
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1426–1436
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1426

LSTMs Can Learn Syntax-Sensitive Dependencies Well,
But Modeling Structure Makes Them Better

Adhiguna Kuncoro♠♣ Chris Dyer♠ John Hale♠♥

Dani Yogatama♠ Stephen Clark♠ Phil Blunsom♠♣

♠DeepMind, London, UK
♣Department of Computer Science, University of Oxford, UK

♥Department of Linguistics, Cornell University, NY, USA
{akuncoro,cdyer,jthale,dyogatama,clarkstephen,pblunsom}@google.com

Abstract

Language exhibits hierarchical structure,
but recent work using a subject-verb
agreement diagnostic argued that state-of-
the-art language models, LSTMs, fail to
learn long-range syntax-sensitive depen-
dencies. Using the same diagnostic, we
show that, in fact, LSTMs do succeed
in learning such dependencies—provided
they have enough capacity. We then ex-
plore whether models that have access to
explicit syntactic information learn agree-
ment more effectively, and how the way
in which this structural information is in-
corporated into the model impacts perfor-
mance. We find that the mere presence of
syntactic information does not improve ac-
curacy, but when model architecture is de-
termined by syntax, number agreement is
improved. Further, we find that the choice
of how syntactic structure is built affects
how well number agreement is learned:
top-down construction outperforms left-
corner and bottom-up variants in capturing
long-distance structural dependencies.

1 Introduction

Recurrent neural networks (RNNs) are remarkably
effective models of sequential data. Recent years
have witnessed the widespread adoption of recur-
rent architectures such as LSTMs (Hochreiter and
Schmidhuber, 1997) in various NLP tasks, with
state of the art results in language modeling (Melis
et al., 2018) and conditional generation tasks like
machine translation (Bahdanau et al., 2015) and
text summarization (See et al., 2017).

Here we revisit the question asked by Linzen
et al. (2016): as RNNs model word sequences
without explicit notions of hierarchical structure,

Figure 1: An example of the number agreement
task with two attractors and a subject-verb dis-
tance of five.

to what extent are these models able to learn
non-local syntactic dependencies in natural lan-
guage? Identifying number agreement between
subjects and verbs—especially in the presence of
attractors—can be understood as a cognitively-
motivated probe that seeks to distinguish hierar-
chical theories from sequential ones, as models
that rely on sequential cues like the most recent
noun would favor the incorrect verb form. We
provide an example of this task in Fig. 1, where
the plural form of the verb have agrees with the
distant subject parts, rather than the adjacent at-
tractors (underlined) of the singular form.

Contrary to the findings of Linzen et al. (2016),
our experiments suggest that sequential LSTMs
are able to capture structural dependencies to a
large extent, even for cases with multiple attrac-
tors (§2). Our finding suggests that network capac-
ity plays a crucial role in capturing structural de-
pendencies with multiple attractors. Nevertheless,
we find that a strong character LSTM language
model—which lacks explicit word representation
and has to capture much longer sequential depen-
dencies in order to learn non-local structural de-
pendencies effectively—performs much worse in
the number agreement task.

Given the strong performance of word-based
LSTM language models, are there are any sub-
stantial benefits, in terms of number agreement ac-
curacy, to explicitly modeling hierarchical struc-
tures as an inductive bias? We discover that a

1427

certain class of LSTM language models that ex-
plicitly models syntactic structures, the recurrent
neural network grammars (Dyer et al., 2016, RN-
NGs), considerably outperforms sequential LSTM
language models for cases with multiple attrac-
tors (§3). We present experiments affirming that
this gain is due to an explicit composition op-
erator rather than the presence of predicted syn-
tactic annotations. Rather surprisingly, syntactic
LSTM language models without explicit compo-
sition have no advantage over sequential LSTMs
that operate on word sequences, although these
models can nevertheless be excellent predictors of
phrase structures (Choe and Charniak, 2016).

Having established the importance of model-
ing structures, we explore the hypothesis that how
we build the structure affects the model’s abil-
ity to identify structural dependencies in English.
As RNNGs build phrase-structure trees through
top-down operations, we propose extensions to
the structure-building sequences and model archi-
tecture that enable left-corner (Henderson, 2003,
2004) and bottom-up (Chelba and Jelinek, 2000;
Emami and Jelinek, 2005) generation orders (§4).

Extensive prior work has characterized top-
down, left-corner, and bottom-up parsing strate-
gies in terms of cognitive plausibility (Pulman,
1986; Abney and Johnson, 1991; Resnik, 1992)
and neurophysiological evidence in human sen-
tence processing (Nelson et al., 2017). Here we
move away from the realm of parsing and eval-
uate the three strategies as models of generation
instead, and address the following empirical ques-
tion: which generation order is most appropri-
ately biased to model structural dependencies in
English, as indicated by number agreement accu-
racy? Our key finding is that the top-down gener-
ation outperforms left-corner and bottom-up vari-
ants for difficult cases with multiple attractors.

In theory, the three traversal strategies approxi-
mate the same chain rule that decompose the joint
probability of words and phrase-structure trees,
denoted as p(x,y), differently and as such will
impose different biases on the learner. In §4.3, we
show that the three variants achieve similar per-
plexities on a held-out validation set. As we ob-
serve different patterns in number agreement, this
demonstrates that while perplexity can be a use-
ful diagnostic tool, it may not be sensitive enough
for comparing models in terms of how well they
capture grammatical intuitions.

2 Number Agreement with LSTM
Language Models

We revisit the number agreement task with LSTMs
trained on language modeling objectives, as pro-
posed by Linzen et al. (2016).

Experimental Settings. We use the same
parsed Wikipedia corpus, verb inflectors, prepro-
cessing steps, and dataset split as Linzen et al.
(2016).1 Word types beyond the most frequent
10,000 are converted to their respective POS tags.
We summarize the corpus statistics of the dataset,
along with the test set distribution of the num-
ber of attractors, in Table 1. Similar to Linzen
et al. (2016), we only include test cases where
all intervening nouns are of the opposite number
forms than the subject noun. All models are im-
plemented using the DyNet library (Neubig et al.,
2017).

Train Test
Sentences 141,948 1,211,080
Types 10,025 10,025
Tokens 3,159,622 26,512,851

Attractors # Instances % Instances
n = 0 1,146,330 94.7%
n = 1 52,599 4.3%
n = 2 9,380 0.77%
n = 3 2,051 0.17%
n = 4 561 0.05%
n = 5 159 0.01%

Table 1: Corpus statistics of the Linzen et al.
(2016) number agreement dataset.

Training was done using a language modeling
objective that predicts the next word given the pre-
fix; at test time we compute agreement error rates
by comparing the probability of the correct verb
form with the incorrect one. We report perfor-
mance of a few different LSTM hidden layer con-
figurations, while other hyper-parameters are se-
lected based on a grid search.2 Following Linzen

1The dataset and scripts are obtained from https://
github.com/TalLinzen/rnn_agreement.

2Based on the grid search results, we used the following
hyper-parameters that work well across different hidden layer
sizes: 1-layer LSTM, SGD optimizers with an initial learn-
ing rate of 0.2, a learning rate decay of 0.10 after 10 epochs,
LSTM dropout rates of 0.2, an input embedding dimension
of 50, and a batch size of 10 sentences. Our use of single-
layer LSTMs and 50-dimensional word embedding (learned
from scratch) as one of the baselines is consistent with the
experimental settings of Linzen et al. (2016).

https://github.com/TalLinzen/rnn_agreement
https://github.com/TalLinzen/rnn_agreement

1428

n=0 n=1 n=2 n=3 n=4
Random 50.0 50.0 50.0 50.0 50.0
Majority 32.0 32.0 32.0 32.0 32.0
LSTM, H=50† 6.8 32.6 ≈50 ≈65 ≈70
Our LSTM, H=50 2.4 8.0 15.7 26.1 34.65
Our LSTM, H=150 1.5 4.5 9.0 14.3 17.6
Our LSTM, H=250 1.4 3.3 5.9 9.7 13.9
Our LSTM, H=350 1.3 3.0 5.7 9.7 13.8
1B Word LSTM (repl) 2.8 8.0 14.0 21.8 20.0
Char LSTM 1.2 5.5 11.8 20.4 27.8

Table 2: Number agreement error rates for vari-
ous LSTM language models, broken down by the
number of attractors. The top two rows represent
the random and majority class baselines, while the
next row (†) is the reported result from Linzen
et al. (2016) for an LSTM language model with
50 hidden units (some entries, denoted by ≈, are
approximately derived from a chart, since Linzen
et al. (2016) did not provide a full table of results).
We report results of our LSTM implementations of
various hidden layer sizes, along with our re-run of
the Jozefowicz et al. (2016) language model, in the
next five rows. We lastly report the performance of
a state of the art character LSTM baseline with a
large model capacity (Melis et al., 2018).

et al. (2016), we include the results of our repli-
cation3 of the large-scale language model of Joze-
fowicz et al. (2016) that was trained on the One
Billion Word Benchmark.4 Hyper-parameter tun-
ing is based on validation set perplexity.

Discussion. Table 2 indicates that, given
enough capacity, LSTM language models without
explicit syntactic supervision are able to perform
well in number agreement. For cases with mul-
tiple attractors, we observe that the LSTM lan-
guage model with 50 hidden units trails behind
its larger counterparts by a substantial margin de-
spite comparable performance for zero attractor
cases, suggesting that network capacity plays an
especially important role in propagating relevant
structural information across a large number of
steps.5 Our experiment independently derives the

3When evaluating the large-scale language model, the pri-
mary difference is that we do not map infrequent word types
to their POS tags and that we subsample to obtain 500 test in-
stances of each number of attractor due to computation cost;
both preprocessing were also done by Linzen et al. (2016).

4The pretrained large-scale language model is obtained
from https://github.com/tensorflow/models/
tree/master/research/lm_1b.

5This trend is also observed by comparing results with
H=150 and H=250. While both models achieve near-identical
performance for zero attractor, the model with H=250 per-

same finding as the recent work of Gulordava et al.
(2018), who also find that LSTMs trained with lan-
guage modeling objectives are able to learn num-
ber agreement well; here we additionally identify
model capacity as one of the reasons for the dis-
crepancy with the Linzen et al. (2016) results.

While the pretrained large-scale language
model of Jozefowicz et al. (2016) has certain ad-
vantages in terms of model capacity, more train-
ing data, and richer vocabulary, we suspect that the
poorer performance is due to differences between
their training domain and the number agreement
testing domain, although the model still performs
reasonably well in the number agreement test set.

Prior work has confirmed the notion that, in
many cases, statistical models are able to achieve
good performance under some aggregate metric by
overfitting to patterns that are predictive in most
cases, often at the expense of more difficult, infre-
quent instances that require deeper language un-
derstanding abilities (Rimell et al., 2009; Jia and
Liang, 2017). In the vast majority of cases, struc-
tural dependencies between subjects and verbs
highly overlap with sequential dependencies (Ta-
ble 1). Nevertheless, the fact that number agree-
ment accuracy gets worse as the number of attrac-
tors increases is consistent with a sequential re-
cency bias in LSTMs: under this conjecture, iden-
tifying the correct structural dependency becomes
harder when there are more adjacent nouns of dif-
ferent number forms than the true subject.

If the sequential recency conjecture is correct,
then LSTMs would perform worse when the struc-
tural dependency is more distant in the sequences,
compared to cases where the structural depen-
dency is more adjacent. We empirically test this
conjecture by running a strong character-based
LSTM language model of Melis et al. (2018) that
achieved state of the art results on EnWiki8 from
the Hutter Prize dataset (Hutter, 2012), with 1,800
hidden units and 10 million parameters. The char-
acter LSTM is trained, validated, and tested6 on
the same split of the Linzen et al. (2016) number
agreement dataset.

A priori, we expect that number agreement is
harder for character LSTMs for two reasons. First,
character LSTMs lack explicit word representa-

forms much better for cases with multiple attractors.
6For testing, we similarly evaluate number agreement ac-

curacy by comparing the probability of the correct and incor-
rect verb form given the prefix, as represented by the respec-
tive character sequences.

https://github.com/tensorflow/models/tree/master/research/lm_1b
https://github.com/tensorflow/models/tree/master/research/lm_1b

1429

tions, thus succeeding in this task requires iden-
tifying structural dependencies between two se-
quences of character tokens, while word-based
LSTMs only need to resolve dependencies be-
tween word tokens. Second, by nature of model-
ing characters, non-local structural dependencies
are sequentially further apart than in the word-
based language model. On the other hand, char-
acter LSTMs have the ability to exploit and share
informative morphological cues, such as the fact
that plural nouns in English tend to end with ‘s’.

As demonstrated on the last row of Table 2,
we find that the character LSTM language model
performs much worse at number agreement with
multiple attractors compared to its word-based
counterparts. This finding is consistent with that
of Sennrich (2017), who find that character-level
decoders in neural machine translation perform
worse than subword models in capturing mor-
phosyntactic agreement. To some extent, our
finding demonstrates the limitations that character
LSTMs face in learning structure from language
modeling objectives, despite earlier evidence that
character LSTM language models are able to im-
plicitly acquire a lexicon (Le Godais et al., 2017).

3 Number Agreement with RNNGs

Given the strong performance of sequential
LSTMs in number agreement, is there any further
benefit to explicitly modeling hierarchical struc-
tures? We focus on recurrent neural network
grammars (Dyer et al., 2016, RNNGs), which
jointly model the probability of phrase-structure
trees and strings, p(x,y), through structure-
building actions and explicit compositions for rep-
resenting completed constituents.

Our choice of RNNGs is motivated by the find-
ings of Kuncoro et al. (2017), who find evidence
for syntactic headedness in RNNG phrasal repre-
sentations. Intuitively, the ability to learn heads
is beneficial for this task, as the representation for
the noun phrase “The flowers in the vase” would
be similar to the syntactic head flowers rather than
vase. In some sense, the composition operator
can be understood as injecting a structural recency
bias into the model design, as subjects and verbs
that are sequentially apart are encouraged to be
close together in the RNNGs’ representation.

3.1 Recurrent Neural Network Grammars
RNNGs (Dyer et al., 2016) are language models
that estimate the joint probability of string termi-
nals and phrase-structure tree nonterminals. Here
we use stack-only RNNGs that achieve better per-
plexity and parsing performance (Kuncoro et al.,
2017). Given the current stack configuration, the
objective function of RNNGs is to predict the
correct structure-building operation according to
a top-down, left-to-right traversal of the phrase-
structure tree; a partial traversal for the input sen-
tence “The flowers in the vase are blooming” is
illustrated in Fig. 3(a).7

The structural inductive bias of RNNGs derives
from an explicit composition operator that rep-
resents completed constituents; for instance, the
constituent (NP The flowers) is represented by a
single composite element on the stack, rather than
as four separate symbols. During each REDUCE

action, the topmost stack elements that belong to
the new constituent are popped from the stack and
then composed by the composition function; the
composed symbol is then pushed back into the
stack. The model is trained in an end-to-end man-
ner by minimizing the cross-entropy loss relative
to a sample of gold trees.

3.2 Experiments
Here we summarize the experimental settings of
running RNNGs on the number agreement dataset
and discuss the empirical findings.

Experimental settings. We obtain phrase-
structure trees for the Linzen et al. (2016) dataset
using a publicly available discriminative model8

trained on the Penn Treebank (Marcus et al.,
1993). At training time, we use these predicted
trees to derive action sequences on the training set,
and train the RNNG model on these sequences.9

At test time, we compare the probabilities of the
correct and incorrect verb forms given the prefix,
which now includes both nonterminal and terminal
symbols. An example of the stack contents (i.e.
the prefix) when predicting the verb is provided
in Fig. 3(a). We similarly run a grid search over
the same hyper-parameter range as the sequential

7For a complete example of action sequences, we refer the
reader to the example provided by Dyer et al. (2016).

8https://github.com/clab/rnng
9Earlier work on RNNGs (Dyer et al., 2016; Kuncoro

et al., 2017) train the model on gold phrase-structure trees
on the Penn Treebank, while here we train the RNNG on the
number agreement dataset based on predicted trees from an-
other parser.

https://github.com/clab/rnng

1430

LSTM and compare the results with the strongest
sequential LSTM baseline from §2.

Figure 2: Number agreement error rates for se-
quential LSTM language models (left), sequential
syntactic LSTM language models (Choe and Char-
niak, 2016, center), and RNNGs (right).

Discussion. Fig. 2 shows that RNNGs (right-
most) achieve much better number agreement ac-
curacy compared to LSTM language models (left-
most) for difficult cases with four and five at-
tractors, with around 30% error rate reductions,
along with a 13% error rate reduction (from 9%
to 7.8%) for three attractors. We attribute the
slightly worse performance of RNNGs on cases
with zero and one attractor to the presence of inter-
vening structure-building actions that separate the
subject and the verb, such as a REDUCE (step 6 in
Fig. 3(a)) action to complete the noun phrase and
at least one action to predict a verb phrase (step
15 in Fig. 3(a)) before the verb itself is introduced,
while LSTM language models benefit from shorter
dependencies for zero and one attractor cases.

The performance gain of RNNGs might arise
from two potential causes. First, RNNGs have
access to predicted syntactic annotations, while
LSTM language models operate solely on word
sequences. Second, RNNGs incorporate explicit
compositions, which encourage hierarhical repre-
sentations and potentially the discovery of syntac-
tic (rather than sequential) dependencies.

Would LSTMs that have access to syntactic
annotations, but without the explicit composition
function, benefit from the same performance gain
as RNNGs? To answer this question, we run se-
quential LSTMs over the same phrase-structure
trees (Choe and Charniak, 2016), similarly es-
timating the joint probability of phrase-structure
nonterminals and string terminals but without an
explicit composition operator. Taking the example
in Fig. 3(a), the sequential syntactic LSTM would

have fifteen10 symbols on the LSTM when pre-
dicting the verb, as opposed to three symbols in
the case of RNNGs’ stack LSTM. In theory, the
sequential LSTM over the phrase-structure trees
(Choe and Charniak, 2016) may be able to incor-
porate a similar, albeit implicit, composition pro-
cess as RNNGs and consequently derive similarly
syntactic heads, although there is no inductive bias
that explicitly encourages such process.

Fig. 2 suggests that the sequential syntactic
LSTMs (center) perform comparably with sequen-
tial LSTMs without syntax for multiple attractor
cases, and worse than RNNGs for nearly all at-
tractors; the gap is highest for multiple attractors.
This result showcases the importance of an ex-
plicit composition operator and hierarchical repre-
sentations in identifying structural dependencies,
as indicated by number agreement accuracy. Our
finding is consistent with the recent work of Yo-
gatama et al. (2018), who find that introducing el-
ements of hierarchical modeling through a stack-
structured memory is beneficial for number agree-
ment, outperforming LSTM language models and
attention-augmented variants by increasing mar-
gins as the number of attractor grows.

3.3 Further Analysis

In order to better interpret the results, we con-
duct further analysis into the perplexities of each
model, followed by a discussion on the effect
of incrementality constraints on the RNNG when
predicting number agreement.

Perplexity. To what extent does the success of
RNNGs in the number agreement task with mul-
tiple attractors correlate with better performance
under the perplexity metric? We answer this ques-
tion by using an importance sampling marginal-
ization procedure (Dyer et al., 2016) to obtain an
estimate of p(x) under both RNNGs and the se-
quential syntactic LSTM model. Following Dyer
et al. (2016), for each sentence on the validation
set we sample 100 candidate trees from a dis-
criminative model11 as our proposal distribution.
As demonstrated in Table 3, the LSTM language
model has the lowest validation set perplexity de-
spite substantially worse performance than RN-
NGs in number agreement with multiple attrac-
tors, suggesting that lower perplexity is not neces-

10In the model of Choe and Charniak (2016), each nonter-
minal, terminal, and closed parenthesis symbol is represented
as an element on the LSTM sequence.

11https://github.com/clab/rnng

https://github.com/clab/rnng

1431

sarily correlated with number agreement success.

Validation ppl.
LSTM LM 72.6
Seq. Syntactic LSTM 79.2
RNNGs 77.9

Table 3: Validation set perplexity of LSTM lan-
guage model, sequential syntactic LSTM, and RN-
NGs.

Incrementality constraints. As the syntactic
prefix was derived from a discriminative model
that has access to unprocessed words, one poten-
tial concern is that this prefix might violate the
incrementality constraints and benefit the RNNG
over the LSTM language model. To address this
concern, we remark that the empirical evidence
from Fig. 2 and Table 3 indicates that the LSTM
language model without syntactic annotation out-
performs the sequential LSTM with syntactic an-
notation in terms of both perplexity and number
agreement throughout nearly all attractor settings,
suggesting that the predicted syntactic prefix does
not give any unfair advantage to the syntactic mod-
els.

Furthermore, we run an experiment where the
syntactic prefix is instead derived from an in-
cremental beam search procedure of Fried et al.
(2017).12 To this end, we take the highest scoring
beam entry at the time that the verb is generated
to be the syntactic prefix; this procedure is applied
to both the correct and incorrect verb forms.13 We
then similarly compare the probabilities of the cor-
rect and incorrect verb form given each respective
syntactic prefix to obtain number agreement accu-
racy. Our finding suggests that using the fully in-
cremental tree prefix leads to even better RNNG
number agreement performance for four and five
attractors, achieving 7.1% and 8.2% error rates,
respectively, compared to 9.4% and 12% for the
RNNG error rates in Fig. 2.

4 Top-Down, Left-Corner, and
Bottom-Up Traversals

In this section, we propose two new variants of
RNNGs that construct trees using a different con-

12As the beam search procedure is time-consuming, we
randomly sample 500 cases for each attractor and compute
the number agreement accuracy on these samples.

13Consequently, the correct and incorrect forms of the sen-
tence might have different partial trees, as the highest scoring
beam entries may be different for each alternative.

struction order than the top-down, left-to-right or-
der used above. These are a bottom-up construc-
tion order (§4.1) and a left-corner construction
order (§4.2), analogous to the well-known pars-
ing strategies (e.g. Hale, 2014, chapter 3). They
differ from these classic strategies insofar as they
do not announce the phrase-structural content of
an entire branch at the same time, adopting in-
stead a node-by-node enumeration reminescent of
Markov Grammars (Charniak, 1997). This step-
by-step arrangement extends to the derived string
as well; since all variants generate words from
left to right, the models can be compared using
number agreement as a diagnostic.14

Here we state our hypothesis on why the build
order matters. The three generation strategies rep-
resent different chain rule decompositions of the
joint probability of strings and phrase-structure
trees, thereby imposing different biases on the
learner. Earlier work in parsing has character-
ized the plausibility of top-down, left-corner, and
bottom-up strategies as viable candidates of hu-
man sentence processing, especially in terms of
memory constraints and human difficulties with
center embedding constructions (Johnson-Laird,
1983; Pulman, 1986; Abney and Johnson, 1991;
Resnik, 1992, inter alia), along with neurophys-
iological evidence in human sentence processing
(Nelson et al., 2017). Here we cast the three strate-
gies as models of language generation (Manning
and Carpenter, 1997), and focus on the empirical
question: which generation order has the most ap-
propriate bias in modeling non-local structural de-
pendencies in English?

These alternative orders organize the learn-
ing problem so as to yield intermediate states in
generation that condition on different aspects of
the grammatical structure. In number agreement,
this amounts to making an agreement controller,
such as the word flowers in Fig. 3, more or less
salient. If it is more salient, the model should be
better-able to inflect the main verb in agreement
with this controller, without getting distracted by
the attractors. The three proposed build orders are
compared in Fig. 3, showing the respective config-
urations (i.e. the prefix) when generating the main
verb in a sentence with a single attractor.15 In ad-

14Only the order in which these models build the nontermi-
nal symbols is different, while the terminal symbols are still
generated in a left-to-right manner in all variants.

15Although the stack configuration at the time of verb gen-
eration varies only slightly, the configurations encountered

1432

dition, we show concrete action sequences for a
simpler sentence in each section.

4.1 Bottom-Up Traversal

In bottom-up traversals, phrases are recursively
constructed and labeled with the nonterminal type
once all their daughters have been built, as illus-
trated in Fig. 4. Bottom-up traversals benefit from
shorter stack depths compared to top-down due to
the lack of incomplete nonterminals. As the com-
mitment to label the nonterminal type of a phrase
is delayed until its constituents are complete, this
means that the generation of a child node cannot
condition on the label of its parent node.

In n-ary branching trees, bottom-up completion
of constituents requires a procedure for determin-
ing how many of the most recent elements on the
stack should be daughters of the node that is be-
ing constructed.16 Conceptually, rather than hav-
ing a single REDUCE operation as we have before,
we have a complex REDUCE(X, n) operation that
must determine the type of the constituent (i.e., X)
as well as the number of daughters (i.e., n).

In step 5 of Fig. 4, the newly formed NP con-
stituent only covers the terminal worms, and nei-
ther the unattached terminal eats nor the con-
stituent (NP The fox) is part of the new noun
phrase. We implement this extent decision us-
ing a stick-breaking construction—using the stack
LSTM encoding, a single-layer feedforward net-
work, and a logistic output layer—which decides
whether the top element on the stack should be the
leftmost child of the new constituent (i.e. whether
or not the new constituent is complete after pop-
ping the current topmost stack element), as illus-
trated in Fig. 5. If not, the process is then repeated
after the topmost stack element is popped. Once
the extent of the new nonterminal has been de-
cided, we parameterize the decision of the nonter-
minal label type; in Fig. 5 this is an NP. A second
difference to top-down generation is that when a
single constituent remains on the stack, the sen-
tence is not necessarily complete (see step 3 of
Fig. 4 for examples where this happens). We thus
introduce an explicit STOP action (step 8, Fig. 4),
indicating the tree is complete, which is only as-
signed non-zero probability when the stack has a

during the history of the full generation process vary consid-
erably in the invariances and the kinds of actions they predict.

16This mechanism is not necessary with strictly binary
branching trees, since each new nonterminal always consists
of the two children at the top of the stack.

Avg. stack depth Ppl.
TD 12.29 94.90
LC 11.45 95.86
BU 7.41 96.53

Table 4: Average stack depth and validation set
perplexity for top-down (TD), left-corner (LC),
and bottom-up (BU) RNNGs.

single complete constituent.

4.2 Left-Corner Traversal
Left-corner traversals combine some aspects of
top-down and bottom-up processing. As illus-
trated in Fig. 6, this works by first generating the
leftmost terminal of the tree, The (step 0), be-
fore proceeding bottom-up to predict its parent NP
(step 1) and then top-down to predict the rest of its
children (step 2). A REDUCE action similarly calls
the composition operator once the phrase is com-
plete (e.g. step 3). The complete constituent (NP
The fox) is the leftmost child of its parent node,
thus an NT SW(S) action is done next (step 4).

The NT SW(X) action is similar to the NT(X)
from the top-down generator, in that it introduces
an open nonterminal node and must be matched
later by a corresponding REDUCE operation, but,
in addition, swaps the two topmost elements at
the top of the stack. This is necessary because
the parent nonterminal node is not built until af-
ter its left-most child has been constructed. In step
1 of Fig. 6, with a single element The on the stack,
the action NT SW(NP) adds the open nonterminal
symbol NP to become the topmost stack element,
but after applying the swap operator the stack now
contains (NP | The (step 2).

4.3 Experiments
We optimize the hyper-parameters of each RNNG
variant using grid searches based on validation
set perplexity. Table 4 summarizes average stack
depths and perplexities17 on the Linzen et al.
(2016) validation set. We evaluate each of the vari-
ants in terms of number agreement accuracy as an
evidence of its suitability to model structural de-
pendencies in English, presented in Table 5. To
account for randomness in training, we report the
error rate summary statistics of ten different runs.

17Here we measure perplexity over p(x,y), where y is
the presumptive gold tree on the Linzen et al. (2016) dataset.
Dyer et al. (2016) instead used an importance sampling pro-
cedure to marginalize and obtain an estimate of p(x).

1433

S

NP VP

VP

The

are

blooming

NP PP

the

NPin

S

NP VP

VPare

blooming

NP PP

NPin

S

NP VP

VPare

blooming

NP PP

NPin

1

2

3

4 5

6 7

8
9

10 11

12

13

15

16

3

4

5 6

7

8

9

14

10

14

5

2 4 7

6
9

8 10

11

12

15

13

top

(NP (NP The flowers) (PP in (NP the vase)))
<latexit sha1_base64="pEVHBaNobe2opYNoW5WgOk9U8Tg=">AAACR3icbVDPSxtBFJ6NWjW1NerRy2BoSaCEjQi2t4AXTyUFV4VsCLOTt8ngzM4y8zZtWPbP8+Kxt/4NXnqwpUdnkxU09sGDj+9979cXpVJY9P1fXm1tfePN5tZ2/e3Ou/e7jb39S6szwyHgWmpzHTELUiQQoEAJ16kBpiIJV9HNWVm/moGxQicXOE9hqNgkEbHgDB01aow+hgg/0PIcdVrQMKwvCaPy1tc+LTMElU7ziynQWOrvblbRpq3+Ey+S4pkKnWrmzina7fZi2qjR9Dv+Iuhr0K1Ak1TRHzV+hmPNMwUJcsmsHXT9FIc5Myi4hKIeZhZSxm/YBAYOJkyBHeYLIwr6wTFjGmvjMkG6YJ935ExZO1eRUyqGU7taK8n/1QYZxp+H7tc0Q0j4clGcSYqalq7SsTDAUc4dYNwIdyvlU2YYR+dXaUJ39eXXIDjufOn4306avU+VG1vkkByRFumSU9Ij56RPAsLJLbknD+SPd+f99v56/5bSmlf1HJAXUfMeAcDnsAs=</latexit><latexit sha1_base64="pEVHBaNobe2opYNoW5WgOk9U8Tg=">AAACR3icbVDPSxtBFJ6NWjW1NerRy2BoSaCEjQi2t4AXTyUFV4VsCLOTt8ngzM4y8zZtWPbP8+Kxt/4NXnqwpUdnkxU09sGDj+9979cXpVJY9P1fXm1tfePN5tZ2/e3Ou/e7jb39S6szwyHgWmpzHTELUiQQoEAJ16kBpiIJV9HNWVm/moGxQicXOE9hqNgkEbHgDB01aow+hgg/0PIcdVrQMKwvCaPy1tc+LTMElU7ziynQWOrvblbRpq3+Ey+S4pkKnWrmzina7fZi2qjR9Dv+Iuhr0K1Ak1TRHzV+hmPNMwUJcsmsHXT9FIc5Myi4hKIeZhZSxm/YBAYOJkyBHeYLIwr6wTFjGmvjMkG6YJ935ExZO1eRUyqGU7taK8n/1QYZxp+H7tc0Q0j4clGcSYqalq7SsTDAUc4dYNwIdyvlU2YYR+dXaUJ39eXXIDjufOn4306avU+VG1vkkByRFumSU9Ij56RPAsLJLbknD+SPd+f99v56/5bSmlf1HJAXUfMeAcDnsAs=</latexit><latexit sha1_base64="pEVHBaNobe2opYNoW5WgOk9U8Tg=">AAACR3icbVDPSxtBFJ6NWjW1NerRy2BoSaCEjQi2t4AXTyUFV4VsCLOTt8ngzM4y8zZtWPbP8+Kxt/4NXnqwpUdnkxU09sGDj+9979cXpVJY9P1fXm1tfePN5tZ2/e3Ou/e7jb39S6szwyHgWmpzHTELUiQQoEAJ16kBpiIJV9HNWVm/moGxQicXOE9hqNgkEbHgDB01aow+hgg/0PIcdVrQMKwvCaPy1tc+LTMElU7ziynQWOrvblbRpq3+Ey+S4pkKnWrmzina7fZi2qjR9Dv+Iuhr0K1Ak1TRHzV+hmPNMwUJcsmsHXT9FIc5Myi4hKIeZhZSxm/YBAYOJkyBHeYLIwr6wTFjGmvjMkG6YJ935ExZO1eRUyqGU7taK8n/1QYZxp+H7tc0Q0j4clGcSYqalq7SsTDAUc4dYNwIdyvlU2YYR+dXaUJ39eXXIDjufOn4306avU+VG1vkkByRFumSU9Ij56RPAsLJLbknD+SPd+f99v56/5bSmlf1HJAXUfMeAcDnsAs=</latexit>

top

(S

(NP (NP The flowers) (PP in (NP the vase)))

(VP
<latexit sha1_base64="UOyF7nqTZQejWkT+z8q4hH00J/4=">AAACZHicbVDfSxtBEN47taaptlHxqSCLoSWBEi5FsL4JvvgkV0xUyIWwt5lLFndvj905bTjvn/TN177033DzoxATBwa+/eab2ZkvzqSwGAQvnr+xufVhu/Kx+mln9/OX2t7+jdW54dDlWmpzFzMLUqTQRYES7jIDTMUSbuP7i2n99gGMFTrt4CSDvmKjVCSCM3TUoPb0PUL4g5YXqLOSRlF1ThhVNK5X3lchnWYEKhsXnTHQROpHN7ts0kb4nxdpuaRCp3pw65XNZnNl2k1YDmr1oBXMgq6D9gLUySLCQe05GmqeK0iRS2Ztrx1k2C+YQcEllNUot5Axfs9G0HMwZQpsv5i5VNJvjhnSRBuXKdIZu9xRMGXtRMVOqRiO7WptSr5X6+WY/Oq7w7McIeXzj5JcUtR0ajkdCgMc5cQBxo1wu1I+ZoZxdOZVnQnt1ZPXQfdn66wV/D6pn/9YuFEhX8kxaZA2OSXn5JKEpEs4+etVvD1v3/vn7/oH/uFc6nuLngPyJvyjVyk1tZo=</latexit><latexit sha1_base64="UOyF7nqTZQejWkT+z8q4hH00J/4=">AAACZHicbVDfSxtBEN47taaptlHxqSCLoSWBEi5FsL4JvvgkV0xUyIWwt5lLFndvj905bTjvn/TN177033DzoxATBwa+/eab2ZkvzqSwGAQvnr+xufVhu/Kx+mln9/OX2t7+jdW54dDlWmpzFzMLUqTQRYES7jIDTMUSbuP7i2n99gGMFTrt4CSDvmKjVCSCM3TUoPb0PUL4g5YXqLOSRlF1ThhVNK5X3lchnWYEKhsXnTHQROpHN7ts0kb4nxdpuaRCp3pw65XNZnNl2k1YDmr1oBXMgq6D9gLUySLCQe05GmqeK0iRS2Ztrx1k2C+YQcEllNUot5Axfs9G0HMwZQpsv5i5VNJvjhnSRBuXKdIZu9xRMGXtRMVOqRiO7WptSr5X6+WY/Oq7w7McIeXzj5JcUtR0ajkdCgMc5cQBxo1wu1I+ZoZxdOZVnQnt1ZPXQfdn66wV/D6pn/9YuFEhX8kxaZA2OSXn5JKEpEs4+etVvD1v3/vn7/oH/uFc6nuLngPyJvyjVyk1tZo=</latexit><latexit sha1_base64="UOyF7nqTZQejWkT+z8q4hH00J/4=">AAACZHicbVDfSxtBEN47taaptlHxqSCLoSWBEi5FsL4JvvgkV0xUyIWwt5lLFndvj905bTjvn/TN177033DzoxATBwa+/eab2ZkvzqSwGAQvnr+xufVhu/Kx+mln9/OX2t7+jdW54dDlWmpzFzMLUqTQRYES7jIDTMUSbuP7i2n99gGMFTrt4CSDvmKjVCSCM3TUoPb0PUL4g5YXqLOSRlF1ThhVNK5X3lchnWYEKhsXnTHQROpHN7ts0kb4nxdpuaRCp3pw65XNZnNl2k1YDmr1oBXMgq6D9gLUySLCQe05GmqeK0iRS2Ztrx1k2C+YQcEllNUot5Axfs9G0HMwZQpsv5i5VNJvjhnSRBuXKdIZu9xRMGXtRMVOqRiO7WptSr5X6+WY/Oq7w7McIeXzj5JcUtR0ajkdCgMc5cQBxo1wu1I+ZoZxdOZVnQnt1ZPXQfdn66wV/D6pn/9YuFEhX8kxaZA2OSXn5JKEpEs4+etVvD1v3/vn7/oH/uFc6nuLngPyJvyjVyk1tZo=</latexit>

top

(S

(NP (NP The flowers) (PP in (NP the vase)))
<latexit sha1_base64="696n4vimN65k0w31NO6f4kaJvvM=">AAACU3icbVBNixNBEO0Z4242a9asHvfSGFYSkDARwd1bwIsnGTFjApkQejo1SZPu6aG7ZjUM8yP1IPhLvHiw8yHExIKC169eVVe9JJfCYhD89PxHtcdn5/WLxuWT5tXT1vWzz1YXhkPEtdRmnDALUmQQoUAJ49wAU4mEUbJ6t6mPHsBYobMhrnOYKrbIRCo4Q0fNWquXMcJXtLxEnVc0jhs7wqiy8+no/SGkm4xB5ctyuASaSv3Fza66tBP+5UVWHajQqR7celW3261mrXbQC7ZBT0F/D9pkH+Gs9T2ea14oyJBLZu2kH+Q4LZlBwSVUjbiwkDO+YguYOJgxBXZabk2p6K1j5jTVxmWGdMsedpRMWbtWiVMqhkt7XNuQ/6tNCkzvpu7OvEDI+O6jtJAUNd04TOfCAEe5doBxI9yulC+ZYRydVw1nQv/45FMQve7d94KPb9qDV3s36uSGvCAd0idvyYC8JyGJCCffyC+PeJ73w/vt+35tJ/W9fc9z8k/4zT+HsrEg</latexit><latexit sha1_base64="696n4vimN65k0w31NO6f4kaJvvM=">AAACU3icbVBNixNBEO0Z4242a9asHvfSGFYSkDARwd1bwIsnGTFjApkQejo1SZPu6aG7ZjUM8yP1IPhLvHiw8yHExIKC169eVVe9JJfCYhD89PxHtcdn5/WLxuWT5tXT1vWzz1YXhkPEtdRmnDALUmQQoUAJ49wAU4mEUbJ6t6mPHsBYobMhrnOYKrbIRCo4Q0fNWquXMcJXtLxEnVc0jhs7wqiy8+no/SGkm4xB5ctyuASaSv3Fza66tBP+5UVWHajQqR7celW3261mrXbQC7ZBT0F/D9pkH+Gs9T2ea14oyJBLZu2kH+Q4LZlBwSVUjbiwkDO+YguYOJgxBXZabk2p6K1j5jTVxmWGdMsedpRMWbtWiVMqhkt7XNuQ/6tNCkzvpu7OvEDI+O6jtJAUNd04TOfCAEe5doBxI9yulC+ZYRydVw1nQv/45FMQve7d94KPb9qDV3s36uSGvCAd0idvyYC8JyGJCCffyC+PeJ73w/vt+35tJ/W9fc9z8k/4zT+HsrEg</latexit><latexit sha1_base64="696n4vimN65k0w31NO6f4kaJvvM=">AAACU3icbVBNixNBEO0Z4242a9asHvfSGFYSkDARwd1bwIsnGTFjApkQejo1SZPu6aG7ZjUM8yP1IPhLvHiw8yHExIKC169eVVe9JJfCYhD89PxHtcdn5/WLxuWT5tXT1vWzz1YXhkPEtdRmnDALUmQQoUAJ49wAU4mEUbJ6t6mPHsBYobMhrnOYKrbIRCo4Q0fNWquXMcJXtLxEnVc0jhs7wqiy8+no/SGkm4xB5ctyuASaSv3Fza66tBP+5UVWHajQqR7celW3261mrXbQC7ZBT0F/D9pkH+Gs9T2ea14oyJBLZu2kH+Q4LZlBwSVUjbiwkDO+YguYOJgxBXZabk2p6K1j5jTVxmWGdMsedpRMWbtWiVMqhkt7XNuQ/6tNCkzvpu7OvEDI+O6jtJAUNd04TOfCAEe5doBxI9yulC+ZYRydVw1nQv/45FMQve7d94KPb9qDV3s36uSGvCAd0idvyYC8JyGJCCffyC+PeJ73w/vt+35tJ/W9fc9z8k/4zT+HsrEg</latexit>

(a)
<latexit sha1_base64="UHgaAuqwBFHO+w3+PMZ4hgEg2pg=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6+R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNW/ZFZ</latexit><latexit sha1_base64="UHgaAuqwBFHO+w3+PMZ4hgEg2pg=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6+R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNW/ZFZ</latexit><latexit sha1_base64="UHgaAuqwBFHO+w3+PMZ4hgEg2pg=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6+R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNW/ZFZ</latexit>

(b)
<latexit sha1_base64="q0c13WRT90Z0PhqBh91Pvh1Rkms=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM69HppFetuQ13BrxMvILUUIFWr/oV9BOaSaaACmJM13NTCHOigVPBJpUgMywldEQGrGupIpKZMJ/dPMEnVunjONG2FOCZ+nsiJ9KYsYxspyQwNIveVPzP62YQX4U5V2kGTNH5ojgTGBI8DQD3uWYUxNgSQjW3t2I6JJpQsDFVbAje4svLxD9vXDfcu4ta86xIo4yO0DGqIw9doia6RS3kI4pS9Ixe0ZuTOS/Ou/Mxby05xcwh+gPn8wdYgpFa</latexit><latexit sha1_base64="q0c13WRT90Z0PhqBh91Pvh1Rkms=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM69HppFetuQ13BrxMvILUUIFWr/oV9BOaSaaACmJM13NTCHOigVPBJpUgMywldEQGrGupIpKZMJ/dPMEnVunjONG2FOCZ+nsiJ9KYsYxspyQwNIveVPzP62YQX4U5V2kGTNH5ojgTGBI8DQD3uWYUxNgSQjW3t2I6JJpQsDFVbAje4svLxD9vXDfcu4ta86xIo4yO0DGqIw9doia6RS3kI4pS9Ixe0ZuTOS/Ou/Mxby05xcwh+gPn8wdYgpFa</latexit><latexit sha1_base64="q0c13WRT90Z0PhqBh91Pvh1Rkms=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM69HppFetuQ13BrxMvILUUIFWr/oV9BOaSaaACmJM13NTCHOigVPBJpUgMywldEQGrGupIpKZMJ/dPMEnVunjONG2FOCZ+nsiJ9KYsYxspyQwNIveVPzP62YQX4U5V2kGTNH5ojgTGBI8DQD3uWYUxNgSQjW3t2I6JJpQsDFVbAje4svLxD9vXDfcu4ta86xIo4yO0DGqIw9doia6RS3kI4pS9Ixe0ZuTOS/Ou/Mxby05xcwh+gPn8wdYgpFa</latexit>

(c)
<latexit sha1_base64="nBjLEin08ijRvaoqcwftuVRQPlE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6/R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNaB5Fb</latexit><latexit sha1_base64="nBjLEin08ijRvaoqcwftuVRQPlE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6/R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNaB5Fb</latexit><latexit sha1_base64="nBjLEin08ijRvaoqcwftuVRQPlE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahgpREBPVW8OKxgrGFJpTNdtMu3d2E3YlYQv+GFw8qXv013vw3btsctPXBwOO9GWbmRangBlz32ymtrK6tb5Q3K1vbO7t71f2DB5NkmjKfJiLRnYgYJrhiPnAQrJNqRmQkWDsa3Uz99iPThifqHsYpCyUZKB5zSsBKQQDsCbTM6/R00qvW3IY7A14mXkFqqECrV/0K+gnNJFNABTGm67kphDnRwKlgk0qQGZYSOiID1rVUEclMmM9unuATq/RxnGhbCvBM/T2RE2nMWEa2UxIYmkVvKv7ndTOIr8KcqzQDpuh8UZwJDAmeBoD7XDMKYmwJoZrbWzEdEk0o2JgqNgRv8eVl4p83rhvu3UWteVakUUZH6BjVkYcuURPdohbyEUUpekav6M3JnBfn3fmYt5acYuYQ/YHz+QNaB5Fb</latexit>

Structure Stack contents
<latexit sha1_base64="Bpgv0W9yrxMbIL8afjLiNO9akmk=">AAACRniclVA7SwNBEJ6LrxhfUUubxSBYSLiIoHYBG8uIxgRyMeztbZLFvUd2Z8Vw5N/Z2Nr5F2wsVGzdPBBNbBzY4eOb+WZ2Pj+RQqPrPjuZufmFxaXscm5ldW19I7+5da1joxivsljGqu5TzaWIeBUFSl5PFKehL3nNvz0b1mt3XGkRR1fYT3gzpJ1ItAWjaKlW/sZDfo8qTC9RGYZG8YHX6xka/CcP0/cYym4JiyPkEepBK19wi+4oyCwoTUABJlFp5Z+8IGYmtGomqdaNkptgM6UKBZN8kPOM5oldQTu8YWFEQ66b6ciHAdmzTEDasbIvQjJifypSGmrdD33bGVLs6unakPyr1jDYPmmmIkqMPYuNF7WNJBiToakkEIozlH0LKFPC/pWwLlWUobU+Z00oTZ88C6qHxdOie3FUKB9M3MjCDuzCPpTgGMpwDhWoAoMHeIE3eHcenVfnw/kct2aciWYbfkUGvgDQs7Yh</latexit><latexit sha1_base64="Bpgv0W9yrxMbIL8afjLiNO9akmk=">AAACRniclVA7SwNBEJ6LrxhfUUubxSBYSLiIoHYBG8uIxgRyMeztbZLFvUd2Z8Vw5N/Z2Nr5F2wsVGzdPBBNbBzY4eOb+WZ2Pj+RQqPrPjuZufmFxaXscm5ldW19I7+5da1joxivsljGqu5TzaWIeBUFSl5PFKehL3nNvz0b1mt3XGkRR1fYT3gzpJ1ItAWjaKlW/sZDfo8qTC9RGYZG8YHX6xka/CcP0/cYym4JiyPkEepBK19wi+4oyCwoTUABJlFp5Z+8IGYmtGomqdaNkptgM6UKBZN8kPOM5oldQTu8YWFEQ66b6ciHAdmzTEDasbIvQjJifypSGmrdD33bGVLs6unakPyr1jDYPmmmIkqMPYuNF7WNJBiToakkEIozlH0LKFPC/pWwLlWUobU+Z00oTZ88C6qHxdOie3FUKB9M3MjCDuzCPpTgGMpwDhWoAoMHeIE3eHcenVfnw/kct2aciWYbfkUGvgDQs7Yh</latexit><latexit sha1_base64="Bpgv0W9yrxMbIL8afjLiNO9akmk=">AAACRniclVA7SwNBEJ6LrxhfUUubxSBYSLiIoHYBG8uIxgRyMeztbZLFvUd2Z8Vw5N/Z2Nr5F2wsVGzdPBBNbBzY4eOb+WZ2Pj+RQqPrPjuZufmFxaXscm5ldW19I7+5da1joxivsljGqu5TzaWIeBUFSl5PFKehL3nNvz0b1mt3XGkRR1fYT3gzpJ1ItAWjaKlW/sZDfo8qTC9RGYZG8YHX6xka/CcP0/cYym4JiyPkEepBK19wi+4oyCwoTUABJlFp5Z+8IGYmtGomqdaNkptgM6UKBZN8kPOM5oldQTu8YWFEQ66b6ciHAdmzTEDasbIvQjJifypSGmrdD33bGVLs6unakPyr1jDYPmmmIkqMPYuNF7WNJBiToakkEIozlH0LKFPC/pWwLlWUobU+Z00oTZ88C6qHxdOie3FUKB9M3MjCDuzCPpTgGMpwDhWoAoMHeIE3eHcenVfnw/kct2aciWYbfkUGvgDQs7Yh</latexit>

flowers

The
1 2

flowers

The
1 3

flowers

vase

the vase

the vase

Figure 3: The (a) top-down, (b) bottom-up, and (c) left-corner build order variants showing in black
the structure that exists as well as the generator’s stack contents when the word are is generated during
the derivation of the sentence The flowers in the vase are blooming. Structure in grey indicates material
that will be generated subsequent to this. Circled numbers indicate the time when the corresponding
structure/word is constructed. In (a) and (c), nonterminals are generated by a matched pair of NT and
REDUCE operations, while in (b) they are introduced by a single complex REDUCE operation.

Input: The fox eats worms
Stack Action

0 GEN(The)
1 The GEN(fox)
2 The | fox REDUCE(NP,2)
3 (NP The fox) GEN(eats)
4 (NP The fox) | eats GEN(worms)
5 (NP The fox) | eats | worms REDUCE(NP,1)
6 (NP The fox) | eats | (NP worms) REDUCE(VP,2)
7 (NP The fox) | (VP eats (NP worms)) REDUCE(S,2)
8 (S (NP The fox) (VP eats (NP worms)) STOP

Figure 4: Example Derivation for Bottom-Up
Traversal. ‘ | ’ indicates separate elements on the
stack. The REDUCE(X, n) action takes the top
n elements on the stack and creates a new con-
stituent of type X with the composition function.

Avg.(±sdev)/min/max
n=2 n=3 n=4

LM 5.8(±0.2)/5.5/6.0 9.6(±0.7)/8.8/10.1 14.1(±1.2)/13.0/15.3
TD 5.5(±0.4)/4.9/5.8 7.8(±0.6)/7.4/8.0 8.9(±1.1)/7.9/9.8
LC 5.4(±0.3)/5.2/5.5 8.2(±0.4)/7.9/8.7 9.9(±1.3)/8.8/11.5
BU 5.7(±0.3) 5.5/5.8 8.5(±0.7)/8.0/9.3 9.7(±1.1)/9.0/11.3

Table 5: Number agreement error rates for top-
down (TD), left-corner (LC), and bottom-up (BU)
RNNGs, broken down by the number of attractors.
LM indicates the best sequential language model
baseline (§2). We report the mean, standard devia-
tion, and minimum/maximum of 10 different ran-
dom seeds of each model.

1434

Figure 5: Architecture to determine type and span
of new constituents during bottom-up generation.

Input: The fox eats worms
Stack Action

0 GEN(The)
1 The NT SW(NP)
2 (NP | The GEN(fox)
3 (NP | The | fox REDUCE

4 (NP The fox) NT SW(S)
5 (S | (NP The fox) GEN(eats)
6 (S | (NP The fox) | eats NT SW(VP)
7 (S | (NP The fox) | (VP | eats GEN(worms)
8 (S | (NP The fox) | (VP | eats | worms NT SW(NP)
9 (S | (NP The fox) | (VP | eats | (NP | worms REDUCE

10 (S | (NP The fox) | (VP | eats | (NP worms) REDUCE

11 (S | (NP The fox) | (VP eats (NP worms)) REDUCE

12 (S (NP The fox) (VP eats (NP worms))) N/A

Figure 6: Example Derivation for left-corner
traversal. Each NT SW(X) action adds the open
nonterminal symbol (X to the stack, followed by
a deterministic swap operator that swaps the top
two elements on the stack.

Discussion. In Table 5, we focus on empiri-
cal results for cases where the structural depen-
dencies matter the most, corresponding to cases
with two, three, and four attractors. All three
RNNG variants outperform the sequential LSTM
language model baseline for these cases. Nev-
ertheless, the top-down variant outperforms both
left-corner and bottom-up strategies for difficult
cases with three or more attractors, suggesting that
the top-down strategy is most appropriately biased
to model difficult number agreement dependencies
in English. We run an approximate randomization
test by stratifying the output and permuting within
each stratum (Yeh, 2000) and find that, for four
attractors, the performance difference between the
top-down RNNG and the other variants is statisti-
cally significant at p < 0.05.

The success of the top-down traversal in the do-
main of number-agreement prediction is consis-
tent with a classical view in parsing that argues
top-down parsing is the most human-like pars-
ing strategy since it is the most anticipatory. Only

anticipatory representations, it is said, could ex-
plain the rapid, incremental processing that hu-
mans seem to exhibit (Marslen-Wilson, 1973;
Tanenhaus et al., 1995); this line of thinking sim-
ilarly motivates Charniak (2010), among others.
While most work in this domain has been con-
cerned with the parsing problem, our findings sug-
gest that anticipatory mechanisms are also bene-
ficial in capturing structural dependencies in lan-
guage modeling. We note that our results are
achieved using models that, in theory, are able to
condition on the entire derivation history, while
earlier work in sentence processing has focused
on cognitive memory considerations, such as the
memory-bounded model of Schuler et al. (2010).

5 Conclusion

Given enough capacity, LSTMs trained on lan-
guage modeling objectives are able to learn
syntax-sensitive dependencies, as evidenced by
accurate number agreement accuracy with multi-
ple attractors. Despite this strong performance,
we discover explicit modeling of structure does
improve the model’s ability to discover non-local
structural dependencies when determining the dis-
tribution over subsequent word generation. Recur-
rent neural network grammars (RNNGs), which
jointly model phrase-structure trees and strings
and employ an explicit composition operator, sub-
stantially outperform LSTM language models and
syntactic language models without explicit com-
positions; this highlights the importance of a hier-
archical inductive bias in capturing structural de-
pendencies. We explore the possibility that how
the structure is built affects number agreement per-
formance. Through novel extensions to RNNGs
that enable the use of left-corner and bottom-up
generation strategies, we discover that this is in-
deed the case: the three RNNG variants have dif-
ferent generalization properties for number agree-
ment, with the top-down traversal strategy per-
forming best for cases with multiple attractors.

Acknowledgments

We would like to thank Tal Linzen for his help
in data preparation and answering various ques-
tions. We also thank Laura Rimell, Nando de Fre-
itas, and the three anonymous reviewers for their
helpful comments and suggestions.

1435

References
Steven Abney and Mark Johnson. 1991. Memory re-

quirements and local ambiguities for parsing strate-
gies. Journal of Psycholinguistic Research .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Eugene Charniak. 1997. Statistical techniques for nat-
ural language parsing. AI Magazine .

Eugene Charniak. 2010. Top-down nearly-context-
sensitive parsing. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Cambridge, MA, pages 674–683.
http://www.aclweb.org/anthology/D10-1066.

Ciprian Chelba and Frederick Jelinek. 2000. Struc-
tured language modeling. Computer Speech and
Language 14(4).

Do Kook Choe and Eugene Charniak. 2016. Parsing as
language modeling. In Proc. of EMNLP.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proc. of NAACL.

Ahmad Emami and Frederick Jelinek. 2005. A neu-
ral syntactic language model. Machine Learning
60:195–227.

Daniel Fried, Mitchell Stern, and Dan Klein. 2017. Im-
proving neural parsing by disentangling model com-
bination and reranking effects. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Van-
couver, Canada, pages 161–166.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proc. of NAACL.

John T Hale. 2014. Automaton theories of human sen-
tence comprehension. CSLI Publications.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Proc.
of NAACL.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proc. of ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation .

Marcus Hutter. 2012. The human knowledge compres-
sion contest .

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proc. of EMNLP.

Philip N. Johnson-Laird. 1983. Mental Models. Har-
vard University Press.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proc. of EACL.

Gaël Le Godais, Tal Linzen, and Emmanuel Dupoux.
2017. Comparing character-level neural language
models using a lexical decision task. In Proc. of
EACL.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics .

Christopher D. Manning and Bob Carpenter. 1997.
Probabilistic parsing using left corner language
models. In Proc. of IWPT .

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics .

William Marslen-Wilson. 1973. Linguistic structure
and speech shadowing at very short latencies. Na-
ture 244:522–523.

Gabor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. In Proc. of ICLR.

Matthew J. Nelson, Imen El Karoui, Kristof Giber,
Xiaofang Yang, Laurent Cohen, Hilda Koopman,
Sydney S. Cash, Lionel Naccache, John T. Hale,
Christophe Pallier, and Stanislas Dehaene. 2017.
Neurophysiological dynamics of phrase-structure
building during sentence processing. Proceedings
of the National Academy of Sciences of the United
States of America .

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Stephen Pulman. 1986. Grammars, parsers, and mem-
ory limitations. Language and Cognitive Processes
.

Philip Resnik. 1992. Left-corner parsing and psycho-
logical plausibility. In Proc. of COLING.

http://www.aclweb.org/anthology/D10-1066
http://www.aclweb.org/anthology/D10-1066
http://www.aclweb.org/anthology/D10-1066

1436

Laura Rimell, Stephen Clark, and Mark Steedman.
2009. Unbounded dependency recovery for parser
evaluation. In Proc. of EMNLP.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using
human-like memory constraints 36(1):1–30.

Abigail See, Peter Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proc. of ACL.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? assessing mt qual-
ity with contrastive translation pairs. In Proc. of
EACL.

Michael Tanenhaus, Michael Spivey-Knowlton, Kath-
leen Eberhard, and Julie Sedivy. 1995. Integration
of visual and linguistic information in spoken lan-
guage comprehension. Science 268:1632–1634.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Proc. of
COLING.

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling,
Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom.
2018. Memory architectures in recurrent neural net-
work language models. In Proc. of ICLR.

