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Abstract

We present a new method for estimat-
ing vector space representations of words:
embedding learning by concept induction.
We test this method on a highly paral-
lel corpus and learn semantic representa-
tions of words in 1259 different languages
in a single common space. An exten-
sive experimental evaluation on crosslin-
gual word similarity and sentiment analy-
sis indicates that concept-based multilin-
gual embedding learning performs better
than previous approaches.

1 Introduction

Vector space representations of words are widely
used because they improve performance on mono-
lingual tasks. This success has generated inter-
est in multilingual embeddings, shared representa-
tion of words across languages (Klementiev et al.,
2012). Such embeddings can be beneficial in ma-
chine translation in sparse data settings because
multilingual embeddings provide meaning repre-
sentations of source and target in the same space.
Similarly, in transfer learning, models trained in
one language on multilingual embeddings can be
deployed in other languages (Zeman and Resnik,
2008; McDonald et al., 2011; Tsvetkov et al.,
2014). Automatically learned embeddings have
the added advantage of requiring fewer resources
for training (Klementiev et al., 2012; Hermann and
Blunsom, 2014b; Guo et al., 2016). Thus, mas-
sively multilingual word embeddings (i.e., cover-
ing 100s or 1000s of languages) are likely to be
important in NLP.

The basic information many embedding learn-
ers use is word-context information; e.g., the em-
bedding of a word is optimized to predict a rep-
resentation of its context. We instead learn em-
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Figure 1: Example of a CLIQUE concept: “water”

beddings from word-concept information. As a
first approximation, a concept is a set of seman-
tically similar words. Figure 1 shows an example
concept and also indicates one way we learn con-
cepts: we interpret cliques in the dictionary graph
as concepts. The nodes of the dictionary graph
are words, its edges connect words that are trans-
lations of each other. A dictionary node has the
form prefix:word, e.g., “tpi:wara” (upper left node
in the figure). The prefix is the ISO 639-3 code of
the language; tpi is Tok Pisin.

Our method takes a parallel corpus as input and
induces a dictionary graph from the parallel cor-
pus. Concepts and word-concept pairs are then
induced from the dictionary graph. Finally, em-
beddings are learned from word-concept pairs.

A key application of multilingual embeddings
is transfer learning. Transfer learning is mainly of
interest if the target is resource-poor. We there-
fore select as our dataset 1664 translations in 1259
languages of the New Testament from PBC, the
Parallel Bible Corpus. Since “translation” is an
ambiguous word, we will from now on refer to the
1664 translations as “editions”. PBC is aligned
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English King James Version (KJV) German Elberfelder 1905 Spanish Americas
And he said , Do it the second
time . And they did it the second
time . . .

Und er sprach : Füllet vier Eimer mit Wasser , und gießet es
auf das Brandopfer und auf das Holz . Und er sprach : Tut es
zum zweiten Male ! Und sie taten es zum zweiten Male . . .

Y dijo : Llenad cuatro cántaros de agua y derramadla so-
bre el holocausto y sobre la leña . Después dijo : Hacedlo
por segunda vez ; y lo hicieron por segunda vez . . .

Table 1: Instances of verse 11018034. This multi-sentence verse is an example of verse misalignment.

on the verse level; most verses consist of a single
sentence, but some contain several (see Table 1).
PBC is a good model for resource-poverty; e.g.,
the training set (see below) of KJV contains fewer
than 150,000 tokens in 6458 verses.

We evaluate multilingual embeddings on two
tasks, roundtrip translation (RT) and sentiment
analysis. RT on the word level is – to our knowl-
edge – a novel evaluation method: a query word
w of language L1 is translated to its closest (with
respect to embedding similarity) neighbor v in L2

and then backtranslated to its closest neighbor w′

in L1. RT is successful if w = w′. There are
well-known concerns about RT when it is used in
the context of machine translation. A successful
roundtrip translation does not necessarily imply
that v is of high quality and it is not possible to
decide whether an error occurred in the forward
or backward translations. Despite these concerns
about RT on the sentence level, we show that RT
on the word level is a difficult task and an effective
measure of embedding quality.

Contributions. (i) We introduce a new em-
bedding learning method, multilingual embedding
learning through concept induction. (ii) We show
that this new concept-based method outperforms
previous approaches to multilingual embeddings.
(iii) We propose both word-level and character-
level dictionary induction methods and present
evidence that concepts induced from word-level
dictionaries are better for easily tokenizable lan-
guages and concepts induced from character-level
dictionaries are better for difficult-to-tokenize lan-
guages. (iv) We evaluate our methods on a corpus
of 1664 editions in 1259 languages. To the best of
our knowledge, this is the first detailed evaluation,
involving challenging tasks like word translation
and crosslingual sentiment analysis, that has been
done on such a large number of languages.

2 Methods

2.1 Pivot languages

Most of our methods are based on bilingual dic-
tionary graphs. With 1664 editions, it is com-
putationally expensive to consider all editions si-

multaneously (more than 106 dictionaries). Thus
we split the set of editions in 10 pivot and 1654
remaining editions, and do not compute nor use
dictionaries within the 1654 editions. We refer to
the ten pivot editions as pivot languages and give
them a distinct role in concept induction. We refer
to all editions (including pivot editions) as target
editions. Thus, a pivot edition has two roles: as a
pivot language and as a target edition.

We select the pivot languages based on their
sparseness. Sparseness is a challenge in NLP.
In the case of embeddings, it is hard to learn a
high-quality embedding for any infrequent word.
Many of the world’s languages (including many
PBC languages) exhibit a high degree of sparse-
ness. But some languages suffer comparatively
little from sparseness when simple preprocessing
like downcasing and splitting on whitespace is em-
ployed.

A simple measure of sparseness that affects em-
bedding learning is the number of types. Fewer
types is better since their average frequency will
be higher. Table 2 shows the ten languages in PBC
that have the smallest number of types in 5000
randomly selected verses. We randomly sample
5000 verses per edition and compare the number
of types based on this selection because most edi-
tions do not contain a few of the selected 6458
verses.

2.2 Character-level modeling (CHAR)

We will see that tokenization-based models have
poor performance on a subset of the 1259 lan-
guages. To overcome tokenization problems, we
represent a verse of length m bytes, as a sequence
of m − (n − 1) + 2 overlapping byte n-grams.
In this paper, “n-gram” always refers to “byte n-
gram”. We pad the verse with initial and final
space, resulting in two additional n-grams (hence
“+2”). This representation is in the spirit of earlier
byte-level processing, e.g., (Gillick et al., 2016).
There are several motivations for this. (i) We can
take advantage of byte-level generalizations. (ii)
This is robust if there is noise in the byte encod-
ing. (iii) Characters have different properties in
different languages and encodings, e.g., English
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lhu Lahu Sino-Tibetan; Thailand 1452 268
ahk Akha Sino-Tibetan; China 1550 315
hak Hakka Chinese Chinese; China 1596 242
ium Iu Mien Hmong-Mien; Laos 1779 191
tpi Tok Pisin Creole; PNG 1815 177
mio Pinotepa Mixtec Oto-Manguean; Oaxaca 1828 208
cya Highland Chatino Oto-Manguean; Oaxaca 1868 231
bis Bislama Creole; Vanuatu 1872 226
aji Ajië Austronesian; Houaı̈lou 1876 194
sag Sango Creole; Central Africa 1895 192

Table 2: Our ten pivot languages, the languages in
PBC with the lowest number of types. Tokens in
1000s. Tok Pisin and Bislama are English-based
and Sango is a Ngbandi-based creole. PNG =
Papua New Guinea

UTF-8 has properties different from Chinese UTF-
8. Thus, universal language processing is easier to
design on the byte level.

We refer to this ngram representation as CHAR
and to standard tokenization as WORD.

2.3 Dictionary induction

Alignment-based dictionary. We use fastalign
(Dyer et al., 2013) to compute word alignments
and use GDFA for symmetrization. All align-
ment edges that occurred at least twice are added
to the dictionary graph. Initial experiments indi-
cated that alignment-based dictionaries have poor
quality for CHAR, probably due to the fact that
overlapping ngram representations of sentences
have properties quite different from the tokenized
sentences that aligners are optimized for. Thus
we use this dictionary induction method only for
WORD and developed the following alternative
for CHAR.

Correlation-based dictionary (χ2). χ2 is a
greedy algorithm, shown in Figure 2, that selects,
in each iteration, the pair of units that has the high-
est χ2 score for cooccurrence in verses. Each se-
lected pair is added to the dictionary and removed
from the corpus. Low-frequency units are se-
lected first and high-frequency units last; this pre-
vents errors due to spurious association of high-
frequency units with low-frequency units. We per-
form dmax = 5 passes; in each pass, the maximum
degree of a dictionary node is 1 ≤ d ≤ dmax. So
if the node has reached degree d, it is ineligible
for additional edges during this pass. Again, this
avoids errors due to spurious association of high-
frequency units that already participate in many

Algorithm 1 χ2-based dictionary induction
1: procedure DICTIONARYGRAPH(C)
2: A = all-edges(C), E = []
3: for d ∈ [1, 2, . . . , dmax] do
4: fmax = 2
5: while fmax ≤ |C| do
6: fmin = max(min(5, fmax), 1

10
fmax)

7: (χ2, s, t) = max-χ2-edge(A, fmin, fmax, d)
8: if χ2 < χmin then
9: fmax = fmax + 1; continue

10: end if
11: T = extend-ngram(A, fmin, fmax, d, s, t)
12: append(E, s, T )
13: remove-edges(A, s, T )
14: end while
15: end for
16: return dictionary-graph = (nodes(E), E)
17: end procedure

Figure 2: χ2-based dictionary induction. C is a
sentence-aligned corpus. A is initialized to con-
tain all edges, i.e., the fully connected bipartite
graph for each parallel verse. E collects the se-
lected dictionary edges. d is the edge degree: in
each pass through the loop only edges are consid-
ered whose participating units have a degree less
than d. fmax is the maximum frequency during this
pass. |C| is the number of sentences in the cor-
pus. extend-ngram extends a target ngram to left
/ right; e.g., if s = “jisas” is aligned with ngram
t = “Jesu” in English, then “esus” is added to T . t
is always a member of T . remove-edges removes
edges in A between s and a member of T .

edges with low-frequency units. Recall that this
method is only applied for CHAR.

Intra-pivot dictionary. We assume that pivot
languages are easily tokenizable. Thus we only
consider alignment-based dictionaries (in total 45)
within the set of pivot languages.

Pivot-to-target dictionary. We compute an
alignment-based and a χ2-based dictionary be-
tween each pivot language and each target edition,
yielding a total of 10*1664 dictionaries per dictio-
nary type. (Note that this implies that, for χ2, the
WORD version of the pivot language is aligned
with its CHAR version.)

2.4 Concepts

A concept is defined as a set of units that has two
subsets: (i) a defining set of words from the ten
pivot languages and (ii) a set of target units (words
or n-grams) that are linked, via dictionary edges,
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Algorithm 2 CLIQUE concept induction

1: procedure CONCEPTS(I ∈ Rn×n, θ, ν)
2: G = ([n], {(i, j) ∈ [n]× [n] | Iij > θ})
3: cliques = get-cliques(G, 3)
4: Gc := (Vc, Ec) = (∅, ∅)
5: for c1, c2 ∈ cliques× cliques do
6: if |c1 ∩ c2| ≥ νmin{|c1|, |c2|} then
7: Vc = Vc ∪ {c1, c2}, Ec = Ec ∪ {(c1, c2)}
8: end if
9: end for

10: metacliques = get cliques(Gc, 1)
11: concepts = {flatten(c) | c ∈ metacliques}
12: return concepts
13: end procedure

Figure 3: CLIQUE concept induction. I
is a normalized adjacency matrix of a dictio-
nary graph (i.e., relative frequency of alignment
edges with respect to possible alignment edges).
get-cliques(G,n) returns all cliques in G of size
greater or equal to n. flatten(A) flattens a set of
sets. [n] denotes {1, 2, . . . , n}. θ = 0.4, ν = 0.6.

to the pivot subset. We selected the ten “easiest” of
the 1664 editions as pivot languages. Our premise
is that semantic information is encoded in a simply
accessible form in the pivot languages and so they
should offer a good basis for learning concepts.

We induce concepts from the dictionary graph, a
multipartite graph consisting of ten pivot language
node/word sets and all target edition node/unit sets
(where units are words or n-grams). Edges either
connect pivot nodes with other pivot nodes or pivot
nodes with target units.

2.4.1 CLIQUE concept induction
If concepts corresponded to each other in the
overtly coding pivot languages, if words were not
ambiguous and if alignments were perfect, then
concepts would be cliques in the pivot part of
the dictionary graph. These conditions are too
strict for natural languages, so we relax them in
our CLIQUE concept induction algorithm (Fig-
ure 3). The algorithm identifies maximal multilin-
gual cliques (size ≥ 3) within the dictionary graph
of the pivot languages and then merges two cliques
if they share enough common words. The merging
lets us identify clique-based concepts even if, e.g.,
a dictionary edge between two words is missing. It
also accommodates the situation where more than
one word of a pivot language should be part of a
concept. The merging step can also be interpreted
as metaconcept induction.

Once we have identified the cliques, we project

N(t) ={bis:Jorim, ium:yo-lim, sag:Yorim, tpi:Jorim}

t∈T={ac0:Yorim,atg0:iJorimu,bav0:Jorim,bom0:Yorim,
dik0:Jorim, dtp0:Yorim, duo0:Jorim, eng1:Jorim,
engb:Jorim, fij2:Lorima, fij3:Jorima,
gor0:Yorim, hvn0:Yorim, ibo0:Jorim, iri0:Jorri,
kmr0:Yorı̂m, ksd0:Iorim, kwd0:Jorim, lia0:Yorimi,
loz0:Jorimi, mbd0:Hurim, mfh0:Yorim, min0:Yorim,
mrw0:Yorim,mse0:Jorimma,naq0:Jorimmi, smo1:Iorimo,
srn1:Yorim, tsn2:Jorime, yor2:Jórı́mù}

Figure 4: Target neighborhood concept example:
N(t) ∪ T . N(t) is the target neighborhood for
each of the target words in T .

them to the target editions: a target-unit is added to
a clique if it is connected to a proportion ν = 0.6
of its member words (to allow for missing edges).
This identifies around 150k clique concepts that
cover around 8k of the total vocabulary of 24k En-
glish words (WORD).

As an alternative to cliques, Ammar et al.
(2016) use connected components (CCs). The
reachability relation (induced by CC) is the tran-
sitive closure of the edge relation. This results
in semantically unrelated words being in the same
concept for very low levels of noise. In contrast,
cliques are more “strict”: only node subsets are
considered whose corresponding edge relation is
already transitive (or almost so for ν = 0.6).
Transitivity across languages often does not hold
in alignments or dictionaries; see, e.g., Simard
(1999). This is why we only consider cliques
(which reflect already existent transitivity) rather
than CCs, which impose transitivity where it does
not hold naturally.

2.4.2 N(t) (target neighborhood) concept
induction

Let N(t) be the neighborhood of target node t in
the multipartite dictionary graph, i.e., the set of
pivot words that are linked to t. We refer to N(t)
as target neighborhood. Figure 4 shows an exam-
ple of such a target neighborhood, the set N(t)
consisting of four words.1 A target neighborhood
concept consists of a set T of pivot words and all
target words t for which T = N(t) holds.

Motivation. Suppose N(t) = N(u) for tar-
get nodes t and u from two different languages
and |N(t)| covers several pivot languages, e.g.,
|N(t)| = |N(u)| = 4 as in the figure. Again,
if units closely corresponded to concepts, if there
were no ambiguity, if the dictionary were perfect,

1We use numbers and lowercase letters at the fourth posi-
tion of the prefix to distinguish different editions in the same
language, e.g., “0”, “3” and “e” in “ace0”, “fij3”, “enge”.



1524

then we could safely conclude that the meanings
of t and u are similar; if the meanings of t and u
were unrelated, it is unlikely that they would be
aligned to the exact same words in four different
languages. In reality, there is no exact meaning-
form correspondence, there is ambiguity and the
dictionary is not perfect. Still, we will see be-
low that defining concepts as target neighborhoods
works well.

2.4.3 Filtering target neighborhood concepts

In contrast to CLIQUE, we do not put any con-
straint on the pivot-to-pivot connections within
target neighborhoods; e.g., in Figure 4, we do
not require that “bis:Jorim” and “sag:Yorim” are
connected by an edge. We evaluate three post-
filtering steps of target neighborhoods to increase
their quality: restricting target neighborhoods to
those that are cliques in N(t)-CLIQUE; to those
that are connected components in N(t)-CC; and
to those of size two that are valid edges in the
dictionary in N(t)-EDGE. For N(t)-EDGE, we
found that taking all edges performs well, so we
also consider edges that are proper subsets of tar-
get neighborhoods.

2.5 Embedding learning

We adopt the framework of embedding learning
algorithms that define contexts and then sample
pairs of an input word (more generally, an input
unit) and a context word (more generally, a con-
text unit) from each context. The only difference
is that our contexts are concepts. For simplicity,
we use word2vec (Mikolov et al., 2013a) as the
implementation of this model.2

2.6 Baselines

Baselines for multilingual embedding learning.
One baseline is inspired by (Vulić and Moens,
2015). We consider words of one aligned verse
in the pivot languages and one target language as
a bag of words (BOW) and consider this bag as a
context.3

Levy et al. (2017) show that sentence ID fea-
tures (interpretable as an abstract representation of
the word’s context) are effective. We use a corpus
with lines consisting of pairs of an identifier of a

2We use code.google.com/archive/p/word2vec
3The actual implementation slightly differs to avoid very

long lines. It does only consider two pivot languages at a
time, but writes each verse multiple times.

verse and a unit extracted from that verse as input
to word2vec and call this baseline S-ID.

Lardilleux and Lepage (2009) propose a sim-
ple and efficient baseline: sample-based concept
induction. Words that strictly occur in the same
verses are assigned to the same concept. To in-
crease coverage, they propose to sample many dif-
ferent subcorpora.4 We induce concepts using this
method and project them analogous to CLIQUE.
We call this baseline SAMPLE.

One novel contribution of this paper is
roundtrip evaluation of embeddings. We learn
embeddings based on a dictionary. The question
arises: are the embeddings simply reproducing the
information already in the dictionary or are they
improving the performance of roundtrip search?

As a baseline, we perform RTSIMPLE, a sim-
ple dictionary-based roundtrip translation method.
Retrieve the pivot word p in pivot language Lp

(i.e., p ∈ Lp) that is closest to the query q ∈ Lq.
Retrieve the target unit t ∈ Lt that is closest to p.
Retrieve the pivot word p′ ∈ Lp that is closest to
t. Retrieve the unit q′ ∈ Lq that is closest to p′. If
q = q′, this is an exact hit. We run this experiment
for all pivot and target languages.

Note that roundtrip evaluation tests the capabil-
ity of a system to go from any language to any
other language. In an embedding space, this re-
quires two hops. In a highly multilingual dataset
of n languages in which not all O(n2) bilingual
dictionaries exist, this requires four hops.

3 Experiments and results

3.1 Data

We use PBC (Mayer and Cysouw, 2014). The
version we pulled on 2017-12-11 contains 1664
Bible editions in 1259 languages (based on ISO
639-3 codes) after we discarded editions that have
low coverage of the New Testament. We use 7958
verses that have good coverage in these 1664 edi-
tions. The data is verse aligned; a verse of the New
Testament can consist of multiple sentences. We
randomly split verses 6458/1500 into train/test.

3.2 Evaluation

For sentiment analysis, we represent a verse as
the IDF-weighted sum of its embeddings. Senti-
ment classifiers (linear SVMs) are trained on the
training set of the World English Bible edition

4We use this implementation: anymalign.limsi.fr

code.google.com/archive/p/word2vec
anymalign.limsi.fr
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for the two decision problems positive vs. non-
positive and negative vs. non-negative. We create
a silver standard by labeling verses in English edi-
tions with the NLTK (Bird et al., 2009) sentiment
classifier.

A positive vs. negative classification is not rea-
sonable for the New Testament because a large
number of verses is mixed, e.g., “Now is come
salvation . . . the power of his Christ: for the ac-
cuser . . . cast down, which accused them before
our God . . . ” Note that this verse also cannot be
said to be neutral. Splitting the sentiment anal-
ysis into two subtasks (“contains positive senti-
ment: yes/no” and “contains negative sentiment:
yes/no”) is an effective solution for this paper.

The two trained models are then applied to the
test set of all 1664 editions. All embeddings in
this paper are learned on the training set only. So
no test information was used for learning the em-
beddings.

Roundtrip translation. There are no gold stan-
dards for the genre of our corpus (the New Tes-
tament); for only a few languages out-of-domain
gold standards are available. Roundtrip evalua-
tion is an evaluation method for multilingual em-
beddings that can be applied if no resources are
available for a language. Loosely speaking, for a
query q in a query language Lq (in our case En-
glish) and a target language Lt, roundtrip transla-
tion finds the unit wt in Lt that is closest to q and
then the English unit we that is closest to wt. If the
semantics of q and we are identical (resp. are unre-
lated), this is deemed evidence for (resp. counter-
evidence against) the quality of the embeddings.
We work on the level of Bible edition, i.e., two
editions in the same language are considered dif-
ferent “languages”.

For a query q, we denote the set of its kI near-
est neighbors in the target edition e by Ie(q) =
{u1, u2, . . . , ukI}. For each intermediate entry we
then consider its kT nearest neighbors in English.
Overall we get a set Te(q) with kIkT predictions
for each intermediate Bible edition e. See Figure 5
for an example.

We evaluate the predictions Te(q) using two sets
Gs(q) (strict) and Gr(q) (relaxed) of ground-truth
semantic equivalences in English. Precision for a
query q is defined as
pi(q) := 1/|E|

∑
e∈E min{1, |Te(q)∩Gi(q)|}

where E is the set of all Bible editions and i ∈
{s, r}. We report the mean and median across a

inter-
query mediate predictions
woman ⇒ mujer ⇒ wife woman women widows daughters

daughter marry married
⇒ esposa ⇒ marry wife woman married marriage

virgin daughters bridegroom

Figure 5: Roundtrip translation example for KJV
and Americas Bible (Spanish). In this example
min{1, |Te(q) ∩ Gi(q)|} equals 0 for S1 and R1,
and 1 for S4 and S16.

connu(3), connais(3), connaissent(3), savez(2),
sachant(2), sait(2), sachiez(2), savoir,
sçai, ignorez, connaissiez, sache connaissez,
connaissais, savent, savaient, connoissez,
connue, reconnaı̂trez, sais, connaissant,
savons, connaissait, savait

Figure 6: Intermediates aggregated over 17 French
editions. q=“know”, N(t) embeddings, S16.
Intermediates are correct with two possible ex-
ceptions: “ignorez” ‘you do not know’; “re-
connaı̂trez” ‘you recognize’.

set of 70 queries selected from Swadesh (1946)’s
list of 100 universal linguistic concepts.

We create Gs and Gr as follows. For WORD,
we define Gs(q) = {q} and Gr(q) = L(q)
where L(q) is the set of words with the same
lemma and POS as q. For CHAR, we need to
find ngrams that correspond uniquely to the query
q. Given a candidate ngram g we consider cqg :=
1/c(g)

∑
q′∈L(q),substring(g,q′) c(q

′) where c(x) is
the count of character sequence x across all edi-
tions in the query language. We add g to Gi(q) if
cqg > σi where σs = .75 and σr = .5. We only
consider queries where Gs(q) is non-empty.

We vary the evaluation parameters (i, kI , kT ) as
follows: “S1” represents (s, 1, 1), “S4” (s, 2, 2),
“S16” (s, 2, 8), and “R1” (r, 1, 1).

3.3 Corpus generation and hyperparameters

We train with the skipgram model and set vector
dimensionality to 200; word2vec default parame-
ters are used otherwise. Each concept – the union
of a set of pivot words and a set of target units
linked to the pivot words – is written out as a line
or (if the set is large) as a sequence of shorter lines.
Training corpus size is approximately 50 GB for
all experiments. We write several copies of each
line (shuffling randomly to ensure lines are differ-
ent) where the multiplication factor is chosen to
result in an overall corpus size of approximately
50 GB.

There are two exceptions. For BOW, we did not
find a good way of reducing the corpus size, so this
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roundtrip translation sentiment analysis
WORD CHAR WORD CHAR

S1 R1 S4 S16 S1 R1 S4 S16
µ Md µ Md µ Md µ Md N µ Md µ Md µ Md µ Md N pos neg pos neg

1 RTSIMPLE 33 24 37 36 67 24 13 32 21 70
2 BOW 7 5 8 7 13 12 26 28 69 3 2 3 2 5 4 10 11 70 33 81 13 83
3 S-ID 46 46 52 55 63 76 79 91 65 9 5 9 5 14 9 25 22 70 79 88 65 86
4 SAMPLE 33 23 43 42 54 59 82 96 65 53 59 59 72 67 85 79 99 58 82 89 77 89
5 CLIQUE 43 36 59 63 67 77 93 99 69 42 46 48 55 60 76 73 98 53 84 89 69 88
6 N(t) 54 59 61 69 80 87 94 100 69 50 53 54 59 73 82 90 99 66 82 89 87 90
7 N(t)-CLIQUE 11 0 11 0 16 0 22 0 18 39 45 41 47 58 74 76 94 56 22 84 61 84
8 N(t)-CC 3 0 3 0 5 0 7 0 5 11 0 11 0 16 0 25 0 21 4 84 40 83
9 N(t)-EDGE 35 30 43 36 56 55 87 94 69 39 29 49 52 64 78 88 100 63 84 90 84 89

Table 3: Roundtrip translation (mean/median accuracy) and sentiment analysis (F1) results for word-
based (WORD) and character-based (CHAR) multilingual embeddings. N (coverage): # queries con-
tained in the embedding space. The best result across WORD and CHAR is set in bold.

corpus is 10 times larger than the others. For S-
ID, we use Levy et al. (2017)’s hyperparameters;
in particular, we trained for 100 iterations and we
wrote each verse-unit pair to the corpus only once,
resulting in a corpus of about 4 GB.

We set the n parameter of n-grams to n = 4
for Bible editions with ρ < 2, n = 8 for Bible
editions with 2 ≤ ρ < 3 and n = 12 for Bible
editions with ρ ≥ 3 where ρ is the ratio between
size in bytes of the edition and median size of the
1664 editions. In χ2 dictionary induction, we set
χmin = 100. In the concept induction algorithm
we set θ = 0.4 and ν = 0.6. Except for SAMPLE
and CLIQUE, we filter out hapax legomena.

3.4 Results

Table 3 presents evaluation results for roundtrip
translation and sentiment analysis.

Validity of roundtrip (RT) evaluation results.
RTSIMPLE (line 1) is not competitive; e.g., its ac-
curacy is lower by almost half compared to N(t).
We also see that RT is an excellent differentiator
of poor multilingual embeddings (e.g., BOW) vs.
higher-quality ones like S-ID and N(t). This indi-
cates that RT translation can serve as an effective
evaluation measure.

The concept-based multilingual embedding
learning algorithms CLIQUE andN(t) (lines 5-6)
consistently (except S1 WORD) outperform BOW
and S-ID (lines 2-3) that are not based on con-
cepts. BOW performs poorly in our low-resource
setting; this is not surprising since BOW methods
rely on large datasets and are therefore expected
to fail in the face of severe sparseness. S-ID per-
forms reasonably well for WORD, but even in that
case it is outperformed by N(t), in some cases by
a large margin, e.g., µ of 63 for S-ID vs. 80 for

N(t) for S4. For CHAR, S-ID results are poor.
On sentiment classification,N(t) also consistently
outperforms S-ID.

While S-ID provides a clearer signal to the em-
bedding learner than BOW, it is still relatively
crude to represent a word as – essentially – its bi-
nary vector of verse occurrence. Concept-based
methods perform better because they can exploit
the more informative dictionary graph.

Comparison of graph-theoretic definitions of
concepts: N(t)-CLIQUE, N(t)-CC. N(t) (line
6) has the most consistent good performance
across tasks and evaluation measures. Postfilter-
ing target neighborhoods down to cliques (line 7)
and CCs (line 8) does not work. The reason is that
the resulting number of concepts is too small; see,
e.g., low coverages of N = 18 (N(t)-CLIQUE)
and N = 5 (N(t)-CC) for WORD and N = 21
(N(t)-CC) for CHAR. N(t)-CLIQUE results are
highly increased for CHAR, but still poorer by a
large margin than the best methods. We can inter-
pret this result as an instance of a precision-recall
tradeoff: presumably the quality of the concepts
found by N(t)-CLIQUE and N(t)-CC is better
(higher precision), but there are too few of them
(low recall) to get good evaluation numbers.

Comparison of graph-theoretic definitions of
concepts: CLIQUE. CLIQUE has strong perfor-
mance for a subset of measures, e.g., ranks consis-
tently second for RT (except S1 WORD) and sen-
timent analysis in WORD. Although CLIQUE is
perhaps the most intuitive way of inducing a con-
cept from a dictionary graph, it may suffer in rela-
tively high-noise settings like ours.

Comparison of graph-theoretic definitions of
concepts: N(t) vs. N(t)-EDGE. Recall that
N(t)-EDGE postfilters target neighborhoods by
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extokenise 07/05/2018, 16:31

[ksw] ဒ"#တ◌"ကမၣ◌်လၢအပာ်လၢယလိၤခဲကနံၣ◌်အံၤ⋆,
      ⋆ထu#ပ(◌ၤအ3 ၣ◌်အသးတန့"ဘၣ◌်⋆.
[cso] Hi³⋆sa³jun³⋆lɨ́¹³⋆ma³tson²⋆tsú²⋆
      lɨ³ua³⋆cáun²⋆tso³⋆ñí¹⋆hná¹⋆nɨ́²⋆.
[eng] Neither⋆can⋆they⋆prove⋆the⋆things⋆
      whereof⋆they⋆now⋆accuse⋆me⋆.

Figure 7: Verse 44024013. “*” = tokenization
boundary. S’gaw Karen (ksw) is difficult to to-
kenize and CHAR > WORD for N(t). Chinan-
teco de Sochiapan (cso) has few types, similar to a
pivot language, and CHAR < WORD for N(t).

N(t) S-ID SAMPLE CLIQUE
[CHAR] [WORD] [WORD] [WORD]

iso ∆ iso ∆ iso ∆ iso ∆
arb1 54 pua0 61 jpn1 42 mya2 38
arz0 53 sun2 54 khm2 40 jpn1 36
cop3 49 jpn1 53 cap2 40 khm3 34
srp0 44 khm3 53 khm3 40 bsn0 28
cop2 44 khm2 50 mya2 39 khm2 27
. . . . . . . . . . . . . . . . . . . . . . . .
pis0 -23 vie7 -24 eng8 -7 haw0 -22
pcm0 -23 kri0 -25 enm1 -9 eng4 -23
ksw0 -24 tdt0 -27 lzh2 -9 enm2 -26
lzh2 -41 eng2 -27 eng4 -12 enm1 -26
lzh1 -51 vie6 -29 lzh1 -13 engj -28

Table 4: Comparison of N(t)[WORD] with four
other methods. Difference in mean performance
(across queries) in R1 per edition. Positive number
means better performance of N(t)[WORD].

only considering pairs of pivot words that are
linked by a dictionary edge. This “quality” filter
does seem to work in some cases, e.g., best perfor-
mance S16 Md for CHAR. But results for WORD
are much poorer.

SAMPLE performs best for CHAR: best results
in five out of eight cases. However, its coverage is
low: N = 58. This is also the reason that it does
not perform well on sentiment analysis for CHAR
(F1 = 77 for pos).

Target neighborhoods N(t). The overall best
method is N(t). It is the best method more of-
ten than any other method and in the other cases,
it ranks second. This result suggests that the as-
sumption that two target units are semantically
similar if they have dictionary edges with exactly
the same set of pivot words is a reasonable approx-
imation of reality. Postfiltering by putting con-
straints on eligible sets of pivot words (i.e., the
pivot words themselves must have a certain dictio-
nary link structure) does not consistently improve
upon target neighborhoods.

WORD vs. CHAR. For roundtrip, WORD is
a better representation than CHAR if we just
count the bold winners: seven (WORD) vs. three
(CHAR), with two ties. For sentiment, the more
difficult task is pos and for this task, CHAR is
better by 3 points than WORD (F1 = 87, line
6, vs. F1 = 84, lines 9/5). However, Table 4
shows that CHAR<WORD for one subset of edi-
tions (exemplified by cso in Figure 7) and CHAR
> WORD for a different subset (exemplified by
ksw). So there are big differences between CHAR
and WORD in both directions, depending on the
language. For some languages, WORD performs
a lot better, for others, CHAR performs a lot better.

We designed RT evaluation as a word-based
evaluation that disfavors CHAR in some cases.
The fourgram “ady@” in the World English Bible
occurs in “already” (32 times), “ready” (31 times)
and “lady” (9 times). Our RT evaluation thus dis-
qualifies “ady@” as a strict match for “ready”. But
all 17 aligned occurrences of “ady@” are part of
“ready” – all others were not aligned. So in the χ2-
alignment interpretation, P (ready|ady@) = 1.0.
In contrast to RT, we only used aligned ngrams in
the sentiment evaluation. This discrepancy may
explain why the best method for sentiment is a
CHAR method whereas the best method for RT
is a WORD method.

First NLP task evaluation on more than 1000
languages. Table 3 presents results for 1664 edi-
tions in 1259 languages. To the best of our knowl-
edge, this is the first detailed evaluation, involv-
ing two challenging NLP tasks, that has been done
on such a large number of languages. For sev-
eral methods, the results are above baseline for all
1664 editions; e.g., S1 measures are above 20%
for all 1664 editions for N(t) on CHAR.

4 Related Work

Following Upadhyay et al. (2016), we group mul-
tilingual embedding methods into classes A, B,
C, D.

Group A trains monolingual embedding spaces
and subsequently uses a transformation to create
a unified space. Mikolov et al. (2013b) find the
transformation by minimizing the Euclidean dis-
tance between word pairs. Similarly, Zou et al.
(2013), Xiao and Guo (2014) and Faruqui and
Dyer (2014) use different data sources for iden-
tifying word pairs and creating the transformation
(e.g., by CCA). Duong et al. (2017) is also simi-
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lar. These approaches need large datasets to obtain
high quality monolingual embedding spaces and
are thus inappropriate for a low-resource setting
of 150,000 tokens per language.

Group B starts from the premise that repre-
sentation of aligned sentences should be similar.
Neural network approaches include (Hermann and
Blunsom, 2014a) (BiCVM) and (Sarath Chandar
et al., 2014) (autoencoders). Again, we have not
enough data for training neural networks of this
size. Søgaard et al. (2015) learn an interlingual
space by using Wikipedia articles as concepts and
applying inverted indexing. Levy et al. (2017)
show that what we call S-ID is a strongly perform-
ing embedding learning method. We use S-ID as a
baseline.

Group C combines mono- and multilingual in-
formation in the embedding learning objective.
Klementiev et al. (2012) add a word-alignment
based term in the objective. Luong et al. (2015)
extend Mikolov et al. (2013a)’s skipgram model
to a bilingual model. Gouws et al. (2015) intro-
duce a crosslingual term in the objective, which
does not rely on any word-pair or alignment infor-
mation. For n editions, including O(n2) bilingual
terms in the objective function does not scale.

Group D creates pseudocorpora by merging
data from multiple languages into a single corpus.
One such method, due to Vulić and Moens (2015),
is our baseline BOW.

Östling (2014) generates multilingual con-
cepts using a Chinese Restaurant process, a com-
putationally expensive method. Wang et al. (2016)
base their concepts on cliques. We extend their
notion of clique from the bilingual to the multi-
lingual case. Ammar et al. (2016) use connected
components. Our baseline SAMPLE, based on
(Lardilleux and Lepage, 2007, 2009), samples
aligned sentences from a multilingual corpus and
extracts perfect alignments.

Malaviya et al. (2017), Asgari and Schütze
(2017), Östling and Tiedemann (2017) and Tiede-
mann (2018) perform evaluation on the language
level (e.g., typology prediction) for 1000+ lan-
guages or perform experiments on 1000+ lan-
guages without evaluating each language. We
present the first work that evaluates on 1000+ lan-
guages on the sentence level on a difficult task.

Somers (2005) criticizes RT evaluation on the
sentence level; but see Aiken and Park (2010).
We demonstrated that when used on the word/unit

level, it distinguishes weak from strong embed-
dings and correlates well with an independent sen-
timent evaluation.

Any alignment algorithm can be used for dic-
tionary induction. We only used a member of
the IBM class of models (Dyer et al., 2013),
but presumably we could improve results by us-
ing either higher performing albeit slower align-
ers or non-IBM aligners (e.g., (Och and Ney,
2003; Tiedemann, 2003; Melamed, 1997)). Other
alignment algorithms include 2D linking (Kobdani
et al., 2009), sampling based methods (e.g., Vulic
and Moens (2012)) and EFMARAL (Östling and
Tiedemann, 2016). EFMARAL is especially in-
triguing as it is based on IBM1 and Agić et al.
(2016) find IBM2-based models to favor closely
related languages more than models based on
IBM1. However, the challenge is that we need
to compute tens of thousands of alignments, so
speed is of the essence. We ran character-based
and word-based induction separately; combining
them is promising future research; cf. (Heyman
et al., 2017).

There is much work on embedding learning that
does not require parallel corpora, e.g., (Vulić and
Moens, 2012; Ammar et al., 2016). This work is
more generally applicable, but a parallel corpus
provides a clearer signal and is more promising (if
available) for low-resource research.

5 Summary

We presented a new method for estimating vec-
tor space representations of words: embedding
learning by concept induction. We tested this
method on a highly parallel corpus and learned
semantic representations of words in 1259 differ-
ent languages in a single common space. Our
extensive experimental evaluation on crosslingual
word similarity and sentiment analysis indicates
that concept-based multilingual embedding learn-
ing performs better than previous approaches.

The embedding spaces of the 1259 languages
(SAMPLE, CLIQUE and N(t)) are available:
http://cistern.cis.lmu.de/comult/.

We gratefully acknowledge funding from
the European Research Council (grants 740516
& 640550) and through a Zentrum Digital-
isierung.Bayern fellowship awarded to the first au-
thor. We are indebted to Michael Cysouw for mak-
ing PBC available to us.
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