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Abstract

One of possible ways of obtaining contin-
uous-space sentence representations is by
training neural machine translation (NMT)
systems. The recent attention mechanism
however removes the single point in the
neural network from which the source sen-
tence representation can be extracted. We
propose several variations of the attentive
NMT architecture bringing this meeting
point back. Empirical evaluation suggests
that the better the translation quality, the
worse the learned sentence representations
serve in a wide range of classification and
similarity tasks.

1 Introduction

Deep learning has brought the possibility of au-
tomatically learning continuous representations of
sentences. On the one hand, such representations
can be geared towards particular tasks such as
classifying the sentence in various aspects (e.g.
sentiment, register, question type) or relating the
sentence to other sentences (e.g. semantic sim-
ilarity, paraphrasing, entailment). On the other
hand, we can aim at “universal” sentence repre-
sentations, that is representations performing rea-
sonably well in a range of such tasks.

Regardless the evaluation criterion, the repre-
sentations can be learned either in an unsuper-
vised way (from simple, unannotated texts) or su-
pervised, relying on manually constructed training
sets of sentences equipped with annotations of the
appropriate type. A different approach is to ob-
tain sentence representations from training neural
machine translation models (Hill et al., 2016).

Since Hill et al. (2016), NMT has seen substan-
tial advances in translation quality and it is thus

natural to ask how these improvements affect the
learned representations.

One of the key technological changes was
the introduction of “attention” (Bahdanau et al.,
2014), making it even the very central component
in the network (Vaswani et al., 2017). Attention
allows the NMT system to dynamically choose
which parts of the source are most important when
deciding on the current output token. As a conse-
quence, there is no longer a static vector represen-
tation of the sentence available in the system.

In this paper, we remove this limitation by
proposing a novel encoder-decoder architecture
with a structured fixed-size representation of the
input that still allows the decoder to explicitly fo-
cus on different parts of the input. In other words,
our NMT system has both the capacity to attend
to various parts of the input and to produce static
representations of input sentences.

We train this architecture on English-to-German
and English-to-Czech translation and evaluate the
learned representations of English on a wide range
of tasks in order to assess its performance in learn-
ing “universal” meaning representations.

In Section 2, we briefly review recent efforts in
obtaining sentence representations. In Section 3,
we introduce a number of variants of our novel
architecture. Section 4 describes some standard
and our own methods for evaluating sentence rep-
resentations. Section 5 then provides experimental
results: translation and representation quality. The
relation between the two is discussed in Section 6.

2 Related Work

The properties of continuous sentence representa-
tions have always been of interest to researchers
working on neural machine translation. In the
first works on RNN sequence-to-sequence mod-
els, Cho et al. (2014) and Sutskever et al. (2014)
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Bahdanau et al. Sutskever et al. Cho et al. Compound attention

ATTN FINAL FINAL-CTX *POOL *POOL-CTX ATTN-CTX ATTN-ATTN
Encoder states used all final final all all all all
Combined using . . . — — — pooling pooling inner att. inner att.
Sent. emb. available ✗ ✓ ✓ ✓ ✓ ✓ ✓
Dec. attends to enc. states ✓ ✗ ✗ ✗ ✗ ✗ ✗
Dec. attends to sent. emb. ✗ ✗ ✗ ✗ ✗ ✗ ✓
Sent. emb. used in . . . — init init+ctx init init+ctx init+ctx input for att.

Table 1: Different RNN-based architectures and their properties. Legend: “pooling” – vectors combined
by mean or max (AVGPOOL, MAXPOOL); “sent. emb.” – sentence embedding, i.e. the fixed-size sentence
representation computed by the encoder. “init” – initial decoder state. “ctx” – context vector, i.e. input
for the decoder cell. “input for att.” – input for the decoder attention.

provided visualizations of the phrase and sentence
embedding spaces and observed that they reflect
semantic and syntactic structure to some extent.

Hill et al. (2016) perform a systematic evalua-
tion of sentence representation in different models,
including NMT, by applying them to various sen-
tence classification tasks and by relating semantic
similarity to closeness in the representation space.

Shi et al. (2016) investigate the syntactic prop-
erties of representations learned by NMT systems
by predicting sentence- and word-level syntactic
labels (e.g. tense, part of speech) and by generat-
ing syntax trees from these representations.

Schwenk and Douze (2017) aim to learn
language-independent sentence representations
using NMT systems with multiple source and tar-
get languages. They do not consider the atten-
tion mechanism and evaluate primarily by similar-
ity scores of the learned representations for similar
sentences (within or across languages).

3 Model Architectures

Our proposed model architectures differ in
(a) which encoder states are considered in subse-
quent processing, (b) how they are combined, and
(c) how they are used in the decoder.

Table 1 summarizes all the examined config-
urations of RNN-based models. The first three
(ATTN, FINAL, FINAL-CTX) correspond roughly to
the standard sequence-to-sequence models, Bah-
danau et al. (2014), Sutskever et al. (2014) and
Cho et al. (2014), resp. The last column (ATTN-
ATTN) is our main proposed architecture: com-
pound attention, described here in Section 3.1.

In addition to RNN-based models, we experi-
ment with the Transformer model, see Section 3.3.
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Figure 1: An illustration of compound attention
with 4 attention heads. The figure shows the com-
putations that result in the decoder state s3 (in ad-
dition, each state si depends on the previous target
token yi−1). Note that the matrix M is the same
for all positions in the output sentence and it can
thus serve as the source sentence representation.

3.1 Compound Attention

Our compound attention model incorporates atten-
tion in both the encoder and the decoder, Fig. 1.

Encoder with inner attention. First, we pro-
cess the input sequence x1, x2, . . . , xT using a bi-
directional recurrent network with gated recurrent
units (GRU, Cho et al., 2014):
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We denote by u the combined number of units in
the two RNNs, i.e. the dimensionality of ht.

Next, our goal is to combine the states
(h1, h2, . . . , hT ) = H of the encoder into a vector
of fixed dimensionality that represents the entire
sentence. Traditional seq2seq models concatenate
the final states of both encoder RNNs (

−→
hT and

←−
h1)

to obtain the sentence representation (denoted as
FINAL in Table 1). Another option is to combine
all encoder states using the average or maximum
over time (Collobert and Weston, 2008; Schwenk
and Douze, 2017) (AVGPOOL and MAXPOOL in
Table 1 and following).

We adopt an alternative approach, which is to
use inner attention1 (Liu et al., 2016; Li et al.,
2016) to compute several weighted averages of the
encoder states (Lin et al., 2017). The main moti-
vation for incorporating these multiple “views” of
the state sequence is that it removes the need for
the RNN cell to accumulate the representation of
the whole sentence as it processes the input, and
therefore it should have more capacity for model-
ing local dependencies.

Specifically, we fix a number r, the number of
attention heads, and compute an r×T matrix A of
attention weights αjt, representing the importance
of position t in the input for the jth attention head.
We then use this matrix to compute r weighted
sums of the encoder states, which become the rows
of a new matrix M :

M = AH. (1)

A vector representation of the source sentence (the
“sentence embedding”) can be obtained by flatten-
ing the matrix M . In our experiments, we project
the encoder states h1, h2, . . . , hT down to a given
dimensionality before applying Eq. (1), so that we
can control the size of the representation.

Following Lin et al. (2017), we compute the at-
tention matrix by feeding the encoder states to a
two-layer feed-forward network:

A = softmax(U tanh(WH�)), (2)

where W and U are weight matrices of dimen-
sions d× u and r × d, respectively (d is the num-
ber of hidden units); the softmax function is ap-
plied along the second dimension, i.e. across the
encoder states.

1Some papers call the same or similar approach self-
attention or single-time attention.

Attentive decoder. In vanilla seq2seq models
with a fixed-size sentence representation, the de-
coder is usually conditioned on this representation
via the initial RNN state. We propose to instead
leverage the structured sentence embedding by ap-
plying attention to its components. This is no dif-
ferent from the classical attention mechanism used
in NMT (Bahdanau et al., 2014), except that it acts
on this fixed-size representation instead of the se-
quence of encoder states.

In the ith decoding step, the attention mecha-
nism computes a distribution {βij}rj=1 over the r
components of the structured representation. This
is then used to weight these components to obtain
the context vector ci, which in turn is used to up-
date the decoder state. Again, we can write this in
matrix form as

C = BM, (3)

where B = (βij)
T �,r
i=1,j=1 is the attention matrix

and C = (ci, c2, . . . , cT �) are the context vectors.
Note that by combining Eqs. (1) and (3), we get

C = (BA)H. (4)

Hence, the composition of the encoder and de-
coder attentions (the “compound attention”) de-
fines an implicit alignment between the source
and the target sequence. From this viewpoint, our
model can be regarded as a restriction of the con-
ventional attention model.

The decoder uses a conditional GRU cell
(cGRUatt; Sennrich et al., 2017), which consists of
two consecutively applied GRU blocks. The first
block processes the previous target token yi−1,
while the second block receives the context vec-
tor ci and predicts the next target token yi.

3.2 Constant Context
Compared to the FINAL model, the compound at-
tention architecture described in the previous sec-
tion undoubtedly benefits from the fact that the
decoder is presented with information from the
encoder (i.e. the context vectors ci) in every de-
coding step. To investigate this effect, we include
baseline models where we replace all context vec-
tors ci with the entire sentence embedding (indi-
cated by the suffix “-CTX” in Table 1). Specifi-
cally, we provide either the flattened matrix M (for
models with inner attention; ATTN or ATTN-CTX),
the final state of the encoder (FINAL-CTX), or the
result of mean- or max-pooling (*POOL-CTX) as a
constant input to the decoder cell.



1365

Name Cl. Train Test Task Example Input and Label
MR 2 11k — sentiment (movies) an idealistic love story that brings out the latent 15-year-old

romantic in everyone. (+)
CR 2 4k — product review polarity no way to contact their customer service. (−)
SUBJ 2 10k — subjectivity a little weak – and it isn’t that funny. (subjective)
MPQA 2 11k — opinion polarity was hoping (+), breach of the very constitution (−)
SST2 2 68k 2k sentiment (movies) contains very few laughs and even less surprises (−)
SST5 5 10k 2k sentiment (movies) it’s worth taking the kids to. (4)
TREC 6 5k 500 question type What was Einstein s IQ? (NUM)
MRPC 2 4k 2k semantic equivalence Lawtey is not the first faith-based program in Florida’s

prison system. / But Lawtey is the first entire prison to take
that path. (−)

SNLI 3 559k 10k natural language inference Two doctors perform surgery on patient. / Two surgeons are
having lunch. (contradiction)

SICK-E 3 5k 5k natural language inference A group of people is near the ocean / A crowd of people is
near the water (entailment)

Table 2: SentEval classification tasks. Tasks without a test set use 10-fold cross-validation.

Name Train Test Method
SICK-R 5k 5k regression
STSB 7k 1k regression
STS12 — 3k cosine similarity
STS13 — 2k cosine similarity
STS14 — 4k cosine similarity
STS15 — 9k cosine similarity
STS16 — 9k cosine similarity

Table 3: SentEval semantic relatedness tasks.

3.3 Transformer with Inner Attention

The Transformer (Vaswani et al., 2017) is a re-
cently proposed model based entirely on feed-
forward layers and attention. It consists of an en-
coder and a decoder, each with 6 layers, consisting
of multi-head attention on the previous layer and a
position-wise feed-forward network.

In order to introduce a fixed-size sentence rep-
resentation into the model, we modify it by adding
inner attention after the last encoder layer. The at-
tention in the decoder then operates on the com-
ponents of this representation (i.e. the rows of the
matrix M ). This variation on the Transformer
model corresponds to the ATTN-ATTN column in
Table 1 and is therefore denoted TRF-ATTN-ATTN.

4 Representation Evaluation

Continuous sentence representations can be eval-
uated in many ways, see e.g. Kiros et al. (2015),
Conneau et al. (2017) or the RepEval workshops.2

We evaluate our learned representations with
classification and similarity tasks from SentEval
(Section 4.1) and by examining clusters of sen-
tence paraphrase representations (Section 4.2).

4.1 SentEval
We perform evaluation on 10 classification and
7 similarity tasks using the SentEval3 (Conneau
et al., 2017) evaluation tool. This is a superset of
the tasks from Kiros et al. (2015).

Table 2 describes the classification tasks (num-
ber of classes, data size, task type and an example)
and Table 3 lists the similarity tasks. The simi-
larity (relatedness) datasets contain pairs of sen-
tences labeled with a real-valued similarity score.
A given sentence representation model is evalu-
ated either by learning to directly predict this score
given the respective sentence embeddings (“re-
gression”), or by computing the cosine similarity
of the embeddings (“similarity”) without the need
of any training. In both cases, Pearson and Spear-
man correlation of the predictions with the gold
ratings is reported.

See Dolan et al. (2004) for details on MRPC and
Hill et al. (2016) for the remaining tasks.

4.2 Paraphrases
We also evaluate the representation of para-
phrases. We use two paraphrase sources for this
purpose: COCO and HyTER Networks.

COCO (Common Objects in Context; Lin et al.,
2014) is an object recognition and image caption-
ing dataset, containing 5 captions for each image.
We extracted the captions from its validation set to
form a set of 5 × 5k = 25k sentences grouped by
the source image. The average sentence length is
11 tokens and the vocabulary size is 9k types.

HyTER Networks (Dreyer and Marcu, 2014)
are large finite-state networks representing a sub-

2https://repeval2017.github.io/
3https://github.com/facebookresearch/

SentEval/
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set of all possible English translations of 102 Ara-
bic and 102 Chinese sentences. The networks
were built by manually based on reference sen-
tences in Arabic, Chinese and English. Each net-
work contains up to hundreds of thousands of pos-
sible translations of the given source sentence.
We randomly generated 500 translations for each
source sentence, obtaining a corpus of 102k sen-
tences grouped into 204 clusters, each containing
500 paraphrases. The average length of the 102k
English sentences is 28 tokens and the vocabulary
size is 11k token types.

For every model, we encode each dataset to ob-
tain a set of sentence embeddings with cluster la-
bels. We then compute the following metrics:

Cluster classification accuracy (denoted
“Cl”). We remove 1 point (COCO) or half of
the points (HyTER) from each cluster, and fit an
LDA classifier on the rest. We then compute the
accuracy of the classifier on the removed points.

Nearest-neighbor paraphrase retrieval accu-
racy (NN). For each point, we find its nearest
neighbor according to cosine or L2 distance, and
count how often the neighbor lies in the same clus-
ter as the original point.

Inverse Davies-Bouldin index (iDB). The
Davies-Bouldin index (Davies and Bouldin, 1979)
measures cluster separation. For every pair of
clusters, we compute the ratio Rij of their com-
bined scatter (average L2 distance to the centroid)
Si + Sj and the L2 distance of their centroids dij ,
then average the maximum values for all clusters:

Rij =
Si + Sj

dij
(5)

DB =
1

N

N�

i=1

max
j �=i

Rij (6)

The lower the DB index, the better the separation.
To match with the rest of our metrics, we take its
inverse: iDB = 1

DB .

5 Experimental Results

We trained English-to-German and English-to-
Czech NMT models using Neural Monkey4 (Helcl
and Libovický, 2017a). In the following, we dis-
tinguish these models using the code of the target
language, i.e. de or cs.

The de models were trained on the Multi30K
multilingual image caption dataset (Elliott et al.,

4https://github.com/ufal/neuralmonkey

2016), extended by Helcl and Libovický (2017b),
who acquired additional parallel data using back-
translation (Sennrich et al., 2016) and perplexity-
based selection (Yasuda et al., 2008). This ex-
tended dataset contains 410k sentence pairs, with
the average sentence length of 12 ± 4 tokens in
English. We train each model for 20 epochs with
the batch size of 32. We truecased the training
data as well as all data we evaluate on. For Ger-
man, we employed Neural Monkey’s reversible
pre-processing scheme, which expands contrac-
tions and performs morphological segmentation of
determiners. We used a vocabulary of at most 30k
tokens for each language (no subword units).

The cs models were trained on CzEng 1.7 (Bo-
jar et al., 2016).5 We used byte-pair encoding
(BPE) with a vocabulary of 30k sub-word units,
shared for both languages. For English, the aver-
age sentence length is 15±19 BPE tokens and the
original vocabulary size is 1.9M. We performed 1
training epoch with the batch size of 128 on the
entire training section (57M sentence pairs).

The datasets for both de and cs models come
with their respective development and test sets of
sentence pairs, which we use for the evaluation of
translation quality. (We use 1k randomly selected
sentence pairs from CzEng 1.7 dtest as a develop-
ment set. For evaluation, we use the entire etest.)

We also evaluate the InferSent model6 (Con-
neau et al., 2017) as pre-trained on the natu-
ral language inference (NLI) task. InferSent has
been shown to achieve state-of-the-art results on
the SentEval tasks. We also include a bag-of-
words baseline (GloVe-BOW) obtained by averag-
ing GloVe7 word vectors (Pennington et al., 2014).

5.1 Translation Quality

We estimate translation quality of the vari-
ous models using single-reference case-sensitive
BLEU (Papineni et al., 2002) as implemented in
Neural Monkey (the reference implementation is
mteval-v13a.pl from NIST or Moses).

Tables 4 and 5 provide the results on the two
datasets. The cs dataset is much larger and the
training takes much longer. We were thus able
to experiment with only a subset of the possible
model configurations.

5http://ufal.mff.cuni.cz/czeng/czeng17
6https://github.com/facebookresearch/

InferSent
7https://nlp.stanford.edu/projects/

glove/
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Model Size Heads BLEU
dev test

de-ATTN — — 37.6 36.2
de-TRF — — 38.2 36.1
de-ATTN-ATTN 2400 12 36.2 34.8
de-ATTN-ATTN 1200 12 35.6 34.3
de-ATTN-ATTN 600 8 35.4 33.7
de-ATTN-ATTN 600 12 35.3 33.4
de-ATTN-ATTN 1200 6 35.0 33.2
de-ATTN-ATTN 600 6 35.1 33.2
de-TRF-ATTN-ATTN 600 3 32.3 30.1
de-ATTN-ATTN 600 3 31.4 29.4
de-ATTN-CTX 1200 12 30.6 29.2
de-ATTN-CTX 600 12 29.8 29.1
de-ATTN-CTX 600 8 29.8 28.9
de-ATTN-CTX 600 6 29.5 28.8
de-TRF-ATTN-ATTN 2400 12 30.6 28.5
de-MAXPOOL-CTX 600 — 27.8 28.1
de-FINAL-CTX 600 — 28.1 26.9
de-ATTN-CTX 600 3 27.8 26.9
de-AVGPOOL-CTX 600 — 27.1 26.5
de-ATTN-ATTN 600 1 27.2 26.0
de-TRF-ATTN-ATTN 600 6 26.5 25.8
de-TRF-ATTN-ATTN 1200 12 26.6 25.3
de-FINAL 600 — 23.9 23.8

Table 4: Translation quality of de models.

Model Size Heads BLEU Manual
dev test > others

cs-ATTN — — 22.8 22.2 89.1
cs-ATTN-ATTN 1000 8 19.1 18.4 78.8
cs-ATTN-ATTN 4000 4 18.4 17.9 —
cs-ATTN-ATTN 1000 4 17.5 17.1 —
cs-ATTN-CTX 1000 4 16.6 16.1 58.8
cs-FINAL-CTX 1000 — 16.1 15.5 —
cs-ATTN-ATTN 1000 1 15.3 14.8 49.1
cs-FINAL 1000 — 11.2 10.8 —
cs-AVGPOOL 1000 — 11.1 10.6 —
cs-MAXPOOL 1000 — 5.4 5.4 3.0

Table 5: Translation quality of cs models.

The columns “Size” and “Heads” specify the to-
tal size of sentence representation and the number
of heads of encoder inner attention.

In both cases, the best performing is the ATTN

Bahdanau et al. model, followed by Transformer
(de only) and our ATTN-ATTN (compound atten-
tion). The non-attentive FINAL Cho et al. is the
worst, except cs-MAXPOOL.

For 5 selected cs models, we also performed
the WMT-style 5-way manual ranking on 200 sen-
tence pairs. The annotations are interpreted as
simulated pairwise comparisons. For each model,
the final score is the number of times the model
was judged better than the other model in the pair.
Tied pairs are excluded. The results, shown in Ta-
ble 5, confirm the automatic evaluation results.

We also checked the relation between BLEU
and the number of heads and representation size.
While there are many exceptions, the general ten-

dency is that the larger the representation or the
more heads, the higher the BLEU score. The Pear-
son correlation between BLEU and the number of
heads is 0.87 for cs and 0.31 for de.

5.2 SentEval

Due to the large number of SentEval tasks, we
present the results abridged in two different ways:
by reporting averages (Table 6) and by showing
only the best models in comparison with other
methods (Table 7). The full results can be found
in the supplementary material.

Table 6 provides averages of the classification
and similarity results, along with the results of
selected tasks (SNLI, SICK-E). As the baseline
for classifications tasks, we assign the most fre-
quent class to all test examples.8 The de models
are generally worse, most likely due to the higher
OOV rate and overall simplicity of the training
sentences. On cs, we see a clear pattern that more
heads hurt the performance. The de set has more
variations to consider but the results are less con-
clusive.

For the similarity results, it is worth noting that
cs-ATTN-ATTN performs very well with 1 atten-
tion head but fails miserably with more heads.
Otherwise, the relation to the number of heads is
less clear.

Table 7 compares our strongest models with
other approaches on all tasks. Besides InferSent
and GloVe-BOW, we include SkipThought as
evaluated by Conneau et al. (2017), and the NMT-
based embeddings by Hill et al. (2016) trained on
the English-French WMT15 dataset (this is the
best result reported by Hill et al. for NMT).

We see that the supervised InferSent clearly out-
performs all other models in all tasks except for
MRPC and TREC. Results by Hill et al. are al-
ways lower than our best setups, except MRPC
and TREC again. On classification tasks, our mod-
els are outperformed even by GloVe-BOW, except
for the NLI tasks (SICK-E and SNLI) where cs-
FINAL-CTX is better.

5.3 Paraphrase Scores

Table 6 also provides our measurements based
on sentence paraphrases. For paraphrase retrieval
(NN), we found cosine distance to work better

8For MR, CR, SUBJ, and MPQA, where there is no dis-
tinct test set, the class is established on the whole collection.
For other tasks, the class is learned from the training set.
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Name Size H. SNLI SICK-E AvgAcc AvgSim Hy-Cl Hy-NN Hy-iDB CO-Cl CO-NN CO-iDB
InferSent 4096 — 83.7 86.4 81.7 .70 99.99 100.00 0.579 31.58 26.21 0.367
GloVe-BOW 300 — 66.0 78.2 75.8 .59 99.94 100.00 0.654 34.28 19.72 0.352
cs-FINAL-CTX 1000 — 70.2 82.1 74.4 .60 99.92 100.00 0.406 23.20 16.07 0.346
cs-ATTN-ATTN 1000 1 69.3 80.8 73.4 .54 99.88 99.91 0.347 21.54 11.50 0.331
cs-FINAL 1000 — 69.2 81.1 73.2 .60 99.91 100.00 0.439 22.40 14.63 0.340
cs-MAXPOOL 1000 — 68.5 81.7 73.0 .60 99.86 100.00 0.447 21.76 16.34 0.348
cs-AVGPOOL 1000 — 67.8 79.7 72.4 .50 99.80 99.99 0.387 17.90 8.61 0.311
cs-ATTN-CTX 1000 4 66.0 79.5 72.2 .45 99.75 99.74 0.287 14.60 7.54 0.318
cs-ATTN-ATTN 4000 4 65.2 78.0 71.2 .39 99.54 98.98 0.252 11.52 5.51 0.303
cs-ATTN-ATTN 1000 4 64.6 78.0 70.8 .39 99.26 98.93 0.253 10.84 5.20 0.299
cs-ATTN-ATTN 1000 8 63.2 76.6 70.0 .36 99.41 98.09 0.243 10.24 4.64 0.287
de-MAXPOOL-CTX 600 — 68.0 78.8 67.1 .50 98.42 99.90 0.343 21.54 15.62 0.341
de-ATTN-CTX 1200 12 65.0 77.4 66.7 .52 98.88 99.91 0.347 20.06 16.68 0.348
de-ATTN-CTX 600 8 64.0 75.7 65.8 .51 98.11 99.90 0.348 21.64 17.32 0.349
de-AVGPOOL-CTX 600 — 65.2 77.5 65.6 .48 97.72 99.60 0.312 20.04 14.27 0.337
de-ATTN-CTX 600 12 61.9 76.0 65.5 .50 97.79 99.89 0.360 20.22 16.10 0.344
de-FINAL 600 — 64.7 77.0 65.3 .47 97.01 99.30 0.305 19.88 12.40 0.328
de-ATTN-CTX 600 3 63.3 76.0 65.3 .50 97.81 99.87 0.328 19.74 16.43 0.343
de-ATTN-ATTN 600 1 63.8 76.9 64.8 .50 97.70 99.73 0.352 19.74 16.26 0.340
de-ATTN-ATTN 600 3 61.5 74.7 64.5 .47 97.42 99.75 0.314 17.36 14.35 0.333
de-FINAL-CTX 600 — 62.6 76.2 64.5 .48 96.65 99.70 0.323 17.22 12.84 0.333
de-ATTN-ATTN 1200 6 59.6 72.3 64.3 .41 98.05 99.80 0.289 11.90 10.69 0.327
de-TRF-ATTN-ATTN 600 3 61.4 72.5 63.9 .49 95.79 99.64 0.315 15.76 14.04 0.340
de-ATTN-ATTN 1200 12 58.2 72.5 63.4 .43 97.15 99.65 0.283 12.18 11.97 0.330
de-ATTN-ATTN 2400 12 59.8 73.9 63.2 .41 98.69 99.77 0.287 10.26 10.94 0.326
de-TRF-ATTN-ATTN 2400 12 59.0 71.2 63.0 .46 95.82 99.03 0.307 5.66 14.53 0.339
de-ATTN-ATTN 600 6 57.5 70.9 62.6 .40 96.03 99.71 0.287 12.22 10.59 0.323
de-ATTN-ATTN 600 8 55.6 68.6 62.1 .39 95.32 99.73 0.275 10.22 10.58 0.325
de-TRF-ATTN-ATTN 600 6 59.5 71.0 61.9 .45 90.24 98.44 0.313 9.06 13.64 0.332
de-ATTN-ATTN 600 12 55.2 70.5 61.5 .40 95.16 99.64 0.278 9.62 10.47 0.323
de-TRF-ATTN-ATTN 1200 12 58.2 68.8 61.1 .46 90.71 98.22 0.301 7.06 13.70 0.333
de-ATTN-CTX 600 6 62.9 68.7 61.0 .43 98.11 99.86 0.358 20.44 15.57 0.342
LM perplexity (cs) 190.6 299.4 1150.2 1224.2 668.5 238.5
% OOV (cs) 0.3 0.2 2.3 2.6 1.2 0.1
LM perplexity (de) 38.8 65.0 3578.2 2010.6 3354.8 86.3
% OOV (de) 1.5 1.7 17.8 16.2 19.3 1.9

Table 6: Abridged SentEval and paraphrase evaluation results. Full results in supplementary material.
AvgAcc is the average of all 10 SentEval classification tasks (see Table S1 in supplementary material),
AvgSim averages all 7 similarity tasks (see Table S2). Hy- and CO- stand for HyTER and COCO,
respectively. “H.” is the number of attention heads. We give the out-of-vocabulary (OOV) rate and the
perplexity of a 4-gram language model (LM) trained on the English side of the respective parallel corpus
and evaluated on all available data for a given task.

Name Size H. MR CR SUBJ MPQA SST2 SST5 TREC MRPC SICK-E SNLI AvgAcc

Most frequent baseline 50.0 63.8 50.0 68.8 49.9 23.1 18.8 66.5 56.7 34.3 48.19
InferSent 4096 — 81.5 86.7 92.7 90.6 85.0 45.8 88.2 76.6 86.4 (83.7) 81.7
Hill et al. en→fr† 2400 — 64.7 70.1 84.9 81.5 — — 82.8 96.1 — — —
SkipThought-LN† — — 79.4 83.1 93.7 89.3 82.9 — 88.4 — 79.5 — —
GloVe-BOW 300 — 77.0 78.2 91.1 87.9 81.0 44.4 82.0 72.3 78.2 66.0 75.8
cs-FINAL-CTX 1000 — 68.7 77.4 88.5 85.5 73.0 38.2 88.6 71.8 82.1 70.2 74.4
cs-ATTN-ATTN 1000 1 68.2 76.0 86.9 84.9 72.0 35.7 89.0 70.7 80.8 69.3 73.4
Name Size H. SICK-R STSB STS12 STS13 STS14 STS15 STS16 AvgSim

InferSent 4096 — .88/.83 .76/.75 .59/.60 .59/.59 .70/.67 .71/.72 .71/.73 .70
SkipThought-LN† — — .85/ — — — — .44/.45 — — —
GloVe-BOW 300 — .80/.72 .64/.62 .52/.53 .50/.51 .55/.56 .56/.59 .51/.58 .59
cs-FINAL-CTX 1000 — .82/.76 .74/.74 .51/.53 .44/.44 .52/.50 .62/.61 .57/.58 .60
cs-ATTN-ATTN 1000 1 .81/.76 .73/.73 .46/.49 .32/.33 .45/.44 .53/.52 .47/.48 .54

Table 7: Comparison of state-of-the-art SentEval results with our best models and the Glove-BOW base-
line. “H.” is the number of attention heads. Reprinted results are marked with †, others are our measure-
ments.
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Figure 2: Pearson correlations. Upper triangle: de
models, lower triangle: cs models. Positive val-
ues shown in shades of green. For similarity tasks,
only the Pearson (not Spearman) coefficient is rep-
resented.

than L2 distance. We therefore do not list L2-
based results (except in the supplementary mate-
rial).

This evaluation seems less stable and discern-
ing than the previous two, but we can again con-
firm the victory of InferSent followed by our non-
attentive cs models. cs and de models are no
longer clearly separated.

6 Discussion

To assess the relation between the various mea-
sures of sentence representations and translation
quality as estimated by BLEU, we plot a heatmap
of Pearson correlations in Fig. 2. As one exam-
ple, Fig. 3 details the cs models’ BLEU scores and
AvgAcc.

A good sign is that on the cs dataset, most met-
rics of representation are positively correlated (the
pairwise Pearson correlation is 0.78± 0.32 on av-
erage), the outlier being TREC (−0.16±0.16 cor-
relation with the other metrics on average)

On the other hand, most representation metrics
correlate with BLEU negatively (−0.57±0.31) on
cs. The pattern is less pronounced but still clear
also on the de dataset.

A detailed understanding of what the learned
representations contain is difficult. We can only
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final-ctx
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Figure 3: BLEU vs. AvgAcc for cs models.

speculate that if the NMT model has some capabil-
ity for following the source sentence superficially,
it will use it and spend its capacity on closely
matching the target sentences rather than on deriv-
ing some representation of meaning which would
reflect e.g. semantic similarity. We assume that
this can be a direct consequence of NMT being
trained for cross entropy: putting the exact word
forms in exact positions as the target sentence re-
quires. Performing well in single-reference BLEU
is not an indication that the system understands
the meaning but rather that it can maximize the
chance of producing the n-grams required by the
reference.

The negative correlation between the number
of attention heads and the representation metrics
from Fig. 3 (−0.81±0.12 for cs and −0.18±0.19
for de, on average) can be partly explained by
the following observation. We plotted the induced
alignments (e.g. Fig. 4) and noticed that the heads
tend to “divide” the sentence into segments. While
one would hope that the segments correspond to
some meaningful units of the sentence (e.g. sub-
ject, predicate, object), we failed to find any such
interpretation for ATTN-ATTN and for cs models in
general. Instead, the heads divide the source sen-
tence more or less equidistantly, as documented
by Fig. 5. Such a multi-headed sentence repre-
sentation is then less fit for representing e.g. para-
phrases where the subject and object swap their
position due to passivization, because their rep-
resentations are then accessed by different heads,
and thus end up in different parts of the sentence
embedding vector.

For de-ATTN-CTX models, we observed a much
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Figure 4: Alignment between a source sentence
(left) and the output (right) as represented in the
ATTN-ATTN model with 8 heads and size of 1000.
Each color represents a different head; the stroke
width indicates the alignment weight; weights ≤
0.01 pruned out. (Best viewed in color.)

flatter distribution of attention weights for each
head and, unlike in the other models, we were of-
ten able to identify a head focusing on the main
verb. This difference between ATTN-ATTN and
some ATTN-CTX models could be explained by the
fact that in the former, the decoder is oblivious to
the ordering of the heads (because of decoder at-
tention), and hence it may not be useful for a given
head to look for a specific syntactic or semantic
role.

7 Conclusion

We presented a novel variation of attentive NMT
models (Bahdanau et al., 2014; Vaswani et al.,
2017) that again provides a single meeting point
with a continuous representation of the source sen-
tence. We evaluated these representations with a
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Figure 5: Attention weight by relative position in
the source sentence (average over dev set exclud-
ing sentences shorter than 8 tokens). Same model
as in Fig. 4. Each plot corresponds to one head.

number of measures reflecting how well the mean-
ing of the source sentence is captured.

While our proposed “compound attention”
leads to translation quality not much worse than
the fully attentive model, it generally does not per-
form well in the meaning representation. Quite on
the contrary, the better the BLEU score, the worse
the meaning representation.

We believe that this observation is important for
representation learning where bilingual MT now
seems less likely to provide useful data, but per-
haps more so for MT itself, where the struggle
towards a high single-reference BLEU score (or
even worse, cross entropy) leads to systems that
refuse to consider the meaning of the sentence.
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