

Figure 2 shows the architecture of NPNs. Given
a character in sentence, a hybrid representation
learning module is first used to learn its semantic
representation from both characters and words in
the sentence. This hybrid representation is then
fed into two modules: one is trigger nugget gen-
erator, which proposes the entire potential trigger
nugget by exploiting inner character composition-
al structure. Once a trigger is proposed, an event
type classifier is applied to determine its event
type. Compared with previous methods, NPNs
mainly have following advantages:

1) By directly proposing the entire trig-
ger nugget centered at a character, trigger
nugget generator can effectively resolve the
word-trigger mismatch problem. First, using
characters as basic units, NPNs will not suf-
fer from the word-trigger mismatch problem of
word-wise methods. Furthermore, by modeling
and exploiting character compositional structure
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Figure 2: The overall architecture of Nugget Pro-
posal Networks. The concerning character is “J4”.

of triggers, our model is more error-tolerant to
character-wise classification errors than traditional
character-based models, as shown in Section 4.4.

2) By summarizing information from both
characters and words, our hybrid represen-
tation can effectively capture information for
both inner character composition and accurate
event categorization. For example, the inner
compositional structure of trigger “#g 7% (kill by
shooting) can be learned from the character-level
sequence. Besides, characters are often ambigu-
ous, therefore the accurate representations must
take their word context into consideration. For
example, the representation “7%”(kill) in “ 8
Z%7(kill by shooting) should be different from its
representation in “7% 7 ’(completed).

We conducted experiments on both the
ACE2005 and the TAC KBP 2017 Event Nugget
Detection datasets. Experiment results show that
NPNs can effectively solve the word-mismatch
problem, and therefore significantly outperform
previous state-of-the-art methods!.

2 Hybrid Representation Learning

Given a sentence, NPNs will first learn a represen-
tation for each character, then the representation
is fed into downstream modules. We observe
that both characters and words contain rich in-
formation for Chinese event detection: characters
reveals the inner compositional structure of event

'Our source code, including all hyper-parameter settings
and pre-trained word embeddings, is openly available at
github.com/sanmusunrise/NPNs.
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Figure 3: Token-level feature extractor, where PE
is relative positional embeddings and WE is word
embeddings. The concerning token is “Ff:J”.

triggers (Li et al., 2012), while words can provide
more accurate and less ambiguous semantics than
characters (Chen et al.,, 2015a). For example,
character-level information can tell us that “f&
A7(kill by shooting) is a trigger constructed of
regular pattern “manner + verb”. While word-
level sequences can provide more explicit in-
formation when we distinguish the semantics of
“2%7(kill) in this context with that character in
other words like “Z% 7 ”’(completed).

Therefore, we propose to learn a hybrid repre-
sentation which can summarize information from
both characters and words. Specifically, we first
learn two separate character-level and word-level
representations using token-level neural networks.
Then we design three kinds of hybrid paradigms
to obtain the hybrid representation.

2.1 Token-level Representation Learning

Two token-level neural networks are used to ex-
tract features from characters and words respec-
tively. The network architecture is similar to
DMCNN (Chen et al., 2015b). Figure 3 shows a
word-level example. Given n tokens t1,ta, ...,y
in the sentence and the concerning token t., let
X; be the concatenation of the word embedding of
t; and the embedding of ¢;’s relative position to
t., a convolutional layer with window size as h is
introduced to capture compositional semantics:

ri; = tanh(w; - Xjj1n—1 + b;) (1

Here x;.;4; refers to the concatenation of embed-
dings from x; to X;;, w; is the i-th filter of the
convolutional layer, b; € R is a bias term. Then a
dynamic multi-pooling layer is applied to preserve
important signals of different parts of the sentence:
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Figure 4: Three hybrid representation learning
methods.

After that we concatenate rzl-ef " and rgig " from
all feature maps, as well as the embeddings of
tokens nearing to t. to obtain the word-level repre-
sentation fy,orq Of £.. Using the same procedure to
character sequences, we can obtain the character-
level representation fepay.

2.2 Hybrid Representation Learning

So far we have both character-level feature repre-
sentation fchar and word-level feature representa-
tion fyorq - This section describes how we mix
them up to obtain a hybrid representation. Before
this, we first project fephar and fyorq respectively
into the same vector space using two dense layers,
and we represent the projected d’-dimensional
vectors as f/, and f/ .. Then we design
three different paradigms to mix them up: Concat
Hybrid, General Hybrid and Task-specific Hybrid,
as illustrated in Figure 4.

Concat Hybrid is the most simple method,
which simply concatenates character-level and
word-level representations:

fc = féhar 2] fx/vord 3

This simple approach doesn’t introduce any addi-
tional parameter, but we find it very effective in
our experiments.

General Hybrid aims to learn a shared hybrid
representation for both trigger nugget proposal
and event type classification. Specifically, we
design a gated structure to model the information
flow from f/, . and f __, to the general hybrid
feature representation fg:

zc = s(WeHfrmar + UcHfwora + bcen) 4

fG = Zchl:har + (1 - ZG)f\/avord (5)
Here s is the sigmoid function, Wgp € Ra'xd
and Ugg € R¥>d" are weight matrix, and
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bea € RY is the bias term. zg is a d'-
dimensional vector whose values represent the
contribution of £/, and f/,__, to the final hybrid
representation, which models the importance of
individual features in the given contexts.

As two downstream modules of NPNs have
individual functions, they might hold different
requirements to the input features. Intuitively,
trigger nugget generator depends more on fine-
grained character-level features. In contrast, word-
level features might play more important roles in
the event type classifier since it is enriched with
more explicit semantics. As a result, a unified
representation may be insufficient and it is better
to learn task-specific hybrid representations.

Task-specific Hybrid is proposed to tackle this
problem, where two gates are introduced for two
modules respectively. Formally, we learn one
representation for the trigger nugget generator and
one for event type classifier as:

zn = s(Wnifehar + Unfwora + bn) (6)
21 = $(Wrfinar + Urfiora + br) @)
fn = znfenar + (1 — 2n)ford ®)
fr = z20fipar + (1 — 271)fyora ©)

Here fiy and fr are hybrid features for the trigger
nugget generator and the event type classifier re-
spectively and the meanings of other parameters
are similar to the ones in Equation (4) and (5).

3 Nugget Proposal Networks

Given the hybrid representation of a character in
a sentence, the goal of NPNs is to propose the
potential trigger nugget, as well as to identify its
corresponding event type at each character. For
example in Figure 5, centered at the character
“f”(injured), NPNs need to propose “3% J 15 (is
injured) as the entire trigger nugget and identify
its event type as “Injure”. For this, NPNs are
equipped with two modules: one is called trigger
nugget generator, which is used to propose the
potential trigger nugget containing the concerning
character by exploiting character compositional
structures of triggers. Another module, named
as event type classifier, is used to determine the
specific type of this event once a trigger nugget is
detected.
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Figure 5: Our trigger nugget generator. For each
character, there are 7 candidate nuggets including
“NIL” if the maximum length of nuggets is 3.

3.1 Trigger Nugget Generator

Chinese event triggers have regular inner com-
positional structures, e.g. “5¢ J 1%”(is injured)
and “4& | #J7(is beaten) have the same “verb
+ auxiliary + noun” structure, and “f@ 7% (kill
by shooting) and “#f %7 (kill by shooting) share
the same “manner + verb” pattern. If a model
is able to learn this compositional structure reg-
ularity, it can effectively detect trigger nuggets
at characters. Recent advances have presented
that convolutional neural networks are effective at
capturing and predicting the region information in
object detection (Ren et al., 2015) and semantic
segmentation (He et al., 2017), which reveals the
strong ability of CNNs to learning spatial and po-
sitional information. Inspired by this, we propose
a neural network based trigger nugget generator,
which is expected to not only be able to predict
whether a character belongs to a trigger nugget,
but also can point out the entire trigger nugget.

Figure 5 is an illustration of our trigger nugget
generator. Hybrid representation fxny for con-
cerning character is first learned as described in
Section 2, which is then fed into a fully-connected
layer to compute the scores for different possible
trigger nuggets containing that character:

0% = Wgfn + bg (10

where O¢ € RY" and dV is the amount of
candidate nuggets plus one “NIL” label indicating
this character doesn’t belong to an trigger. Given
the maximum length L of trigger nuggets, there
are % possible nuggets containing a specific
character, as we shown in Figure 5. In both ACE
and Rich ERE corpus, more than 98.5% triggers
contain no more than 3 characters, so for a specific

character we consider 6 candidate nuggets and
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thus dV = 7. We expect NPNss to give a high score
to a nugget if it follows a regular compositional
structure of triggers. For example in Figure 5,
“52 1 #57(is injured) follows the compositional
pattern of “verb + auxiliary + noun”, therefore a
high score is given to the category where “{%” is
at the 3" place of a nugget with a length of 3. By
contrast “J 15 does not match a regular pattern,
then the score for “/4;” at the 2™ place of a nugget
with a length of 2 will be low in this context.
After obtaining the scores for each nugget, a
softmax layer is applied to normalize the scores:

G
e%i

P(yf|z;0) = (11)

gl 7
where OiG is the i-the element in O and 6 is the

model parameters.

3.2 Event Type Classifier

The event type classifier aims to identify whether
the given character in the given context will ex-
hibit an event type. Once we detect an event
trigger nugget at one character, the hybrid feature
fr extracted previously is then feed into a neural
network classifier, which further determines the
specific type of this trigger. Following previous
work (Chen and Ng, 2012), our event type classi-
fier directly classifies nuggets into event subtypes,
while ignores the hierarchy between event types.
Formally, given the hybrid feature vector fr
of input z, a fully-connected layer is applied to
compute its scores assigned to each event subtype:

0O€ = Wcfr + be (12)

where O¢ € R? and d7 is the number of
event subtypes. Then similar to the trigger nugget
generator, a softmax layer is introduced:

C
e

aT of¢
de€

P(y{ |x;0) = (13)
where O is the i-th element in O, representing
the score for i-th subtype.

3.3 Dealing with Conflicts between Proposed
Nuggets

While NPNs directly propose nugget at each char-
acter, there might exists conflicts between pro-
posed nuggets at different characters. Generally
speaking, there are two types of conflicts: (i)
NIL/trigger conflict, which means NPNs propose
a trigger nugget at one character, but classify

other character in that nugget into “NIL” (e.g.,
proposing nugget “3Z | 173 (is injured) at “3Z” and
output “NIL” at “ | ”); (ii) overlapped conflict, i.e.,
proposing two overlapped nuggets (e.g., proposing
nugget “3 J 4537 (is injured) at “32” and nugget
“f7 at “477). But we find that overlapped conflict
is very rare because NPNs is very effective in
capturing positional knowledge and the main chal-
lenge of event detection is to distinguish triggers
from non-triggers.

Therefore in this paper, we employ a redundant
prediction strategy by simply adding all proposed
nuggets into results and ignoring “NIL” predic-
tions. For example, if NPNs successively propose
“2 1 15”(@s injured), “NIL”, “ 1% from “3%
715, then we will ignore the “NIL” and add
both two other nuggets into result. We found
such a redundant prediction paradigm is an advan-
tage of our model. Compared with conventional
character-based models, even NPNs mistakenly
classified character “J ” into “NIL” , we can
still accurately detect trigger “3Z | 173 (is injured)
if we can predict the entire nugget at character
“52” or “473” . This redundant prediction makes
our model more error-tolerant to character-wise
classification errors, as verified in Section 4.4.

3.4 Model Learning

To train the trigger nugget generator, we regard all
characters included in trigger nuggets as positive
training instances, and randomly sample charac-
ters not in any trigger as negative instances and
label them as “NIL”. Suppose we have T train-
ing examples in S¢ = {(z4, y$) |k = 1,2,..T%}
to train the trigger nugget generator, as well as 7¢
examples in S¢ = {(xg,y$)|k = 1,2,..7} to
train the event type classifier, we can define the
loss function £(6) as follow:

LO)=- >

(zr,y$)ESC

-

(zp,yf )eSC

log P(yj |zx; 0)
. (14)
log P(yy |zx;0)

where 6 is parameters in NPNs. Since all modules
in NPNs are differentiable, any gradient-based
algorithms can be applied to minimize £(#).

4 Experiments

4.1 Data Preparation and Evaluation

We conducted experiments on two standard
datasets: ACE2005 and TAC KBP 2017 Even-
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ACE2005 KBPEval2017

Model Trigger Identification | Trigger Classification | Trigger Identification | Trigger Classification

P [ R ] FI P [ R[] FI P [ R [ F P [ R [ F
FBRNN(Char) 61.3 | 45.6 52.3 57.5 | 42.8 49.1 57.97 | 36.92 | 45.11 | 51.71 | 32.94 | 40.24
DMCNN(Char) 60.1 | 61.6 60.9 57.1 | 585 57.8 53.67 | 49.92 | 51.73 | 50.03 | 46.53 | 48.22
C-BiLSTM* 65.6 | 66.7 66.1 60.0 | 60.9 60.4 - - - - - -
FBRNN(Word) 64.1 | 63.7 63.9 59.9 | 59.6 59.7 65.10 | 46.86 | 54.50 | 60.05 | 43.22 | 50.27
DMCNN(Word) 66.6 | 63.6 65.1 61.6 | 58.8 60.2 60.43 | 51.64 | 55.69 | 54.81 | 46.84 | 50.51
HNN* 74.2 | 63.1 68.2 77.1 | 53.1 63.0 - - - - - -
Rich-C* 62.2 | 71.9 66.7 58.9 | 68.1 63.2 - - - - - -
KBP2017 Best* - - - - - - 67.76 | 45.92 | 54.74 | 62.69 | 42.48 | 50.64
NPN(Concat) 76.5 | 59.8 67.1 72.8 | 56.9 63.9 64.58 | 50.31 | 56.56 | 59.14 | 46.07 | 51.80
NPN(General) 71.5 | 63.2 67.1 67.3 | 59.6 63.2 63.67 | 51.32 | 56.83 | 57.78 | 46.58 | 51.57
NPN(Task-specific) | 64.8 | 73.8 69.0 60.9 | 69.3 64.8 64.32 | 53.16 | 58.21 | 57.63 | 47.63 | 52.15

Table 2: Experiment results on ACE2005 and KBPEval2017.

* indicates the result adapted from

the original paper. For KBPEval2017, “Trigger Identification” corresponds to the “Span” metric and
“Trigger Classification” corresponds to the “Type” metric reported in official evaluation.

t Nugget Detection Evaluation (KBPEval2017)
datasets.  For ACE2005 (LDC2006T06), we
used the same setup as Chen and Ji (2009),
Feng et al. (2016) and Zeng et al. (2016), in
which 569/64/64 documents are used as train-
ing/development/test set. =~ For KBPEval2017,
we evaluated our model on the 2017 Chinese
evaluation dataset(LDC2017ESS), using previ-
ous RichERE annotated Chinese datasets (LD-
C2015E78, LDC2015E105, LDC2015E112, and
LDC2017EQ2) as the training set except 20 ran-
domly sampled documents reserved as develop-
ment set. Finally, there were 506/20/167 docu-
ments for training/development/test set. We used
Stanford CoreNLP toolkit (Manning et al., 2014)
to preprocess all documents for sentence split-
ting and word segmentation. Adadelta update
rule (Zeiler, 2012) is applied for optimization.
Models are evaluated by micro-averaged Preci-
sion(P), Recall(R) and Fl-score. For ACE2005,
we followed Chen and Ji (2009) to compute the
above measures. For KBPEval2017, we used the
official evaluation toolkit > to obtain these metrics.

4.2 Baselines

Three groups of baselines were compared:
Character-based NN models. This group
of methods solve Chinese Event Detection in
a character-level sequential labeling paradigm,
which include Convolutional Bi-LSTM model
(C-BiLSTM) proposed by Zeng et al. (2016),
Forward-backward Recurrent Neural Network-

2github.com/hunterhector/EvmEval/
tarball/master

s (FBRNN) by Ghaeini et al. (2016), and a
character-level DMCNN model with a classifier
using IOB encoding (Sang and Veenstra, 1999).

Word-based NN models. This group of meth-
ods directly adopt currently NN models into word-
level sequences, which includes word-based F-
BRNN, word-based DMCNN and Hybrid Neural
Network proposed by Feng et al. (2016), which
incorporates CNN with Bi-LSTM and achieves the
SOTA NN based result on ACE2005. To alleviate
OOV problem stemming from word-trigger mis-
match, we also adopt errata table replacing (Han
et al.,, 2017), which introduce an errata table
extracted from the training data and replace those
words that part of whom was a trigger nugget with
that trigger directly.

Feature-enriched Methods. This group of
methods includes Rich-C (Chen and Ng, 2012)
and CLUZH (KBP2017 Best) (Makarov and
Clematide, 2017). Rich-C developed several
handcraft Chinese-specific features, which is one
of the state-of-the-art on ACE2005. CLUZH
incorporated many heuristic features into LSTM
encoder, which achieved the best performance in
TAC KBP2017 evaluation.

4.3 Overall Results

Table 2 shows the results on ACE2005 and KBPE-
val2017. From this table, we can see that:

1) NPNs steadily outperform all baselines sig-
nificantly. Compared with baselines, NPN(Task-
specific) gains at least 1.6 (2.5%) and 1.5 (3.0%)
Fl-score improvements on trigger classification
task on ACE2005 and KBPEval2017 respectively.
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2) By exploiting compositional structures
of triggers, our trigger nugget generator can
effectively resolve the word-trigger mismatch
problem. As shown in Table 2, NPN(Task-
specific) achieved significant F1-score improve-
ments on trigger identification task on both
datasets. It is notable that our method achieved
a remarkable high recall on both datasets, which
indicates that NPNs do detect a number of triggers
which previous methods can not identify.

3) By summarizing information from both
characters and words, the hybrid represen-
tation learning is effective for event detec-
tion. Comparing with corresponding character-
based methods®, word-based methods achieved
2 to 3 Fl-score improvements, which indicates
that words can provide additional information for
event detection. By combining character-level and
word-level features, NPNs are able to perform
character-based event detection meanwhile take
word-level knowledge into consideration too.

4.4 Comparing with Conventional
Character-based Methods

To further investigate the effects of the trigger
nugget generator, we compared NPNs with other
character-based methods and analyzed behaviors
of them. We conducted a supplementary exper-
iment by replacing our trigger nugget generator
and event type classifier with an IOB encoding
labeling layer. We call this system NPN(IOB).
Besides, we also compared the result with F-
BRNN(Char), which proposes candidate trigger
nuggets according to an external trigger table.

Model P R F1

FBRNN(Char) 57.97 | 36.92 | 45.11
NPN({OB) 60.96 | 47.39 | 53.32
NPN(Task-specific) | 64.32 | 53.16 | 58.21

Table 3: Performances of character-based methods
on KBP2017Eval Trigger Identification task.

Table 3 shows the results on KBP2017Eval. We
can see that NPN(Task-specific) outperforms other
methods significantly. We believe this is because:

1) FBRNN(Char) only regards tokens in the
candidate table as potential trigger nuggets, which

3C-BiLSTM and HNN are similar methods to some ex-
tent. They both use a hybrid representation from CNN and
BiLSTM encoders.

limits the choice of possible trigger nuggets and
results in a very low recall rate.

2) To accurately identify a trigger, NPN(IOB)
and conventional character-based methods require
all characters in a trigger being classified correctly,
which is very challenging (Zeng et al., 2016):
many characters appear in a trigger nugget will not
serve as a part of a trigger nugget in the majority
of contexts, thus they will be easily classified
into “NIL”. For the first example in Table 5,
NPN(IOB) was unable to fully recognize the trig-
ger nugget “%% Hi”(congratulatory message) be-
cause character “%%”(congratulatory) doesn’t of-
ten serve as part of “PhoneWrite” trigger. In
fact, “¥%” serves as a “NIL” in the majority of
similar contexts, e.g., “%% & "(congratulation) and
“$L B (congratulation).

3) NPNs are able to handle above problems.
First, NPNs doesn’t rely on candidate tables to
generate potential triggers, which guarantees a
good generalization ability. Second, NPNs pro-
pose the entire trigger nugget at each charac-
ter, such a redundant prediction paradigm makes
NPNs more error-tolerant to character-level errors.
For example, even might mistakenly classify “%¢”
into “NIL”, NPNs can still identify the correct
nugget “%% H” at character “Hi” because “Hi” is
a common part of “PhoneWrite” event trigger.

4.5 Influence of Word-Trigger Mismatch

This subsection investigates the effects of resolv-
ing the word-trigger mismatch problem using dif-
ferent methods. According to different types of
word-trigger match, we split KBP2017Eval test
set into three parts: Exact, Part-of-Word, Cross-
Words, which are as defined in Table 1.

Model Exact | Part | Cross
NPN(IOB) 48.65 | 29.13 8.54
DMCNN(Word) 57.36 | 23.28 | 0.00
- w/o Errata replacing | 59.03 | 0.00 0.00
NPN(Task-specific) 56.47 | 42.66 | 26.58

Table 4: Recall rates on three word-trigger match
splits on KBP2017Eval Trigger Identification task.

Table 4 shows the recall of different methods on
each split. NPN(Task-specific) significantly out-
perform other baselines when trigger-word mis-
match exists. This verified that NPNs can resolve
different cases of word-trigger mismatch problems
robustly, meanwhile retain high performance on
exact match cases. In contrast, NPN(IOB) can not
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Sentence

DMCNN

NPN(IOB)

NPN

Correct

P/,

Full congratulatory message:...

(%%, PhoneWrite)

(¥, PhoneWrite)

% B, ,Phone Write)

(%% H.,,PhoneWrite)

SRR

all soldiers died and injured...

None

(%t.,Die)
(13, Injure)

(%t.Die)
(17 ,Injure)

(%t.,Die)
(17, Injure)

Table 5: System prediction examples. (X,Y) indicates a trigger nugget X is annotated with event type Y.

exactly detect boundaries of trigger nuggets, thus
has a low recall on all splits. Conventional DM-
CNN regards words as potential triggers, which
means it can only identify triggers that exactly
match with words. As the second example in
Table 5, word “%E4%(dead or injured) as a whole
has never been annotated as a trigger, so DMCNN
is unable to recognize it at all. Errata replacing
can only solve some of the part-of-word mismatch
problem, but it can not handle the cases where
one word contains multiple triggers(e.g., “ZtA%”
in Table 5) and the cases that a trigger crosses
multiple words.

4.6 Effects of Hybrid Representation

This section analyzed the effect of feature hybrid
in NPNs. First, from Table 2, we can see that
Task-specific Hybrid method achieved the best
performance in both datasets. Surprisingly, simple
Concat Hybrid outperforms the General Hybrid
approach. We believe this is because the trigger
nugget generator and the event type classifier rely
on different information, and therefore using one
unified gate is not enough. And Task-specific Hy-
brid uses two different task-specific gates which
can satisfy both sides, thus resulting in the best
overall performance.

Furthermore, to investigate the necessary of
using hybrid features, an auxiliary experiment,
called NPN(Char), was conducted by removing
word-level features from NPNs. Also, we com-
pared with the model removing character-level
features, which is the original DMCNN(Word).

Model P R F1

DMCNN(Word) 54.81 | 46.84 | 50.51
NPN(Char) 56.19 | 43.88 | 49.28
NPN(Task-specific) | 57.63 | 47.63 | 52.15

Table 6: Results of using different representation
on Trigger Classification task on KBP2017Eval.

Table 6 shows the experiment results. We
can see that neither character-level or word-
level representation can achieve competitive re-
sults with the NPNs. This verified the necessity

of hybrid representation. Besides, we can see
that NPN(Char) outperforms other character-level
methods in Table 2, which further confirms that
our trigger nugget generator is still effective even
only using character-level information.

5 Related Work

Event detection is an important task in informa-
tion extraction and has attracted many attentions.
Traditional methods (Ji and Grishman, 2008; Pat-
wardhan and Riloff, 2009; Liao et al., 2010; Mc-
Closky et al., 2011; Hong et al., 2011; Huang and
Riloff, 2012; Li et al., 2013a,b, 2014) rely heavily
on hand-craft features, which are hard to transfer
among languages and annotation standards.

Recently, deep learning methods, which auto-
matically extract high-level features and perfor-
m token-level classification with neural network-
s (Chen et al., 2015b; Nguyen and Grishman,
2015), have achieved significant progress. Some
improvements have been made by jointly predict-
ing triggers and arguments (Nguyen et al., 2016)
and introducing more complicated architectures
to capture larger scale of contexts (Feng et al.,
2016; Nguyen and Grishman, 2016; Ghaeini et al.,
2016). These methods have achieved promising
results in English event detection.

Unfortunately, the word-trigger mismatch prob-
lem significantly undermines the performance
of word-level models in Chinese event detec-
tion (Chen and Ji, 2009). To resolve this problem,
Chen and Ji (2009) proposed a feature-driven BIO
tagging methods at character-level sequences. Qin
et al. (2010) introduced a method which can au-
tomatically expand candidate Chinese trigger set.
While Li et al. (2012) and Li and Zhou (2012)
defined manually character compositional patterns
for Chinese event triggers. However, their meth-
ods rely on hand-crafted features and patterns,
which make them difficult to be integrated into
recent Deep Learning models.

Recent advances have shown that neural net-
works can effectively capture spatial and posi-
tional information from raw inputs (Ren et al.,
2015; He et al., 2017; Wang and Jiang, 2017).
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This paper designs Nugget Proposal Networks to
capture character compositional structure of event
triggers, which is more robust and more effective
than previous hand-crafted patterns or character-
level sequential labeling methods.

6 Conclusions and Future Work

This paper proposes Nugget Proposal Networks
for Chinese event detection, which can effectively
resolve the word-trigger mismatch problem by
modeling and exploiting character compositional
structure of Chinese event triggers, using hybrid
representation which can summarize information
from both characters and words. Experiment
results have shown that our method significantly
outperforms conventional methods.

Because the mismatch between words and ex-
traction units is a common problem in information
extraction, we believe our method can also be
applied to many other languages and tasks for
exploiting inner composition structure during ex-
traction, such as Named Entity Recognition.
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