
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1543–1553
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1543

Language Modeling for Code-Mixing:
The Role of Linguistic Theory based Synthetic Data

Adithya Pratapa1 Gayatri Bhat2∗ Monojit Choudhury1 Sunayana Sitaram1

Sandipan Dandapat3 Kalika Bali1

1 Microsoft Research, Bangalore, India
2 Language Technology Institute, Carnegie Mellon University

3 Microsoft R&D, Hyderabad, India
1{t-pradi, monojitc, sunayana.sitaram, kalikab}@microsoft.com,

2gbhat@andrew.cmu.edu, 3sadandap@microsoft.com

Abstract

Training language models for Code-mixed
(CM) language is known to be a diffi-
cult problem because of lack of data com-
pounded by the increased confusability
due to the presence of more than one lan-
guage. We present a computational tech-
nique for creation of grammatically valid
artificial CM data based on the Equiva-
lence Constraint Theory. We show that
when training examples are sampled ap-
propriately from this synthetic data and
presented in certain order (aka training
curriculum) along with monolingual and
real CM data, it can significantly reduce
the perplexity of an RNN-based language
model. We also show that randomly gener-
ated CM data does not help in decreasing
the perplexity of the LMs.

1 Introduction

Code-switching or code-mixing (CM) refers to the
juxtaposition of linguistic units from two or more
languages in a single conversation or sometimes
even a single utterance.1 It is quite commonly ob-
served in speech conversations of multilingual so-
cieties across the world. Although, traditionally,
CM has been associated with informal or casual
speech, there is evidence that in several societies,
such as urban India and Mexico, CM has become
the default code of communication (Parshad et al.,
2016), and it has also pervaded written text, espe-
cially in computer-mediated communication and
social media (Rijhwani et al., 2017).

∗Work done during author’s internship at Microsoft Re-
search

1According to some linguists, code-switching refers to
inter-sentential mixing of languages, whereas code-mixing
refers to intra-sentential mixing. Since the latter is more gen-
eral, we will use code-mixing in this paper to mean both.

It is, therefore, imperative to build NLP tech-
nology for CM text and speech. There have
been some efforts towards building of Automatic
Speech Recognition Systems and TTS for CM
speech (Li and Fung, 2013, 2014; Gebhardt, 2011;
Sitaram et al., 2016), and tasks like language
identification (Solorio et al., 2014; Barman et al.,
2014), POS tagging (Vyas et al., 2014; Solorio
and Liu, 2008), parsing and sentiment analy-
sis (Sharma et al., 2016; Prabhu et al., 2016; Rudra
et al., 2016) for CM text. Nevertheless, the accura-
cies of all these systems are much lower than their
monolingual counterparts, primarily due to lack of
enough data.

Intuitively, since CM happens between two (or
more languages), one would typically need twice
as much, if not more, data to train a CM sys-
tem. Furthermore, any CM corpus will contain
large chunks of monolingual fragments, and rel-
atively far fewer code-switching points, which are
extremely important to learn patterns of CM from
data. This implies that the amount of data required
would not just be twice, but probably 10 or 100
times more than that for training a monolingual
system with similar accuracy. On the other hand,
apart from user-generated content on the Web and
social media, it is extremely difficult to gather
large volumes of CM data because (a) CM is rare
in formal text, and (b) speech data is hard to gather
and even harder to transcribe.

In order to circumvent the data scarcity issue,
in this paper we propose the use of linguistically-
motivated synthetically generated CM data (as
a supplement to real CM data) for development
of CM NLP systems. In particular, we use the
Equivalence Constraint Theory (Poplack, 1980;
Sankoff, 1998) for generating linguistically valid
CM sentences from a pair of parallel sentences
in the two languages. We then use these gener-
ated sentences, along with monolingual and little

1544

amount of real CM data to train a CM Language
Model (LM). Our experiments show that, when
trained following certain sampling strategies and
training curriculum, the synthetic CM sentences
are indeed able to improve the perplexity of the
trained LM over a baseline model that uses only
monolingual and real CM data.

LM is useful for a variety of downstream NLP
tasks such as Speech Recognition and Machine
Translation. By definition, it is a discriminator be-
tween natural and unnatural language data. The
fact that linguistically constrained synthetic data
can be used to develop better LM for CM text is,
on one hand an indirect statistical and task-based
validation of the linguistic theory used to generate
the data, and on the other hand an indication that
the approach in general is promising and can help
solve the issue of data scarcity for a variety of NLP
tasks for CM text and speech.

2 Generating Synthetic Code-mixed Data

There is a large and growing body of linguis-
tic research regarding the occurrence, syntac-
tic structure and pragmatic functions of code-
mixing in multilingual communities across the
world. This includes many attempts to explain
the grammatical constraints on CM, with three of
the most widely-accepted being the Embedded-
Matrix (Joshi, 1985; Myers-Scotton, 1993, 1995),
the Equivalence Constraint (EC) (Poplack, 1980;
Sankoff, 1998) and the Functional Head Con-
straint (DiSciullo et al., 1986; Belazi et al., 1994)
theories.

For our experiments, we generate CM sentences
as per the EC theory, since it explains a range of
interesting CM patterns beyond lexical substitu-
tion and is also suitable for computational model-
ing. Further, in a brief human-evaluation we con-
ducted, we found that it is representative of real
CM usage. In this section, we list the assumptions
made by the EC theory, briefly explain the theory,
and then describe how we generate CM sentences
as per this theory.

2.1 Assumptions of the EC Theory

Consider two languages L1 and L2 that are be-
ing mixed. The EC Theory assumes that both
languages are defined by context-free grammars
G1 and G2. It also assumes that every non-
terminal category X1 in G1 has a corresponding
non-terminal category X2 in G2 and that every ter-

minal symbol (or word) w1 in G1 has a corre-
sponding terminal symbol w2 in G2. Finally, it
assumes that every production rule in L1 has a cor-
responding rule in L2 - i.e, the non-terminal cate-
gories on the left-hand side of the two rules cor-
respond to each other, and every category/symbol
on the right-hand side of one rule corresponds to
a category/symbol on the right-hand side of the
other rule.

All these correspondences must also hold vice-
versa (between languages L2 and L1), which im-
plies that the two grammars can only differ in the
ordering of categories/symbols on the right-hand
side of any production rule. As a result, any sen-
tence in L1 has a corresponding translation in L2,
with their parse trees being equivalent except for
the ordering of sibling nodes. Fig.1(a) and (b)
illustrate one such sentence pair in English and
Spanish and their parse-trees. The EC Theory de-
scribes a CM sentence as a constrained combina-
tion of two such equivalent sentences.

While the assumptions listed above are quite
strong, they do not prevent the EC Theory from
being applied to two natural languages whose
grammars do not correspond as described above.
We apply a simple but effective strategy to recon-
cile the structures of a sentence and its translation
- if any corresponding subtrees of the two parse
trees do not have equivalent structures, we col-
lapse each of these subtrees to a single node. Ac-
counting for the actual asymmetry between a pair
of languages will certainly allow for the genera-
tion of more CM variants of any L1-L2 sentence
pair. However, in our experiments, this strategy
retains most of the structural information in the
parse trees, and allows for the generation of up to
thousands of CM variants of a single sentence pair.

2.2 The Equivalence Constraint Theory

Sentence production. Given two monolingual
sentences (such as those introduced in Fig.1), a
CM sentence is created by traversing all the leaf
nodes in the parse tree of either of the two sen-
tences. At each node, either the word at that
node or at the corresponding node in the other
sentence’s parse is generated. While the traver-
sal may start at any leaf node, once the produc-
tion enters one constituent, it will exhaust all the
lexical slots (leaf nodes) in that constituent or its
equivalent constituent in the other language before
entering into a higher level constituent or a sister

1545

(a) SE

VPE

PPE

NPE

NNE

house

JJE

white

DTE

a

INE

in

VBZE

lives

NPE

PRPE

She

(b) SS

VPS

PPS

NPS

JJS

blanca

NNS

casa

DTS

una

INS

en

VBZS

vive

NPS

PRPS

Elle

(c) S

VP

PP

NP

JJ*

white

NNS

casa

DTS

una

INS

en

VBZE

lives

NPS

PRPS

Elle

(d) S

VP

PP

NPS

JJS

blanca

NNS

casa

DTS

una

INE

in

VBZE

lives

NPS

PRPS

Elle

Figure 1: Parse trees of a pair of equivalent (a) English and (b) Spanish sentences, with corresponding
hierarchical structure (due to production rules), internal nodes (non-terminal categories) and leaf nodes
(terminal symbols), and parse trees of (c) incorrectly code-mixed and (d) correctly code-mixed variants
of these sentences (as per the EC theory).

constituent. (Sankoff, 1998) This guarantees that
the parse tree of a sentence so produced will have
the same hierarchical structure as the two mono-
lingual parse trees (Fig. 1(c) and (d)).

The EC theory also requires that any mono-
lingual fragment that occurs in the CM sentence
must occur in one of the monolingual sentences (in
the running example, the fragment una blanca
would be disallowed since it does not appear in the
Spanish sentence).

Switch-point identification. To ensure that the
CM sentence does not at any point deviate from
both monolingual grammars, the EC theory im-
poses certain constraints on its parse tree. To this
end and in order to identify the code-switching
points in a generated sentence, nodes in its parse
tree are assigned language labels according to the
following rules: All leaf nodes are labeled by the
languages of their symbols. If all the children of
any internal node share a common label, the inter-
nal node is also labeled with that language. Any
node that is out of rank-order among its siblings
according to one language is labeled with the other
language. (See labeling in Fig.1(c) and (d)) If any
node acquires labels of both languages during this
process (such as the node marked with an asterisk
in Fig.1(c)), the sentence is disallowed as per the
EC theory. In the labeled tree, any pair of adjacent
sibling nodes with contrasting labels are said to be
at a switch-point (SP).

Equivalence constraint. Every switch-point
identified in the generated sentence must abide by
the EC. Let U → U1U2...Un and V → V1V2...Vn
be corresponding rules applied in the two mono-
lingual parse trees, and nodes Ui and Vi+1 be ad-
jacent in the CM parse tree. This pair of nodes
is a switch-point, and it only abides by the EC if
every node in U1...Ui has a corresponding node
in V1...Vi. This is true for the switch-point in

Fig.1(d), and indicates that the two grammars are
‘equivalent’ at the code-switch point. More im-
portantly, it shows that switching languages at this
point does not require another switch later in the
sentence. If every switch-point in the generated
sentence abides by the EC, the generated sentence
is allowed by the EC theory.

2.3 System Description

We assume that the input to the generation model
is a pair of parallel sentences in L1 and L2, along
with word level alignments. For our experiments,
L1 and L2 are English and Spanish, and Sec 3.2
describes how we create the input set. We use
the Stanford Parser (Klein and Manning, 2003) to
parse the English sentence.

Projecting parses. We use the alignments to
project the English parse tree onto the Spanish
sentence in two steps: (1) We first replace every
word in the English parse tree with its Spanish
equivalent (2) We re-order the child nodes of each
internal node in the tree such that their left-to-right
order is as in the Spanish sentence. For instance,
after replacing every English word in Fig.1(a) with
its corresponding Spanish word, we interchange
the positions of casa and blanca to arrive Fig.1(b).
For a pair of parallel sentences that follow all the
assumptions of the EC theory, these steps can be
performed without exception and result in the cre-
ation of a Spanish parse tree with the same hierar-
chical structure as the English parse.

We use various techniques to address cases in
which the grammatical structures of the two sen-
tences deviate. English words that are unaligned to
any Spanish words are replaced by empty strings.
(See Fig.2 wherein the English word she has no
Spanish counterpart, since this pronoun is dropped
in the Spanish sentence.) Contiguous word se-
quences in one sentence that are aligned to the

1546

(a) SE

VPE

VPE

NPE

PRPE

it

VBE

do

MDE

will

NPE

NNPE

She

(b) SE

VPE

NPE

PRPE

it

MD+VBE

dowill

NPE

NNPE

She

(c) SS

VPS

MD+VBS

hará

NPS

PRPS

lo

NPS

NNPS

<>

Figure 2: (a) The parse of an English sentence
as per Stanford CoreNLP. This parse is projected
onto the parallel Spanish sentence Lo hará and
modified during this process, to produce corre-
sponding (b) English and (c) Spanish parse trees.

same word(s) in the other language are collapsed
into a single multi-word node, and the entire sub-
tree between these collapsed nodes and their clos-
est common ancestor is flattened to accommo-
date this change (example in Fig.2). While these
changes do result in slightly unnatural or simpli-
fied parse trees, they are used very sparingly since
English and Spanish have very compatible gram-
mars.

Generating CS sentences. The number of CS
sentences that can be produced by combining a
corresponding pair of English and Spanish sen-
tences increases exponentially with the length of
the sentences. Instead of generating these sen-
tences exhaustively, we use the parses to construct
a finite-state automaton that succinctly captures
the acceptable CS sentences. Since the CS sen-
tence must have the same hierarchical structure as
the monolingual sentences, we construct the au-
tomaton during a post-order traversal of the mono-
lingual parses. An automaton is constructed at
each node by (1) concatenating the automatons
constructed at its child nodes, (2) splitting states
and removing transitions to ensure that the EC the-
ory is not violated. The last automaton to be con-
structed, which is associated with the root node,
accepts all the CS sentences that can be generated
using the monolingual parses. We do not provide
the exact details of automaton construction here,
but we plan to release our code in the near future.

3 Datasets

In this work, we use three types of language data:
monolingual data in English and Spanish (Mono),
real code-mixed data (rCM), and artificial or gen-
erated code-mixed data (gCM). In this section, we
describe these datasets and their CM properties.
We begin with description of some metrics that we
shall use for quantification of the complexity of a
CM dataset.

3.1 Measuring CM Complexity

The CM data, both real and artificial, can vary
in the their relative usage and ordering of L1 and
L2 words, and thereby, significantly affect down-
stream applications like language modeling. We
use the following metrics to estimate the amount
and complexity of code-mixing in the datasets.

Switch-point (SP): As defined in the last sec-
tion, switch-points are points within a sentence
where the languages of the words on the two sides
are different. Intuitively, sentences that have more
number of SPs are inherently more complex. We
also define the metric SP Fraction (SPF) as the
number of SP in a sentence divided by the total
number of word boundaries in the sentence.

Code mixing index (CMI): Proposed by Gam-
back and Das (2014, 2016), CMI quantifies the
amount of code mixing in a corpus by accounting
for the language distribution as well as the switch-
ing between them. Let N be the number of lan-
guage tokens, x an utterance; let tLi be the tokens
in language Li, P be the number of code switch-
ing points in x. Then, the Code mixed index per
utterance, Cu(x) for x computed as follows,

Cu(x) =
(N(x)−maxLi∈L{tLi}(x)) + P (x)

N(x)
(1)

Note that all the metrics can be computed at the
sentence level as well as at the corpus level by av-
eraging the values for all the sentences in a corpus.

3.2 Real Datasets

We chose to conduct all our experiments on
English-Spanish CM tweets because English-
Spanish CM is well documented (Solorio and
Liu, 2008), is one of the most commonly mixed
language pairs on social media (Rijhwani et al.,
2017), and a couple of CM tweet datasets are read-
ily available (Solorio et al., 2014; Rijhwani et al.,
2017).

1547

Dataset # Tweets # Words CMI SPF
Mono

English 100K 850K (48K) 0 0
Spanish 100K 860K (61K) 0 0

rCM
Train 100K 1.4M (91K) 0.31 0.105
Validation 100K 1.4M (91K) 0.31 0.106
Test-17 83K 1.1M (82K) 0.31 0.104
Test-14 13K 138K (16K) 0.12 0.06
gCM 31M 463M (79K) 0.75 0.35

Table 1: Size of the datasets. Numbers in paren-
thesis show the vocabulary size, i.e., the no. of
unique words.

For our experiments, we use a subset of the
tweets collected by Rijhwani et al. (2017) that
were automatically identified as English, Span-
ish or English-Spanish CM. The authors provided
us around 4.5M monolingual tweets per language,
and 283K CM tweets. These were already dedu-
plicated and tagged for hashtags, URLs, emoti-
cons and language labels automatically through
the method proposed in the paper. Table 1 shows
the sizes of the various datasets, which are also de-
scribed below.

Mono: 50K tweets were sampled for Spanish
and English from the entire collection of monolin-
gual tweets. The Spanish tweets were translated
to English and vice versa, which gives us a total of
100K monolingual tweets in each language. We
shall refer to this dataset as Mono. The sampling
strategy and reason for generating translations will
become apparent in Sec. 3.3.

rCM: We use two real CM datasets in our ex-
periment. The 283K real CM tweets provided by
Rijhwani et al. (2017) were randomly divided into
training, validation and test sets of nearly equal
sizes. Note that for most of our experiments, we
will use a very small subset of the training set con-
sisting of 5000 tweets as train data, because the
fundamental assumption of this work is that very
little amount of CM data is available for most lan-
guage pairs (which is in fact true for most pairs
beyond some very popularly mixed languages like
English-Spanish). Nevertheless, the much larger
training set is required for studying the effect of
varying the amount of real CM data on our mod-
els. We shall refer to this training dataset as
rCM. The test set with 83K tweets will be re-
ferred to as Test-17. We also use another dataset of

Figure 3: Average number of gCM sentences (y-
axis) vs mean input sentence length (x-axis)

English-Spanish CM tweets for testing our mod-
els which was released during the language la-
beling shared task at the Workshop on “Compu-
tational Approaches to Code-switching, EMNLP
2014” (Solorio et al., 2014). We mixed the train-
ing, validation and test datasets released during
this shared task to construct a set of 13K tweets,
which we shall refer to as Test-14. The two test
datasets are tweets that were collected three years
apart, and therefore, will help us estimate the ro-
bustness of the language models. As shown in Ta-
ble 1, these datasets are quite different in terms
of CMI and average number of SP per tweet. For
computing the CMI and SP, we used a English-
Spanish LID to language tag the words. In fact,
9500 tweets in the Test-14 dataset are monolin-
gual, but we chose to retain them because it re-
flects the real distribution of CM data. Further,
Test-14 also has manually annotated language la-
bels, which will be helpful while conducting an
in-depth analysis of the models.

3.3 Synthetic Code-Mixed Data

As described in the previous section, we use par-
allel monolingual sentences to generate grammat-
ically valid code mixed sentences. The entire pro-
cess involves the following four steps.

Step 1: We created the parallel corpus by gen-
erating translations for all the monolingual En-
glish and Spanish tweets (4.5M each) using the
Bing Translator API.2 We have found, that the
translation quality varies widely across different
sentences. Thus, we rank the translated sen-
tences using Pseudo Fuzzy-match Score (PFS)

2https://www.microsoft.com/en-
us/translator/translatorapi.aspx

1548

(He et al., 2010). First, the forward translation
engine (eg. English-to-Spanish) translates mono-
lingual source sentence s into target t. Then the
reverse translation system (eg. Spanish-English)
translates target t into pseudo source s′. Equa-
tion 2 computes the PFS between s and s′.

PFS =
EditDistance(s, s′)

max(|s|, |s′|)
(2)

After manual inspection, we decided to select
translation pairs whose PFS ≤ 0.7. The edit dis-
tance is based on Wagner and Fischer (1974).

Step 2: We used the fast align toolkit3

(Dyer et al., 2013), to generate the word align-
ments from these parallel sentences.

Step 3: The constituency parses for all the
English tweets were obtained using the Stanford
PCFG parser (Klein and Manning, 2003).

Step 4: Using the parallel sentences, alignments
and parse trees, we apply the Equivalent constraint
theory (Sec 2.2) to generate all syntactically valid
CM sentences while allowing for lexical substitu-
tion.

We randomly selected 50K monolingual Span-
ish and English tweets whose PFS ≤ 0.7. This
gave us 200K monolingual tweets in all (Mono
dataset) and the total amount of generated CM
sentences from these 100K translation pairs was
31M, which we shall refer to as gCM. Note that
even though we consider the Mono and gCM
as two separate sets, in reality the EC model
also generates the monolingual sentences; further,
existence of gCM presumes existence of Mono.
Hence, we also use Mono as part of all training
experiments which use gCM.

We would also like to point out that the choice
of experimenting with a much smaller set of
tweets, only 50K per language, was made because
the number of generated tweets even from this
small set of monolingual tweet pairs is almost pro-
hibitively large to allow experimentation with sev-
eral models and their respective configurations.

4 Approach

Language modeling is a very widely researched
topic (Rosenfeld, 2000; Bengio et al., 2003; Sun-
dermeyer et al., 2015). In recent times, deep learn-
ing has been successfully employed to build ef-
ficient LMs (Mikolov et al., 2010; Sundermeyer
et al., 2012; Arisoy et al., 2012; Che et al., 2017).

3https://github.com/clab/fast align

Baheti et al. (2017) recently showed that there is
significant effect of the training curriculum, that is
the order in which data is presented to an RNN-
based LM, on the perplexity of the learnt English-
Spanish CM language model on tweets. Along
similar lines, in this study we focus our experi-
ments on training curriculum, especially regarding
the use of gCM data during training, which is the
primary contribution of this paper.

We do not attempt to innovate in terms of the
architecture or computational structure of the LM,
and use a standard LSTM-based RNN LM (Sun-
dermeyer et al., 2012) for all our experiments. In-
deed, there are enough reasons to believe that CM
language is not fundamentally different from non-
CM language, and therefore, should not require an
altogether different LM architecture. Rather, the
difference arises in terms of added complexity due
to the presence of lexical items and syntactic struc-
tures from two linguistic systems that blows up the
space of valid grammatical and lexical configura-
tions, which makes it essential to train the models
on large volumes of data.

4.1 Training Curricula

Baheti et al. (2017) showed that rather than ran-
domly mixing the monolingual and CM data dur-
ing training, the best performance is achieved
when the LM is first trained with a mixture of
monolingual texts from both languages in nearly
equal proportions, and ending with CM data. Mo-
tivated by this finding, we define the following ba-
sic training curricula (“X | Y” indicates training
the model first with data X and then data Y):

(1) rCM, (2) Mono, (3) Mono | rCM,
(4a) Mono | gCM, (4b) gCM |Mono,
(5a) Mono | gCM | rCM,
(5b) gCM |Mono | rCM
Curricula 1-3 are baselines, where gCM data is

not used. Note that curriculum 3 is the best case
according to Baheti et al. (2017). Curricula 4a and
4b help us examine how far generated data can
substitute real data. Finally, curricula 5a and 5b
use all the data, and we would expect them to per-
form the best.

Note that we do not experiment with other po-
tential combinations (e.g., rCM | gCM |Mono) be-
cause it is known (and we also see this in our ex-
periments) that adding rCM data at the end always
leads to better models.

1549

Figure 4: Scatter plot of fractional increase in
word frequency in gCM (y-axis) vs original fre-
quency (x-axis).

4.2 Sampling from gCM

As we have seen in Sec 3.3 (Fig. 3), in the EC
model, a pair of monolingual parallel tweets gives
rise to a large number (typically exponential in the
length of the tweet) of CM tweets. On the other
hand, in reality, only a few of those tweets would
be observed. Further, if all the generated sentences
are used to train an LM, it is not only computation-
ally expensive, it also leads to undesirable results
because the statistical properties of the distribution
of the gCM corpus is very different from real data.
We see this in our experiments (not reported in
this paper for paucity of space), and also in Fig 4,
where we plot the ratio of the frequencies of the
words in gCM and Mono corpora (y-axis) against
their original frequencies in Mono (x-axis). We
can clearly see that the frequencies of the words
are scaled up non-uniformly, the ratios varying be-
tween 1 and 500,000 for low frequency words.

In order to reduce this skew, instead of select-
ing the entire gCM data, we propose three sam-
pling techniques for creating the training data from
gCM:

Random: For each monolingual pair of parallel
tweets, we randomly pick a fixed number, k, of
CM tweets. We shall refer to the resultant training
corpus as χ-gCM.

CMI-based: For each monolingual pair of par-
allel tweets, we randomly pick k CM tweets and
bucket them using CMI (in 0.1 intervals). Thus,
in this case we can define two different curric-
ula, where we present the data in increasing or
decreasing order of CMI during training, which
will be represented by the notations ↑-gCM and
↓-gCM respectively.

SPF-based: For each monolingual pair of par-
allel tweets, we randomly pick k CM tweets such
that the SPF distribution (section 3.1) of these
tweets is similar to that of rCM data (as estimated
from the validation set). This strategy will be re-
ferred to as ρ-gCM.

Thus, depending on the gCM sampling strategy
used, curricula 4a-b and 5a-b can have three differ-
ent versions each. Note that since CMI for Mono
is 0, ↑-gCM is not meaningful for 4b and 5b and
similarly, ↓-gCM not for 4a and 5a.

5 Experiments and Results

For all our experiments, we use a 2 layered RNN
with LSTM units and hidden layer dimension of
100. While training, we use sampled softmax with
5000 samples instead of a full softmax to speed
up the training process. The sampling is based on
the word frequency in the training corpus. We use
momentum SGD with a learning rate of 0.002. We
have used the CNTK toolkit for building our mod-
els.4 We use a fixed k=5 (from each monolingual
pair) for sampling the gCM data. We observed the
performance on ↑-gCM to be the best when trained
till CMI 0.4 and similarly on ↓-gCM when trained
from 1.0 to 0.6.

5.1 Results

Table 2 presents the perplexities on validation,
Test-14 and Test-17 datasets for all the models
(Col. 3, 4 and 5). We observe the following
trends: (1) Model 5(b)-ρ has the least perplex-
ity value (significantly different from the second
lowest value in the column, p < 0.00001 for a
paired t-test). (2) There is 55 and 90 point re-
duction in perplexity on Test-17 and Test-14 sets
respectively from the baseline experiment 3, that
does not use gCM data. Thus, addition of gCM
data is helpful. (3) Only the 4a and 4b models are
worse than 3, while 5a and 5b models are better.
Hence, rCM is indispensable, even though gCM
helps. (4) SPF based sampling performs signifi-
cantly better (again p < 0.00001) than other sam-
pling techniques.

To put these numbers in perspective, we also
trained our model on 50k monolingual English
data, which gave a PPL of 264. This shows that
the high PPL values our models obtain are due
to the inherent complexity of modeling CM lan-
guage. This is further substantiated by the PPL

4https://www.microsoft.com/en-us/cognitive-toolkit/

1550

ID Training curriculum Overall PPL Avg. SP PPL
Valid Test-17 Test-14 Valid Test-17 Test-14

1 rCM 1995 2018 1822 5598 5670 8864
2 Mono 1588 1607 892 23378 23790 26901
3 Mono | rCM 1029 1041 861 4734 4824 7913

4(a)-χ Mono | χ-gCM 1749 1771 1119 5752 5869 6065
4(a)-↑ Mono | ↑-gCM 1852 1872 1208 9074 9167 8803
4(a)-ρ Mono | ρ-gCM 1599 1618 1116 6534 6618 7293
4(b)-χ χ-gCM |Mono 1659 1680 903 20634 21028 20300
4(b)-↓ ↓-gCM |Mono 1900 1917 973 28422 28722 25006
4(b)-ρ ρ-gCM |Mono 1622 1641 871 26191 26710 22557
5(a)-χ Mono | χ-gCM | rCM 1026 1038 836 4317 4386 5958
5(a)-↑ Mono | ↑-gCM | rCM 1045 1058 961 4983 5078 6861
5(a)-ρ Mono | ρ-gCM | rCM 999 1011 830 4736 4829 6807
5(b)-χ χ-gCM |Mono | rCM 1006 1019 790 4878 4987 7018
5(b)-↓ ↓-gCM |Mono | rCM 1012 1025 800 5396 5489 7476
5(b)-ρ ρ-gCM |Mono | rCM 976 986 772 4810 4912 6547

Table 2: Perplexity of the LM Models on all tweets and only on SP (right block).

RL 3 5(a)-χ 5(a)-ρ 5(a)-↑ 5(b)-↓ 5(b)-χ 5(b)-ρ
1 13222 12815 13717 14017 13761 13494 13077
2 2201 2120 2064 2078 2155 2256 2108
3 970 926 902 896 914 966 911
4 643 594 567 575 573 608 571
5 574 540 509 517 502 553 503
6 593 545 529 543 520 566 529
≥ 7 507 465 444 460 431 479 440

Table 3: Perplexities of minor language runs for
various run lengths on Test-17.

rCM 0.5K 1K 2.5K 5K 10K 50K
3 1238 1186 1120 1041 991 812

5(b)-ρ 1181 1141 1068 986 951 808

Table 4: Perplexity variation on Test-17 with
changes in amount of rCM train data. Similar
trends for other models (left for paucity of space)

values computed only at the code-switch points,
which are shown in Table 2, col. 6, 7 and 8. Even
for the best model, which in this case is 5(a)-χ,
PPL is four times higher than the overall PPL on
Test-17.

Run length: The complexity of modeling CM
is also apparent from Table 3, which reports the
perplexity value of the 3 and 5 models for mono-
lingual fragments of various run lengths. We de-
fine run length as the number of words in a max-
imal monolingual fragment or run within a tweet.
In our analysis, we only consider runs of the em-
bedded language, defined as the language that has
fewer words. As one would expect, model 5(a)-
χ performs the best for run length 1 (recall that it
has lowest PPL at SP), but as the run length in-
creases, the models sampling the gCM data us-

Sample size (k) 1 2 5 10
tweets 93K 184K 497K 952K
5(b)-ρ 1081 1053 986 1019

Table 5: Variation of PPL on Test-17 with gCM
sample size k. Similar trends for other models.

ing CMI (5(a)-↑ and 5(b)-↓) are better than the
randomly sampled (χ) models. Run length 1 are
typically cases of word borrowing and lexical sub-
stitution; higher run length segments are typically
an indication of CM. Clearly, modeling the shorter
runs of the embedded language seems to be one of
the most challenging aspect of CM LM.

Significance of Linguistic Constraints: To
understand the importance of the linguistic con-
straints imposed by EC on generation of gCM, we
conducted an experiment where a synthetic CM
corpus was created by combining random contigu-
ous segments from the monolingual tweets such
that the generated CM tweets’ SPF distribution
matched that of rCM. When we replaced gCM by
this corpus in 5(b)-ρ, the PPL on test-17 was 1060,
which is worse than the baseline PPL.

Effect of rCM size: Table 4 shows the PPL
values for models 3 and 5(b)-ρ when trained with
different amounts of rCM data, keeping other pa-
rameters constant. As expected, the PPL drops for
both models as rCM size increases. However, even
with high rCM data, gCM does help in improv-
ing the LM until we have 50k rCM data (compa-
rable to monolingual, and an unrealistic scenario
in practice), where the returns of adding gCM
starts diminishing. We also observe that in gen-

1551

eral, model 3 needs twice the amount of rCM data
to perform as well as model 5(b)-ρ.

Effect of gCM size: In our sampling methods
on gCM data, we fixed our sample size, k as 5 for
consistency and feasibility of experiments. To un-
derstand the effect of k (and hence the size of the
gCM data), we experimented with k = 1, 2, and 10
keeping everything else fixed. Table 5 reports the
results for the models 3 and 5(b)-ρ. We observe
that unlike rCM data, increasing gCM data or k
does not necessarily decrease PPL after a point.
We speculate that there is trade-off between k and
the amount of rCM data, and also probably be-
tween these and the amount of monolingual data.
We plan to explore this further in future.

6 Related Work

We briefly describe the various types of ap-
proaches used for building LM for CM text.

Bilingual models: These models combine data
from monolingual data sources in both languages
(Weng et al., 1997). Factored models: Geb-
hardt (2011) uses Factored Language Models for
rescoring n-best lists during ASR decoding. The
factors used include POS tags, CS point prob-
ability and LID. In Adel et al.(2014b; 2014a;
2013) RNNLMs are combined with n-gram based
models, or converted to backoff models, giv-
ing improvements in perplexity and mixed error
rate. Models that incorporate linguistic con-
straints: Li and Fung (2013) use inversion con-
straints to predict CS points and integrates this
prediction into the ASR decoding process. Li
and Fung (2014) integrates Functional Head con-
straints (FHC) for code-switching into the Lan-
guage Model for Mandarin-English speech recog-
nition. This work uses parsing techniques to re-
strict the lattice paths during decoding of speech
to those permissible under the FHC theory. Our
method instead imposes grammatical constraints
(EC theory) to generate synthetic data, which can
potentially be used to augment real CM data. This
allows flexibility to deploy any sophisticated LM
architecture and the synthetic data generated can
also be used for CM tasks other than speech recog-
nition. Training curricula for CM: Baheti et al.
(2017) show that a training curriculum where an
RNN-LM is trained first with interleaved monolin-
gual data in both languages followed by CM data
gives the best results for English-Spanish LM. The
perplexity of this model is 4544, which then re-

duces to 298 after interpolation with a statistical
n-gram LM. However, these numbers are not di-
rectly comparable to our work because the datasets
are different. Our work is an extension of this ap-
proach showing that adding synthetic data further
improves results.

We do not know of any work that uses syntheti-
cally generated CM data for training LMs.

7 Conclusion

In this paper, we presented a computational
method for generating synthetic CM data based
on the EC theory of code-mixing, and showed
that sampling text from the synthetic corpus
(according to the distribution of SPF found in
real CM data) helps in reduction of PPL of the
RNN-LM by an amount which is equivalently
achieved by doubling the amount of real CM data.
We also showed that randomly generated CM
data doesn’t improve the LM. Thus, the linguistic
theory based generation is of crucial significance.
There is no unanimous theory in linguistics on
syntactic structure of CM language. Hence, as a
future work, we would like to compare the useful-
ness of different linguistic theories and different
constraints within each theory in our proposed
LM framework. This can also provide an indirect
validation of the theories. Further, we would like
to study sampling techniques motivated by natural
distributions of linguistic structures.

Acknowledgements

We would like to thank the anonymous
reviewers for their valuable suggestions.

References
Heike Adel, K. Kirchhoff, N. T. Vu, D. Telaar, and

T. Schultz. 2014a. Combining recurrent neural net-
works and factored language models during decod-
ing of code-switching speech. In INTERSPEECH,
pages 1415–1419.

Heike Adel, K Kirchhoff, N T Vu, D Telaar, and
T Schultz. 2014b. Comparing approaches to con-
vert recurrent neural networks into backoff language
models for efficient decoding. In INTERSPEECH,
pages 651–655.

Heike Adel, N T Vu, and T Schultz. 2013. Combina-
tion of recurrent neural networks and factored lan-
guage models for code-switching language model-
ing. In ACL (2), pages 206–211.

1552

Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and
Bhuvana Ramabhadran. 2012. Deep neural network
language models. In Proceedings of the NAACL-
HLT 2012 Workshop: Will We Ever Really Replace
the N-gram Model? On the Future of Language
Modeling for HLT, pages 20–28. Association for
Computational Linguistics.

Ashutosh Baheti, Sunayana Sitaram, Monojit Choud-
hury, and Kalika Bali. 2017. Curriculum design for
code-switching: Experiments with language iden-
tification and language modeling with deep neural
networks. In Proc. of ICON-2017, Kolkata, India,
pages 65–74.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code mixing: A challenge
for language identification in the language of social
media. In The 1st Workshop on Computational Ap-
proaches to Code Switching, EMNLP 2014.

Hedi M Belazi, Edward J Rubin, and Almeida Jacque-
line Toribio. 1994. Code switching and x-bar the-
ory: The functional head constraint. Linguistic in-
quiry, pages 221–237.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Tong Che, Yanran Li, Ruixiang Zhang, R Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Ben-
gio. 2017. Maximum-likelihood augmented discrete
generative adversarial networks. arXiv preprint
arXiv:1702.07983.

A.-M. DiSciullo, Pieter Muysken, and R. Singh. 1986.
Government and code-mixing. Journal of Linguis-
tics, 22:1–24.

Chris Dyer, Victor Chahuneau, and N A. Smith. 2013.
A simple, fast, and effective reparameterization of
ibm model 2. In Proceedings of NAACL-HLT 2013,
pages 644–648. Association for Computational Lin-
guistics.

B. Gamback and A Das. 2014. On measuring the com-
plexity of code-mixing. In Proc. of the 1st Workshop
on Language Technologies for Indian Social Media
(Social-India).

B. Gamback and A Das. 2016. Comparing the level of
code-switching in corpora. In Proc. of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC).

Jan Gebhardt. 2011. Speech recognition on english-
mandarin code-switching data using factored lan-
guage models.

Yifan He, Yanjun Ma, Andy Way, and Josef Van Gen-
abith. 2010. Integrating n-best smt outputs into a
tm system. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
pages 374–382. Association for Computational Lin-
guistics.

A. K. Joshi. 1985. Processing of Sentences with In-
trasentential Code Switching. In D. R. Dowty,
L. Karttunen, and A. M. Zwicky, editors, Natural
Language Parsing: Psychological, Computational,
and Theoretical Perspectives, pages 190–205. Cam-
bridge University Press, Cambridge.

D Klein and CD Manning. 2003. Accurate unlexi-
calized parsing. In Proceedings of the 41st annual
meeting of the association for computational lin-
guistics. Association of Computational Linguistics.

Ying Li and P Fung. 2013. Improved mixed lan-
guage speech recognition using asymmetric acoustic
model and language model with code-switch inver-
sion constraints. In ICASSP, pages 7368–7372.

Ying Li and P Fung. 2014. Language modeling with
functional head constraint for code switching speech
recognition. In EMNLP.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Eleventh Annual Conference of the International
Speech Communication Association.

Carol Myers-Scotton. 1993. Duelling Lan-
guages:Grammatical structure in Code-switching.
Clarendon Press, Oxford.

Carol Myers-Scotton. 1995. A lexically based model
of code-switching. In Lesley Milroy and Pieter
Muysken, editors, One Speaker, Two Languages:
Cross-disciplinary Perspectives on Code-switching,
pages 233–256. Cambridge University Press, Cam-
bridge.

Rana D. Parshad, Suman Bhowmick, Vineeta Chand,
Nitu Kumari, and Neha Sinha. 2016. What is India
speaking? Exploring the “Hinglish” invasion. Phys-
ica A, 449:375–389.

Shana Poplack. 1980. Sometimes Ill start a sentence in
Spanish y termino en espaol. Linguistics, 18:581–
618.

Ameya Prabhu, Aditya Joshi, Manish Shrivastava, and
Vasudeva Varma. 2016. Towards sub-word level
compositions for sentiment analysis of hindi-english
code mixed text. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2482–2491.

Shruti Rijhwani, R Sequiera, M Choudhury, K Bali,
and C S Maddila. 2017. Estimating code-switching
on Twitter with a novel generalized word-level lan-
guage identification technique. In ACL.

Ronald Rosenfeld. 2000. Two decades of statistical
language modeling: Where do we go from here?
Proceedings of the IEEE, 88(8):1270–1278.

Koustav Rudra, S Rijhwani, R Begum, K Bali,
M Choudhury, and N Ganguly. 2016. Understand-
ing language preference for expression of opinion

1553

and sentiment: What do Hindi-English speakers do
on Twitter? In EMNLP, pages 1131–1141.

David Sankoff. 1998. A formal production-based ex-
planation of the facts of code-switching. Bilingual-
ism: language and cognition, 1(01):39–50.

A. Sharma, S. Gupta, R. Motlani, P. Bansal, M. Srivas-
tava, R. Mamidi, and D.M Sharma. 2016. Shallow
parsing pipeline for hindi-english code-mixed social
media text. In Proceedings of NAACL-HLT.

Sunayana Sitaram, Sai Krishna Rallabandi, Shruti Ri-
jhwani, and Alan W Black. 2016. Experiments with
cross-lingual systems for synthesis of code-mixed
text. In 9th ISCA Speech Synthesis Workshop.

Thamar Solorio and Yang Liu. 2008. Part-of-speech
tagging for english-spanish code-switched text. In
Proc. of EMNLP.

Thamar Solorio et al. 2014. Overview for the first
shared task on language identification in code-
switched data. In 1st Workshop on Computational
Approaches to Code Switching, EMNLP, pages 62–
72.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter.
2015. From feedforward to recurrent lstm neural
networks for language modeling. IEEE Transac-
tions on Audio, Speech, and Language Processing,
23(3):517–529.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language model-
ing. In Thirteenth Annual Conference of the Inter-
national Speech Communication Association.

Yogarshi Vyas, S Gella, J Sharma, K Bali, and
M Choudhury. 2014. POS Tagging of English-
Hindi Code-Mixed Social Media Content. In Proc.
EMNLP, pages 974–979.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

Fuliang Weng, H Bratt, L Neumeyer, and A Stolcke.
1997. A study of multilingual speech recognition.
In EUROSPEECH, volume 1997, pages 359–362.
Citeseer.

