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Abstract

One of the main challenges online social
systems face is the prevalence of antiso-
cial behavior, such as harassment and per-
sonal attacks. In this work, we introduce
the task of predicting from the very start
of a conversation whether it will get out
of hand. As opposed to detecting undesir-
able behavior after the fact, this task aims
to enable early, actionable prediction at a
time when the conversation might still be
salvaged.

To this end, we develop a framework
for capturing pragmatic devices—such
as politeness strategies and rhetorical
prompts—used to start a conversation, and
analyze their relation to its future trajec-
tory. Applying this framework in a con-
trolled setting, we demonstrate the feasi-
bility of detecting early warning signs of
antisocial behavior in online discussions.

1 Introduction

“Or vedi I’anime di color cui vinse I’ira.”’

— Dante Alighieri, Divina Commedia, Inferno

Online conversations have a reputation for go-
ing awry (Hinds and Mortensen, 2005; Gheitasy
et al., 2015): antisocial behavior (Shepherd et al.,
2015) or simple misunderstandings (Churchill and
Bly, 2000; Yamashita and Ishida, 2006) hamper
the efforts of even the best intentioned collabo-
rators. Prior computational work has focused on
characterizing and detecting content exhibiting an-
tisocial online behavior: trolling (Cheng et al.,
2015, 2017), hate speech (Warner and Hirschberg,
2012; Davidson et al., 2017), harassment (Yin
et al., 2009), personal attacks (Wulczyn et al.,
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2017) or, more generally, toxicity (Chandrasekha-
ran et al., 2017; Pavlopoulos et al., 2017b).

Our goal is crucially different: instead of identi-
fying antisocial comments after the fact, we aim to
detect warning signs indicating that a civil conver-
sation is at risk of derailing into such undesirable
behaviors. Such warning signs could provide po-
tentially actionable knowledge at a time when the
conversation is still salvageable.

As a motivating example, consider the pair of
conversations in Figure 1. Both exchanges took
place in the context of the Wikipedia discussion
page for the article on the Dyatlov Pass Incident,
and both show (ostensibly) civil disagreement be-
tween the participants. However, only one of these
conversations will eventually turn awry and de-
volve into a personal attack (“Wow, you’re com-
ing off as a total d**k. [...] What the hell is wrong
with you?”), while the other will remain civil.

As humans, we have some intuition about which
conversation is more likely to derail.> We may
note the repeated, direct questioning with which
Al opens the exchange, and that A2 replies
with yet another question. In contrast, B1’s
softer, hedged approach (“it seems”, “I don’t
think™) appears to invite an exchange of ideas,
and B2 actually addresses the question instead of
stonewalling. Could we endow artificial systems
with such intuitions about the future trajectory of
conversations?

In this work we aim to computationally cap-
ture linguistic cues that predict a conversation’s
future health. Most existing conversation mod-
eling approaches aim to detect characteristics of
an observed discussion or predict the outcome af-
ter the discussion concludes—e.g., whether it in-
volves a present dispute (Allen et al., 2014; Wang
and Cardie, 2014) or contributes to the even-

’In fact, humans achieve an accuracy of 72% on this bal-
anced task, showing that it is feasible, but far from trivial.
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A1: Why there’s no mention of it here? Namely, an altercation
with a foreign intelligence group? True, by the standards of
sources some require it wouln’t even come close, not to men-
tion having some really weak points, but it doesn’t mean that it
doesn’t exist.

A2: So what you’re saying is we should put a bad
source in the article because it exists?

B1: Is the St. Petersberg Times considered a reliable source by
wikipedia? It seems that the bulk of this article is coming from
that one article, which speculates about missile launches and
UFOs. I’'m going to go through and try and find corroborating
sources and maybe do a rewrite of the article. I don’t think this
article should rely on one so-so source.

B2: I would assume that it’s as reliable as any other
mainstream news source.

Figure 1: Two examples of initial exchanges from conversations concerning disagreements between
editors working on the Wikipedia article about the Dyatlov Pass Incident. Only one of the conversations
will eventually turn awry, with an interlocutor launching into a personal attack.

tual solution of a problem (Niculae and Danescu-
Niculescu-Mizil, 2016). In contrast, for this new
task we need to discover interactional signals of
the future trajectory of an ongoing conversation.

We make a first approach to this problem by an-
alyzing the role of politeness (or lack thereof) in
keeping conversations on track. Prior work has
shown that politeness can help shape the course
of offline (Clark, 1979; Clark and Schunk, 1980),
as well as online interactions (Burke and Kraut,
2008), through mechanisms such as softening the
perceived force of a message (Fraser, 1980), act-
ing as a buffer between conflicting interlocutor
goals (Brown and Levinson, 1987), and enabling
all parties to save face (Goffman, 1955). This sug-
gests the potential of politeness to serve as an in-
dicator of whether a conversation will sustain its
initial civility or eventually derail, and motivates
its consideration in the present work.

Recent studies have computationally opera-
tionalized prior formulations of politeness by
extracting linguistic cues that reflect politeness
strategies (Danescu-Niculescu-Mizil et al., 2013;
Aubakirova and Bansal, 2016). Such research
has additionally tied politeness to social fac-
tors such as individual status (Danescu-Niculescu-
Mizil et al., 2012; Krishnan and Eisenstein, 2015),
and the success of requests (Althoff et al., 2014)
or of collaborative projects (Ortu et al., 2015).
However, to the best of our knowledge, this is the
first computational investigation of the relation be-
tween politeness strategies and the future trajec-
tory of the conversations in which they are de-
ployed. Furthermore, we generalize beyond pre-
defined politeness strategies by using an unsu-
pervised method to discover additional rhetorical
prompts used to initiate different types of conver-
sations that may be specific to online collaborative
settings, such as coordinating work (Kittur and
Kraut, 2008) or conducting factual checks.

We explore the role of such pragmatic and
rhetorical devices in foretelling a particularly per-
plexing type of conversational failure: when par-
ticipants engaged in previously civil discussion
start to attack each other. This type of derailment
“from within” is arguably more disruptive than
other forms of antisocial behavior, such as vandal-
ism or trolling, which the interlocutors have less
control over or can choose to ignore.

We study this phenomenon in a new dataset of
Wikipedia talk page discussions, which we com-
pile through a combination of machine learning
and crowdsourced filtering. The dataset consists
of conversations which begin with ostensibly civil
comments, and either remain healthy or derail into
personal attacks. Starting from this data, we con-
struct a setting that mitigates effects which may
trivialize the task. In particular, some topical con-
texts (such as politics and religion) are naturally
more susceptible to antisocial behavior (Kittur
et al., 2009; Cheng et al., 2015). We employ tech-
niques from causal inference (Rosenbaum, 2010)
to establish a controlled framework that focuses
our study on topic-agnostic linguistic cues.

In this controlled setting, we find that prag-
matic cues extracted from the very first exchange
in a conversation (i.e., the first comment-reply
pair) can indeed provide some signal of whether
the conversation will subsequently go awry. For
example, conversations prompted by hedged re-
marks sustain their initial civility more so than
those prompted by forceful questions, or by direct
language addressing the other interlocutor.

In summary, our main contributions are:

e We articulate the new task of detecting early
on whether a conversation will derail into
personal attacks;

o We devise a controlled setting and build a la-
beled dataset to study this phenomenon;
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e We investigate how politeness strategies and
other rhetorical devices are tied to the future
trajectory of a conversation.

More broadly, we show the feasibility of auto-
matically detecting warning signs of future mis-
behavior in collaborative interactions. By provid-
ing a labeled dataset together with basic method-
ology and several baselines, we open the door to
further work on understanding factors which may
derail or sustain healthy online conversations. To
facilitate such future explorations, we distrubute
the data and code as part of the Cornell Conversa-
tional Analysis Toolkit.?

2 Further Related Work

Antisocial behavior. Prior work has studied a
wide range of disruptive interactions in various on-
line platforms like Reddit and Wikipedia, exam-
ining behaviors like aggression (Kayany, 1998),
harassment (Chatzakou et al., 2017; Vitak et al.,
2017), and bullying (Akbulut et al., 2010; Kwak
etal., 2015; Singh et al., 2017), as well as their im-
pact on aspects of engagement like user retention
(Collier and Bear, 2012; Wikimedia Support and
Safety Team, 2015) or discussion quality (Arazy
et al., 2013). Several studies have sought to de-
velop machine learning techniques to detect sig-
natures of online toxicity, such as personal in-
sults (Yin et al., 2009), harassment (Sood et al.,
2012) and abusive language (Nobata et al., 2016;
Gambick and Sikdar, 2017; Pavlopoulos et al.,
2017a; Wulczyn et al., 2017). These works fo-
cus on detecting toxic behavior after it has al-
ready occurred; a notable exception is Cheng et al.
(2017), which predicts future community enforce-
ment against users in news-based discussions. Our
work similarly aims to understand future antiso-
cial behavior; however, our focus is on studying
the trajectory of a conversation rather than the be-
havior of individuals across disparate discussions.
Discourse analysis. Our present study builds on a
large body of prior work in computationally mod-
eling discourse. Both unsupervised (Ritter et al.,
2010) and supervised (Zhang et al., 2017a) ap-
proaches have been used to categorize behavioral
patterns on the basis of the language that ensues in
a conversation, in the particular realm of online
discussions. Models of conversational behavior
have also been used to predict conversation out-
comes, such as betrayal in games (Niculae et al.,

3http: //convokit.infosci.cornell.edu

2015), and success in team problem solving set-
tings (Fu et al., 2017) or in persuading others (Tan
et al., 2016; Zhang et al., 2016).

While we are inspired by the techniques em-
ployed in these approaches, our work is concerned
with predicting the future trajectory of an ongoing
conversation as opposed to a post-hoc outcome.
In this sense, we build on prior work in modeling
conversation trajectory, which has largely consid-
ered structural aspects of the conversation (Kumar
et al., 2010; Backstrom et al., 2013). We comple-
ment these structural models by seeking to extract
potential signals of future outcomes from the lin-
guistic discourse within the conversation.

3 Finding Conversations Gone Awry

We develop our framework for understanding lin-
guistic markers of conversational trajectories in
the context of Wikipedia’s talk page discussions—
public forums in which contributors convene to
deliberate on editing matters such as evaluating
the quality of an article and reviewing the com-
pliance of contributions with community guide-
lines. The dynamic of conversational derailment
is particularly intriguing and consequential in this
setting by virtue of its collaborative, goal-oriented
nature. In contrast to unstructured commenting fo-
rums, cases where one collaborator turns on an-
other over the course of an initially civil exchange
constitute perplexing pathologies. In turn, these
toxic attacks are especially disruptive in Wikipedia
since they undermine the social fabric of the com-
munity as well as the ability of editors to con-
tribute (Henner and Sefidari, 2016).

To approach this domain we reconstruct a com-
plete view of the conversational process in the edit
history of English Wikipedia by translating se-
quences of revisions of each talk page into struc-
tured conversations. This yields roughly 50 mil-
lion conversations across 16 million talk pages.

Roughly one percent of Wikipedia comments
are estimated to exhibit antisocial behavior (Wul-
czyn et al., 2017). This illustrates a challenge
for studying conversational failure: one has to sift
through many conversations in order to find even
a small set of examples. To avoid such a pro-
hibitively exhaustive analysis, we first use a ma-
chine learning classifier to identify candidate con-
versations that are likely to contain a toxic contri-
bution, and then use crowdsourcing to vet the re-
sulting labels and construct our controlled dataset.
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Job 1: Ends in personal attack. We show three annotators a
conversation and ask them to determine if its last comment is
a personal attack toward someone else in the conversation.

Annotators Conversations
367 4,022

Agreement
67.8%

Job 2: Civil start. We split conversations into snip-
pets of three consecutive comments. We ask three annotators
to determine whether any of the comments in a snippet is toxic.

Annotators Conversations
247 1,252

Snippets
2,181

Agreement
87.5%

Table 1: Descriptions of crowdsourcing jobs, with relevant statistics. More details in Appendix A.

Candidate selection. Our goal is to analyze how
the start of a civil conversation is tied to its poten-
tial future derailment into personal attacks. Thus,
we only consider conversations that start out as os-
tensibly civil, i.e., where at least the first exchange
does not exhibit any toxic behavior,* and that con-
tinue beyond this first exchange. To focus on the
especially perplexing cases when the attacks come
from within, we seek examples where the attack is
initiated by one of the two participants in the ini-
tial exchange.

To select candidate conversations to include in
our collection, we use the toxicity classifier pro-
vided by the Perspective API,> which is trained on
Wikipedia talk page comments that have been an-
notated by crowdworkers (Wulczyn et al., 2016).
This provides a toxicity score ¢ for all comments
in our dataset, which we use to preselect two sets
of conversations: (a) candidate conversations that
are civil throughout, i.e., conversations in which
all comments (including the initial exchange) are
not labeled as toxic (¢ < 0.4); and (b) candidate
conversations that turn toxic after the first (civil)
exchange, i.e., conversations in which the N-th
comment (N > 2) is labeled toxic (t > 0.6), but
all the preceding comments are not (t < 0.4).
Crowdsourced filtering. Starting from these can-
didate sets, we use crowdsourcing to vet each con-
versation and select a subset that are perceived
by humans to either stay civil throughout (“on-
track” conversations), or start civil but end with
a personal attack (“‘awry-turning” conversations).
To inform the design of this human-filtering pro-
cess and to check its effectiveness, we start from
a seed set of 232 conversations manually ver-
ified by the authors to end in personal attacks
(more details about the selection of the seed set
and its role in the crowd-sourcing process can be
found in Appendix A). We take particular care to
not over-constrain crowdworker interpretations of

“For the sake of generality, in this work we focus on this
most basic conversational unit: the first comment-reply pair
starting a conversation.

‘https://www.perspectiveapi.com/

what personal attacks may be, and to separate tox-
icity from civil disagreement, which is recognized
as a key aspect of effective collaborations (Coser,
1956; De Dreu and Weingart, 2003).

We design and deploy two filtering jobs using
the CrowdFlower platform, summarized in Table 1
and detailed in Appendix A. Job 1 is designed to
select conversations that contain a “rude, insulting,
or disrespectful” comment towards another user in
the conversation—i.e., a personal attack. In con-
trast to prior work labeling antisocial comments in
isolation (Sood et al., 2012; Wulczyn et al., 2017),
annotators are asked to label personal attacks in
the context of the conversations in which they oc-
cur, since antisocial behavior can often be context-
dependent (Cheng et al., 2017). In fact, in order to
ensure that the crowdworkers read the entire con-
versation, we also ask them to indicate who is the
target of the attack. We apply this task to the set
of candidate awry-turning conversations, selecting
the 14% which all three annotators perceived as
ending in a personal attack.

Job 2 is designed to filter out conversations that
do not actually start out as civil. We run this
job to ensure that the awry-turning conversations
are civil up to the point of the attack—i.e., they
turn awry—discarding 5% of the candidates that
passed Job 1. We also use it to verify that the
candidate on-track conversations are indeed civil
throughout, discarding 1% of the respective candi-
dates. In both cases we filter out conversations in
which three annotators could identify at least one
comment that is “rude, insulting, or disrespectful”.
Controlled setting. Finally, we need to construct
a setting that affords for meaningful comparison
between conversations that derail and those that
stay on track, and that accounts for trivial topical
confounds (Kittur et al., 2009; Cheng et al., 2015).
We mitigate topical confounds using matching, a
technique developed for causal inference in obser-
vational studies (Rubin, 2007). Specifically, start-

SWe opted to use unanimity in this task to account for the
highly subjective nature of the phenomenon.
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ing from our human-vetted collection of conver-
sations, we pair each awry-turning conversation,
with an on-track conversation, such that both took
place on the same talk page. If we find multi-
ple such pairs, we only keep the one in which the
paired conversations take place closest in time, to
tighten the control for topic. Conversations that
cannot be paired are discarded.

This procedure yields a total of 1,270 paired
awry-turning and on-track conversations (includ-
ing our initial seed set), spanning 582 distinct talk
pages (averaging 1.1 pairs per page, maximum &)
and 1,876 (overlapping) topical categories. The
average length of a conversation is 4.6 comments.

4 Capturing Pragmatic Devices

We now describe our framework for capturing lin-
guistic cues that might inform a conversation’s fu-
ture trajectory. Crucially, given our focus on con-
versations that start seemingly civil, we do not ex-
pect overtly hostile language—such as insults (Yin
et al., 2009)—to be informative. Instead, we seek
to identify pragmatic markers within the initial ex-
change of a conversation that might serve to reveal
or exacerbate underlying tensions that eventually
come to the fore, or conversely suggest sustainable
civility. In particular, in this work we explore how
politeness strategies and rhetorical prompts reflect
the future health of a conversation.

Politeness strategies.  Politeness can reflect
a-priori good will and help navigate potentially
face-threatening acts (Goffman, 1955; Lakoff,
1973), and also offers hints to the underlying in-
tentions of the interlocutors (Fraser, 1980). Hence,
we may naturally expect certain politeness strate-
gies to signal that a conversation is likely to stay
on track, while others might signal derailment.

In particular, we consider a set of pragmatic
devices signaling politeness drawn from Brown
and Levinson (1987). These linguistic features re-
flect two overarching types of politeness. Posi-
tive politeness strategies encourage social connec-
tion and rapport, perhaps serving to maintain co-
hesion throughout a conversation; such strategies
include gratitude (“thanks for your help”), greet-
ings (“hey, how is your day so far”) and use of
“please”, both at the start (“Please find sources for
your edit...”) and in the middle (“Could you please
help with...?””) of a sentence. Negative politeness
strategies serve to dampen an interlocutor’s impo-
sition on an addressee, often through conveying

indirectness or uncertainty on the part of the com-
menter. Both commenters in example B (Fig. 1)
employ one such strategy, hedging, perhaps seek-
ing to soften an impending disagreement about
a source’s reliability (“I don’t think...”, “1 would
assume...”). We also consider markers of impo-
lite behavior, such as the use of direct questions
(“Why’s there no mention of it?’) and sentence-
initial second person pronouns (“Your sources
don’t matter...”), which may serve as forceful-
sounding contrasts to negative politeness markers.
Following Danescu-Niculescu-Mizil et al. (2013),
we extract such strategies by pattern matching on
the dependency parses of comments.

Types of conversation prompts. To complement
our pre-defined set of politeness strategies, we
seek to capture domain-specific rhetorical patterns
used to initiate conversations. For instance, in a
collaborative setting, we may expect conversations
that start with an invitation for working together to
signal less tension between the participants than
those that start with statements of dispute. We dis-
cover types of such conversation prompts in an un-
supervised fashion by extending a framework used
to infer the rhetorical role of questions in (offline)
political debates (Zhang et al., 2017b) to more
generally extract the rhetorical functions of com-
ments. The procedure follows the intuition that the
rhetorical role of a comment is reflected in the type
of replies it is likely to elicit. As such, comments
which tend to trigger similar replies constitute a
particular type of prompt.

To implement this intuition, we derive two dif-
ferent low-rank representations of the common
lexical phrasings contained in comments (agnos-
tic to the particular topical content discussed), au-
tomatically extracted as recurring sets of arcs in
the dependency parses of comments. First, we
derive reply-vectors of phrasings, which reflect
their propensities to co-occur. In particular, we
perform singular value decomposition on a term-
document matrix R of phrasings and replies as
R~R= URSVE, where rows of Up are low-
rank reply-vectors for each phrasing.

Next, we derive prompt-vectors for the phras-
ings, which reflect similarities in the subsequent
replies that a phrasing prompts. We construct a
prompt-reply matrix P = (p;;) where p;; = 1 if
phrasing j occurred in a reply to a comment con-
taining phrasing ¢. We project P into the same
space as Ug by solving for PinP =PS Vg as
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Prompt Type

Description

Examples

Factual check

Moderation

Coordination

Casual remark

Action statement

Opinion

Statements about article content, pertaining to or
contending issues like factual accuracy.

Rebukes or disputes concerning moderation decisions
such as blocks and reversions.

Requests, questions, and statements of intent
pertaining to collaboratively editing an article.

Casual, highly conversational aside-remarks.

Requests, statements, and explanations about
various editing actions.

Statements seeking or expressing opinions about
editing challenges and decisions.

The terms are used interchangeably in the US.
The census is not talking about families here.

If you continue, you may be blocked from editing.
He’s accused me of being a troll.

It’s a long list so I could do with your help.

Let me know if you agree with this and I'll go ahead [...]
What’s with this flag image?

I’m surprised there wasn’t an article before.

Please consider improving the article to address the issues [...]
The page was deleted as self-promotion.

I think that it should be the other way around.
This article seems to have a lot of bias.

Table 2: Prompt types automatically extracted from talk page conversations, with interpretations and
examples from the data. Bolded text indicate common prompt phrasings extracted by the framework.
Further examples are shown in Appendix B, Table 4.

P = PVgS~L. Each row of P is then a prompt-
vector of a phrasing, such that the prompt-vector
for phrasing ¢ is close to the reply-vector for phras-
ing j if comments with phrasing ¢ tend to prompt
replies with phrasing j. Clustering the rows of P
then yields k£ conversational prompt types that are
unified by their similarity in the space of replies.
To infer the prompt type of a new comment, we
represent the comment as an average of the repre-
sentations of its constituent phrasings (i.e., rows of
P) and assign the resultant vector to a cluster.’

To determine the prompt types of comments in
our dataset, we first apply the above procedure to
derive a set of prompt types from a disjoint (un-
labeled) corpus of Wikipedia talk page conversa-
tions (Danescu-Niculescu-Mizil et al., 2012). Af-
ter initial examination of the framework’s output
on this external data, we chose to extract k = 6
prompt types, shown in Table 2 along with our in-
terpretations.® These prompts represent signatures
of conversation-starters spanning a wide range of
topics and contexts which reflect core elements of
Wikipedia, such as moderation disputes and co-
ordination (Kittur et al., 2007; Kittur and Kraut,
2008). We assign each comment in our present
dataset to one of these types.’

"We scale rows of Ug and P to unit norm. We assign
comments whose vector representation has (¢2) distance > 1
to all cluster centroids to an extra, infrequently-occurring null
type which we ignore in subsequent analyses.

8We experimented with more prompt types as well, find-
ing that while the methodology recovered finer-grained types,
and obtained qualitatively similar results and prediction ac-
curacies as described in Sections 5 and 6, the assignment of
comments to types was relatively sparse due to the small data
size, resulting in a loss of statistical power.

“While the particular prompt types we discover are spe-

5 Analysis

We are now equipped to computationally explore
how the pragmatic devices used to start a con-
versation can signal its future health. Concretely,
to quantify the relative propensity of a linguistic
marker to occur at the start of awry-turning ver-
sus on-track conversations, we compute the log-
odds ratio of the marker occurring in the initial
exchange—i.e., in the first or second comments—
of awry-turning conversations, compared to initial
exchanges in the on-track setting. These quantities
are depicted in Figure 2A.'°

Focusing on the first comment (represented
as {»s), we find a rough correspondence between
linguistic directness and the likelihood of future
personal attacks. In particular, comments which
contain direct questions, or exhibit sentence-
initial you (i.e., “2™ person start”), tend to start
awry-turning conversations significantly more of-
ten than ones that stay on track (both p < 0.001). 1
This effect coheres with our intuition that direct-
ness signals some latent hostility from the conver-
sation’s initiator, and perhaps reinforces the force-
fulness of contentious impositions (Brown and
Levinson, 1987). This interpretation is also sug-

cific to Wikipedia, the methodology for inferring them is un-
supervised and is applicable in other conversational settings.

19To reduce clutter we only depict features which occur a
minimum of 50 times and have absolute log-odds > 0.2 in at
least one of the data subsets. The markers indicated as statis-
tically significant for Figure 2A remain so after a Bonferroni
correction, with the exception of factual checks, hedges (lex-
icon, <), gratitude (<>), and opinion.

T All p values in this section are computed as two-tailed bi-
nomial tests, comparing the proportion of awry-turning con-
versations exhibiting a particular device to the proportion of
on-track conversations.
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A. First & second comment

B. Attacker initiated

C. Non-attacker initiated

Figure 2: Log-odds ratios of politeness strategies and prompt types exhibited in the first and second
comments of conversations that turn awry, versus those that stay on-track. All: Purple and green markers
denote log-odds ratios in the first and second comments, respectively; points are solid if they reflect
significant (p < 0.05) log-odds ratios with an effect size of at least 0.2. A: <{>s and [Js denote first
and second comment log-odds ratios, respectively; * denotes statistically significant differences at the
p < 0.05 (*), p < 0.01 (**) and p < 0.001 (¥**) levels for the first comment (two-tailed binomial test); +
denotes corresponding statistical significance for the second comment. B and C: Vs and (s correspond
to effect sizes in the comments authored by the attacker and non-attacker, respectively, in attacker
initiated (B) and non-attacker initiated (C) conversations.

gested by the relative propensity of the factual
check prompt, which tends to cue disputes re-
garding an article’s factual content (p < 0.05).

In contrast, comments which initiate on-track
conversations tend to contain gratitude (p < 0.05)
and greetings (p < 0.001), both positive polite-
ness strategies. Such conversations are also
more likely to begin with coordination
prompts (p < 0.05), signaling active efforts to
foster constructive teamwork. Negative polite-
ness strategies are salient in on-track conversa-
tions as well, reflected by the use of hedges
(p < 0.01) and opinion prompts (p < 0.05),
which may serve to soften impositions or factual
contentions (Hiibler, 1983).

These effects are echoed in the second
comment—i.e., the first reply (represented
as Lls). Interestingly, in this case we note that
the difference in pronoun use is especially marked.
First replies in conversations that eventually de-

rail tend to contain more second person pro-
nouns (p < 0.001), perhaps signifying a replier
pushing back to contest the initiator; in con-
trast, on-track conversations have more sentence-
initial I/We (i.e., “1% person start”, p < 0.001), po-
tentially indicating the replier’s willingness to step
into the conversation and work with—rather than
argue against—the initiator (Tausczik and Pen-
nebaker, 2010).

Distinguishing interlocutor behaviors. Are the
linguistic signals we observe solely driven by the
eventual attacker, or do they reflect the behavior of
both actors? To disentangle the attacker and non-
attackers’ roles in the initial exchange, we exam-
ine their language use in these two possible cases:
when the future attacker initiates the conversation,
or is the first to reply. In attacker-initiated con-
versations (Figure 2B, 608 conversations), we see
that both actors exhibit a propensity for the lin-
guistically direct markers (e.g., direct questions)

1356



that tend to signal future attacks. Some of these
markers are used particularly often by the non-
attacking replier in awry-turning conversations
(e.g., second person pronouns, p < 0.001, ()s),
further suggesting the dynamic of the replier push-
ing back at—and perhaps even escalating—the at-
tacker’s initial hint of aggression. Among conver-
sations initiated instead by the non-attacker (Fig-
ure 2C, 662 conversations), the non-attacker’s lin-
guistic behavior in the first comment (()s) is less
distinctive from that of initiators in the on-track
setting (i.e., log-odds ratios closer to 0); mark-
ers of future derailment are (unsurprisingly) more
pronounced once the eventual attacker (Vs) joins
the conversation in the second comment.'?

More broadly, these results reveal how differ-
ent politeness strategies and rhetorical prompts de-
ployed in the initial stages of a conversation are
tied to its future trajectory.

6 Predicting Future Attacks

We now show that it is indeed feasible to predict
whether a conversation will turn awry based on
linguistic properties of its very first exchange, pro-
viding several baselines for this new task. In do-
ing so, we demonstrate that the pragmatic devices
examined above encode signals about the future
trajectory of conversations, capturing some of the
intuition humans are shown to have.

We consider the following balanced prediction
task: given a pair of conversations, which one
will eventually lead to a personal attack? We ex-
tract all features from the very first exchange in
a conversation—i.e., a comment-reply pair, like
those illustrated in our introductory example (Fig-
ure 1). We use logistic regression and report ac-
curacies on a leave-one-page-out cross validation,
such that in each fold, all conversation pairs from
a given talk page are held out as test data and pairs
from all other pages are used as training data (thus
preventing the use of page-specific information).
Prediction results are summarized in Table 3.
Language baselines. As baselines, we con-
sider several straightforward features: word count
(which performs at chance level), sentiment lexi-
con (Liu et al., 2005) and bag of words.
Pragmatic features. Next, we test the predic-
tive power of the prompt types and politeness

2As an interesting avenue for future work, we note that
some markers used by non-attacking initiators potentially still

anticipate later attacks, suggested by, e.g., the relative preva-
lence of sentence-initial you (p < 0.05, ()s).

Feature set # features Accuracy
Bag of words 5,000 56.7%
Sentiment lexicon 4 55.4%
Politeness strategies 38 60.5%
Prompt types 12 59.2%
Pragmatic (all) 50 61.6%
Interlocutor features 5 51.2%
Trained toxicity 2 60.5%
Toxicity + Pragmatic 52 64.9%
Humans 72.0%
Table 3: Accuracies for the balanced future-

prediction task. Features based on pragmatic de-
vices are bolded, reference points are italicized.

strategies features introduced in Section 4. The
12 prompt type features (6 features for each com-
ment in the initial exchange) achieve 59.2% accu-
racy, and the 38 politeness strategies features (19
per comment) achieve 60.5% accuracy. The prag-
matic features combine to reach 61.6% accuracy.
Reference points. To better contextualize the per-
formance of our features, we compare their pre-
dictive accuracy to the following reference points:
Interlocutor features: Certain kinds of interlocu-
tors are potentially more likely to be involved in
awry-turning conversations. For example, perhaps
newcomers or anonymous participants are more
likely to derail interactions than more experienced
editors. We consider a set of features representing
participants’ experience on Wikipedia (i.e., num-
ber of edits) and whether the comment authors are
anonymous. In our task, these features perform at
the level of random chance.

Trained toxicity: We also compare with the tox-
icity score of the exchange from the Perspective
API classifier—a perhaps unfair reference point,
since this supervised system was trained on addi-
tional human-labeled training examples from the
same domain and since it was used to create the
very data on which we evaluate. This results in
an accuracy of 60.5%; combining trained toxicity
with our pragmatic features achieves 64.9%.
Humans: A sample of 100 pairs were labeled by
(non-author) volunteer human annotators. They
were asked to guess, from the initial exchange,
which conversation in a pair will lead to a personal
attack. Majority vote across three annotators was
used to determine the human labels, resulting in an
accuracy of 72%. This confirms that humans have
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some intuition about whether a conversation might
be heading in a bad direction, which our features
can partially capture. In fact, the classifier using
pragmatic features is accurate on 80% of the ex-
amples that humans also got right.
Attacks on the horizon. Finally, we seek to un-
derstand whether cues extracted from the first ex-
change can predict future discussion trajectory be-
yond the immediate next couple of comments. We
thus repeat the prediction experiments on the sub-
set of conversations in which the first personal at-
tack happens after the fourth comment (282 pairs),
and find that the pragmatic devices used in the first
exchange maintain their predictive power (67.4%
accuracy), while the sentiment and bag of words
baselines drop to the level of random chance.
Overall, these initial results show the feasibil-
ity of reconstructing some of the human intuition
about the future trajectory of an ostensibly civil
conversation in order to predict whether it will
eventually turn awry.

7 Conclusions and Future Work

In this work, we started to examine the intriguing
phenomenon of conversational derailment, study-
ing how the use of pragmatic and rhetorical de-
vices relates to future conversational failure. Our
investigation centers on the particularly perplex-
ing scenario in which one participant of a civil
discussion later attacks another, and explores the
new task of predicting whether an initially healthy
conversation will derail into such an attack. To
this end, we develop a computational framework
for analyzing how general politeness strategies
and domain-specific rhetorical prompts deployed
in the initial stages of a conversation are tied to its
future trajectory.

Making use of machine learning and crowd-
sourcing tools, we formulate a tightly-controlled
setting that enables us to meaningfully compare
conversations that stay on track with those that go
awry. The human accuracy on predicting future at-
tacks in this setting (72%) suggests it is feasible at
least at the level of human intuition. We show that
our computational framework can recover some of
that intuition, hinting at the potential of automated
methods to identify signals of the future trajecto-
ries of online conversations.

Our approach has several limitations which
open avenues for future work. Our correlational
analyses do not provide any insights into causal

mechanisms of derailment, which randomized ex-
periments could address. Additionally, since our
procedure for collecting and vetting data focused
on precision rather than recall, it might miss more
subtle attacks that are overlooked by the toxicity
classifier. Supplementing our investigation with
other indicators of antisocial behavior, such as ed-
itors blocking one another, could enrich the range
of attacks we study. Noting that our framework
is not specifically tied to Wikipedia, it would also
be valuable to explore the varied ways in which
this phenomenon arises in other (possibly non-
collaborative) public discussion venues, such as
Reddit and Facebook Pages.

While our analysis focused on the very first ex-
change in a conversation for the sake of general-
ity, more complex modeling could extend its scope
to account for conversational features that more
comprehensively span the interaction. Beyond the
present binary classification task, one could ex-
plore a sequential formulation predicting whether
the next turn is likely to be an attack as a discus-
sion unfolds, capturing conversational dynamics
such as sustained escalation.

Finally, our study of derailment offers only
one glimpse into the space of possible conversa-
tional trajectories. Indeed, a manual investiga-
tion of conversations whose eventual trajectories
were misclassified by our models—as well as by
the human annotators—suggests that interactions
which initially seem prone to attacks can nonethe-
less maintain civility, by way of level-headed in-
terlocutors, as well as explicit acts of reparation.
A promising line of future work could consider the
complementary problem of identifying pragmatic
strategies that can help bring uncivil conversations
back on track.
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